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1 Introduction

In this paper we study random walks on groups with free actions on Z"-trees (Z"-free
groups) and the boundaries of these groups. This family of groups is a particularly
nice and well-studied subclass of groups acting freely on A-trees (A-free groups),
where A is an arbitrary ordered abelian group.

The theory of group actions on A-trees goes back to the work of Lyndon who
introduced in [18] abstract length functions on groups, axiomatizing Nielsen cancel-
lation method; he initiated the study of groups with real valued length functions.
Later in [5], Chiswell related such length functions with group actions on Z- and
R-trees, providing a construction of the tree on which the group acts. At about the
same time, Tits in [22] gave the first formal definition of R-tree, which is a geodesic
metric space with a tree-like structure. Eventually, in [20], Morgan and Shalen in-
troduced A-trees for an arbitrary ordered abelian group A and the general form of
Chiswell’s construction. A A-tree is a metric space whose metric takes values in A
and is subject to certain tree axioms. The theory of group actions such objects was
consistently developed by Alperin and Bass (see [1]), where authors state the funda-
mental problem: find the group theoretic information carried by a A-tree action, in
particular, the structure of A-free groups. If the case of Archimedean free actions,
that is, when A = R, is basically closed by the Rips’ Theorem that describes finitely
generated R-free groups (see [10, 3]), the general non-Archimedean case is still open,
but a lot of progress was made (see [2, 11, 16, 15]) though.

Introduction of infinite A-words was one of the major recent developments in this
theory. In [21] Myasnikov, Remeslennikov and Serbin showed that groups admitting
faithful representations by A-words act freely on some A-trees, while Chiswell proved
the converse [7]. This gives an equivalent approach to group actions on A-trees, in
which one can work with group elements viewed as A-words in the same manner as
with ordinary words in standard free groups. The method of infinite words becomes
a very powerful tool in the case when A = Z" with the right lexicographic order due
to the natural combinatorial structure of Z"-trees. This structure was exploited in
[14] and [17] to obtain a description of finitely generated Z"-free groups in terms of
free products with amalgamation and HNN-extensions of a particular type (see also
2)).

The class of Z"-free groups is a natural generalization of free groups which con-
tains limit groups, R-free groups, etc. and which is closed under taking subgroups,
free products, and amalgamated free products along maximal cyclic subgroups (n
is not preserved in general). All these groups are hyperbolic relative to non-cyclic
maximal abelian subgroups (see [8, 11]) (hyperbolic if all maximal abelian subgroups
are cyclic), coherent, with nice algorithmic properties.

In our paper we represent elements of a Z"-free group by Z™-words which are
certain (finite or infinite) configurations of letters from some alphabet on the Z"-
lattice. To be more precise let us fix the right lexicographic order on Z", that is,
given two n-tuples (ay,...,a,),(b1,...,b,) € Z", we have (a1,...,a,) < (by,...,b,)
if there exists ¢ € [1,n] such that a; < b; and a; = bj,j € [i + 1,n]. Denote by
Z' C Z" the subset of all positive elements in Z" with respect to the order just
defined. For o, 8 € Z", such that a < 3, the closed segment [, 5] is the set [a, 5] =
{y € Z" | @« <y < B} and we define Z"-words as functions on closed segments of
the type [1, o], where o € Z™ and 1 stands for the n-tuple (1,0,...,0) € Z". To this
end let X = {z; |i € I} beaset,and put X' = {z;! |i€ [} and X* = XUXL.



Now, a Z™-word (or just an infinite word) is a function of the type
w: 1, ] — XF,

where oy, € Z", oy, > 0 is the natural length of w, denoted |w|. The set of all
Z"-words over X is denoted by W (Z", X). Concatenation, the trivial word ¢, and
inversion are naturally defined as in the standard free group. An infinite word is
reduced if it does not contain zz~', 7'z as a subword for z € X and the set
of all reduced Z"-words is denoted by R(Z",X). Next, following [21], one can
define multiplication “«” on R(Z", X) and the subset CDR(Z",X) C R(Z",X) of
infinite words without torsion. From the results of [21] and [7] it follows that Z"-free
groups are exactly subgroups of CDR(Z", X) (subsets closed with respect to “x”
and inversion of infinite words), where X may vary (for all the details on infinite

words see Subsection 2.2.3).

Next, a mazimal Z"-word is a function of the type w : Z} — X*. By 0,W(Z", X)
we denote the set of all maximal Z"-words over X* which is a topological space: the
topology is generated by the “cones” U, w € W(Z", X), where U, is the set of all
maximal Z"-words with initial prefix w. 0, W (Z", X) is not compact in general if
n > 1. Similarly to Z"-words, a maximal Z"-word w is reduced if w(B8+1) # w(B)~*
for each 8 € [1,|w| — 1] and we denote by 0,R(Z",X) the subset of all reduced
maximal Z™-words.

Now, given a Z"-free group G, we can assume that it embeds into CDR(Z",
X) for an appropriate set X. Moreover, we can assume that G is irreducible in
CDR(Z™, X) in the sense that it is not conjugate in R(Z",X) to a subgroup H
of CDR(Z*,X), k < n, and non-abelian. Denote by 9,G C 9,W(Z", X) the
limit set of G (with respect to the topology on 0, W (Z", X)). In fact, since G C
CDR(Z"™, X), it follows that 0,G C 0, R(Z", X). 0,G has natural topology inherited
from 0,W(Z", X ) and is not compact in general.

First of all, we prove that sample paths of a non-degenerate random walk on G
converges to elements of 0,G. Then we show that, under certain conditions on a
distribution 4 on G, the space 9,,G with the corresponding measure can be identified
with the Poisson boundary of (G, ). Our main result can be formulated as follows.

Theorem 1. Let G be a Z"-free group for some n € N which embeds into
CDR(Z™, X) for a finite alphabet X. Let G be irreducible and non-abelian. If
OnG C O, R(Z™, X) is the limit set of G in the space of mazimal Z"™-words then for
every non-degenerate probability measure p on G, a.e. path of the random p-walk
converges to an element of 0,G. Moreover, if G is finitely generated and p has fi-
nite first moment with respect to a finite word metric' on G, then the measure space
(0n.G,vy), where vy, is the distribution of limits of paths of the random p-walk, is
the Poisson boundary of (G, ).

In the proof of the above theorem we use methods of [9] and [4].

2 Preliminaries

2.1 Poisson—Furstenberg boundaries

Let G be a countable group and let p be a probability measure on G (we con-
sider measures that are regular with respect to the discrete topology on the group).

'"We consider an arbitrary word metric that is induced by a finite generating set.



We say that p is non-degenerate if its support generates G as a semigroup. The
right-hand random walk on G with distribution pu (or, briefly, p-walk) is the time-
homogeneous Markov chain whose state space is G, the transition probabilities are
given by P(g,h) = (g~ 'h), and the initial distribution is concentrated at the iden-
tity of the group. Realizations of this process are called paths of the random walk.
We write P, for the associated Markov measure on the path space GZ+.

An action of the group G on a topological space M is a homomorphism from
G to the group Homeo(M) of all homeomorphisms of M. An action is said to be
minimal if each orbit of the action is dense (or, equivalently, if the action has no
proper closed invariant subsets). A space endowed with an action of the group G
is called a G-space. We denote the space of all (regular with respect to the discrete
topology) probability measures on G by P(G) and the space of all regular Borel
probability measures on M by P(M). We endow P(M) with the weak topology (by
duality with the space of all bounded continuous functions on M). Any action of
G on M induces an action of G on P(M): (g-0)(E) = 6(g~! - E). A measure is
said to be a Dirac measure if it is concentrated at a point. We say that a measure
is continuous if it takes zero value on each point.

Suppose that p € P(G). A measure v € P(M) is said to be p-stationary if

prv=>Y (g-v)ulg) =v.

gelG@

Assertion 1 ([9]). Let G be a countable group acting on a compact metric space M
and let € P(G) be an arbitrary measure. Then the set of u-stationary measures
in P(M) is non-empty.

Theorem 2 ([9, 13]). Let G be a countable group acting on a compact metric space
M. Take pp € P(G) and let v € P(M) be a p-stationary measure. Then for a. e.
path T = {7;}icz., of the right random p-walk, the sequence {7; - v}icz, converges to
some measure \(1) € P(M). We also have

/ A(7)dP,(r) = v.

Lemma 1 ([13]). Let G be a countable group acting on a space M, p a non-
degenerate measure on G and v € P(M) be a p-stationary measure. Let E C M
be a measurable subset such that for every g € G we have either g - E = E, or
(9- E)NE = @. Suppose further that there is an infinite family of pairwise-disjoint
sets of the form g - E, where g € G. Then v(E) = 0. In particular, if the orbit G - x
of every point © € M 1is infinite, then the p-stationary measure v is continuous.

Lemma 2. Let G be a countable group acting minimally on a topological space M,
i a non-degenerate measure on G and v € P(M) be a p-stationary measure. Let
E C M be a non-empty open subset. Then v(E) > 0.

Proof. Observe that by definition, the p-stationary measure v is pu**-stationary for
every k € N. Consequently, for every k& € N we have

v(E) =Y p*g)g v)(E) =D nFowg - EB). (1)

9eG geq

Suppose that v(E) = 0. Then (1) implies that v(g~' - E) = 0 whenever there exists
k € N such that x**(g) > 0. Hence, v(g~! - E) = 0 for each g € G because p is



non-degenerate. On the other hand, since G acts on M minimally, and F is open
and non-empty, it follows that for each © € M there exists g € G such that g-z € E.
Hence, U c¢ gl E= Ugec 9 - E = M. Since G is countable, it follows that

l=v(M)=v Ug_l-E QZV(g_l-E):().
9€G geG

This contradiction proves that v(E) > 0. O

Suppose that M is a topological G-space, u € P(G), and v € P(M) is a p-
stationary measure. The pair (M,v) is called a p-boundary for G if for a.e. path
7 = {Ti}icz, of the right random p-walk, the sequence of measures {7; - v}icz,
converges to some Dirac measure d,,(y, where w(r) € M.

Usually, it makes sense to consider compact p-boundaries only. In our case with
Z"-free groups, we treat non-compact boundaries also. We give the following simple
lemma here in order to shed some light on the non-compact case.

Lemma 3. Let M be a compact metric G-space, p € P(G), and v € P(M) a p-
stationary measure. Assume that (M,v) is a p-boundary for G, and M’ C M is
a measurable G-invariant subspace with v(M') = 1. Then (M',V'), where V' is the
restriction of v on M', is also a p-boundary for G.

Proof. Let Q; C G%+ be the set of sequences 7 = {7;}icz . for which the sequence
of measures {7; - v}iez, converges to some Dirac measure d,(;), w(7) € M. Set

Qy={r € |w(r)e M}

Since (M, v) is a p-boundary for G, we have P,(2;) = 1. Since v(M') = 1, it follows
by Theorem 2 that P,(22) = 1.

Observe that in an arbitrary metric space K, a sequence {\;}icz, of measures
in P(K) converges to a Dirac measure 0, ¢ € K if and only if for each open
subset U containing = we have lim; .o, A\;(U) = 1. This clearly implies that for
every T = {7;}icz, € Q2, the sequence {7;-1'};ez, weakly converges to d,(;), where
w(r) € M'. In other words, for a.e. path 7 = {7;};ez, of the right random p-walk
(since a.e. path of the right random p-walk is in €), the sequence {7; - v'}icz,
converges to some Dirac measure d,,(,), where w(7) € M'. This precisely means that
(M',v') is a p-boundary for G. O

We say that a topological G-space M is a Furstenberg boundary for G if for every
non-degenerate measure p € P(G) there is a p-stationary measure in P(M), and for
every p-stationary measure v € P(M) the pair (M,v) is a y-boundary.

Assertion 2 ([19], Lemma 3.1). Let G be a countable group acting on a compact
metric space M and let i € P(G) be an arbitrary probability measure. Suppose that
for every p-stationary measure v € P(M) the pair (M,v) is a p-boundary. Then
the p-stationary measure on M is unique.

Thus, if a compact metric G-space M is a Furstenberg boundary for GG, then for
every non-degenerate measure p € P(G) there is a unique p-stationary measure in
P(M).

A p-boundary (M, v) of the pair (G, p) is called a Poisson—Furstenberg boundary
if it is maximal, that is, if every p-boundary (M, v1) of the pair (G, 1) is a quotient



space of (M,v) (as a measure space endowed with a group action, disregarding the
topology).

If (M,v) is a p-boundary for G, it is natural to consider the partially defined
mapping bnd : G — M that sends a path 7 = {;}icz, € G¥* to a point w € M
if {7; - v}iez, converges to d,,. The mapping bnd is thus defined for P,-a.e. path.
Suppose that £ C M is a measurable subset and 7 a path of random p-walk. Then
Theorem 2 implies that bnd(7) lies in E with probability v(E).

In order to establish the maximality of boundaries we use the Strip Criterion
due to V. A. Kaimanovich. An increasing sequence G = (Gy) of sets exhausting a
countable group G is called a gauge on G. By |- |g = min{k | g € G} we denote the
corresponding gauge function. If ;4 is a measure on a group G, we denote by /i the
reflected measure defined by fi(g) = pu(g™").

Theorem 3 (Strip Criterion [12]). Let u be a probability measure with finite entropy
H(p) on a countable group G, and let (B4, \y) and (B_, A_) be - and ji-boundaries,
respectively. If there exists a gauge G = (Gi) on the group G with gauge function
| - |g and a measurable G-equivariant map S assigning to pairs of points (b—,by) €
B_ x By non-empty “strips” S(b_,by) C G such that for all g € G and (A_ X A4)-
almost every (b_,by) € B_ x B

1
7108 1S(b—,b1)9 N Gpr, 6 ——V

in probability with respect to the measure P, in the space of sample paths T =
{7i}icz, then (B4, A1) is a Poisson—Furstenberg boundary of the pair (G, p).

Corollary 1 ([12]). Let G be a finitely generated group with a finite word metric | - |.
Let p be a probability measure on G with finite first moment > |g|u(g). Let (By, A4)
and (B_,\_) be p- and [i-boundaries, respectively. If there exists a measurable
G-equivariant map S assigning to pairs of points (b_,by) € B_ x By non-empty
“strips” S(b_,by) C G such that for (A_ x Ay)-almost every (b—,by) € B_ X By
we have

1 .
{10g|{9 € S(b—,b4) : g <} ——0, (2)
then (By,\+) is a Poisson—Furstenberg boundary of the pair (G, ).

Remark 1. Note that, under the Strip Criterion, the “strips” S(b_,by) are required
to be

(i) all non-empty,
(i) (A= x Ay)-almost surely “thin”.

Clearly, since the strips are allowed to meet the “thinness” requirement (A_x A4 )-
almost surely (not surely), we can handle the “non-emptiness” property in the same
way. In other words, in order to use the Strip Criterion it suffices to construct a
(measurable, equivariant) map S’ : B_ x B, — 29 with strips, which are

(i) (A= x Ay)-almost surely non-empty,
(i) (A= x Ay)-almost surely thin.

This is clear, because we can pass from S’ to a map S with the property (i) by setting
S(b_,by) =G if S'"(b—_,by) =2 and S(b_,b;) = S’ (b_,by) otherwise.

Note also that, having a map with the properties (') and (ii’), we can replace all
non-thin strips by empty ones and thus obtain a map that has the property (i) and
the property



(ii) all strips are “thin”.

A real function ¢ : G — R on a group G is called a seminorm if for every g, h € G:

(a) ¢(g) = 0 and ¢(1) = 0, (b) $(gh) < ¢(g) + #(h), (c) ¢p(g) = #(g~"). By virtue

of Remark 1 the Strip Criterion as follows.

Corollary 2. Let G, |- |, p, (B+,A+), (B-,A_) be as in Corollary 1, and let
h: G — R be a seminorm. Assume that there exists a measurable G-equivariant
map S : B_ x By — 29 sending pairs of points (b_,b,) € B_ x B, to “strips”
S(b_,by) C G such that for (A— x Ay)-almost every pair (b—_,by) € B_ x By we
have

(i) the strip S(b—,bs) is non-empty,
(i) L1og|{g € S(b_,bs) : hlg) <} —— 0.

1— 00

Then (B4, \y) is a Poisson-Furstenberg boundary of the pair (G, u).

Proof. Define the map S’ : B_ x B, — 2% by setting S’'(b_,by) = Gif S(b_,b,) = &
and S"(b_,by) = S(b_, by ) otherwise. Then S’ is still measurable and G-equivariant,
and all its “strips” are non-empty. Observe also, that for (A_ x Ay )-a.e. pair (b—,b)
we have

%k%ngSwﬂm»:Mg it —0, (3)

1— 00

because S’(b_,by) = S(b_,by) for (A_ x A;)-a.e. pair (b_,b;). Now, let us prove
that for (A_ x Ay)-a.e. pair (b_, by ) the strip S’(b_, b, ) meets the condition (2) of
Corollary 1.

Recall that, for our metric |- |, there exists a (unique) subset @@ C G ~\ {1} such
that |g| = min{d € Ny : g € Q?} for all g € G (the set ( is finite, since we consider
“finite” word metrics). Since @ is finite, there exists ky € N such that h(q) < ko-|q| =
ko for each ¢ € Q. Then for any g € G \ {e} with g = ¢q1---q)g, ¢; € Q, we have
(by the triangle inequality for seminorms)

f(g) < Tlq) + -+ 1lqyg) < ko lau] +---+ ko - g = ko - |g].

Since A(1) = |1| = 0, it follows that Ai(g) < ko - |g| for all g € G. Consequently, for
any ¢+ € N and S C G we have

{ge S gl <i}Cc{geS: hg) < koi},

whence

1 .
glogl{gés lgl <i}] < ko—logl{geS h(g) < koi}l,

The last inequality clearly shows that every strip S’(b_, b, ) meeting the condition
(3) above, also meets the condition (2) of Corollary 1.

Thus, the map S satisfies all the requirements of Corollary 1 and hence (B4, ;)
is a Poisson—Furstenberg boundary of the pair (G, u). O

2.2 7Z"-free groups

Here we give some basic definitions in the theory of A-trees.



2.2.1 A-trees

[yl

A set A equipped with addition “+” and a partial order “<” is called a partially
ordered abelian group if

(1) (A,+) is an abelian group,
(2) (A, <) is a partially ordered set,
(3) for all a, 8,y € A, @ <  implies a +v < 5+ 7.

An abelian group A is called orderable if there exists a linear order < on A,
satisfying the condition (3) above. In general, the ordering on A is not unique.

An ordered abelian group A is called discretely ordered if A has a minimal positive
element. With a slight abuse of notation we denote it by 1, but it is going to be
clear from the context if 1 represents a natural number, or an element of A. In this
event, for any o € A the following hold:

(1) a+1=min{s | > a},

(2) a—1=max{f | B < a}.
For elements «, 8 € A the closed segment [c, f] is defined by

[, Bl ={veA|a<y<p})

Now a subset C' C A is called convez if for every «, 5 € C the set C contains [«, 3].
In particular, a subgroup C of A is convex if [0, 5] C C for every positive § € C.

Let X be a non-empty set and A an ordered abelian group. A A-metric on X is
a mapping p : X X X — A such that for all z,y,z € X

) ple,y) =0,
M2) p(z,y) =0 if and only if x = y,
)

M3) p(z,y) = p(y, z),
M4) p(z,y) < p(z,2) +p(y, 2).

A A-metric space is a pair (X, p), where X is a non-empty set and p is a A-metric
on X. If (X,p) and (X',p’) are A-metric spaces, an isometry from (X, p) to (X', p’)
is a mapping f : X — X’ such that p(z,y) = p'(f(z), f(y)) for all z,y € X.

A segment in a A-metric space is the image of an isometry « : [a,b]y — X for
some a,b € A and [a,b]s is a segment in A. The endpoints of the segment are
ala), a(b).

We call a A-metric space (X,p) geodesic if for all z,y € X, there is a segment
in X with endpoints z,y and (X, p) is geodesically linear if for all z,y € X, there is
a unique segment in X whose set of endpoints is {z,y}. We denote such a segment
by [z, y].

A A-tree is a A-metric space (X, p) with X # 0 such that

M1

(
(
(
(

(T1) (X,p) is geodesically linear,

(T2) if z,y,z € X then [z,y] N[z, 2] = [z, w] for some w € X; this w is unique and
we write w = Y (y, z, 2),

(T3) if z,y,z € X then [z,y] N[y, 2] = {y} then [z,y] U [y, 2] = [z, z].



Let X be a A-tree. We call e € X an end point of X if, whenever e € [z,y] C X
either e = x or e = y. A linear subtree from x € X or a geodesic ray x € X is any
linear subtree L of X having x as an end point. L carries a natural linear ordering
with z as least element. If y € L then L, = {z € L | y < z} is a linear subtree from
Y.

A maximal linear subtree from z is an X-ray from x. Observe that (Proposi-
tion 2.22 [1]) that if L, L' are X-rays from z, 2’ respectively such that L N L # ()
then L N L' is either a closed segment, or L N L' = L, for some v € X. In fact, we
call X-rays L and L’ equivalent if L N L' = L, for some v € X. The equivalence
classes of X-rays for this relation are called ends of X.

We say that group G acts on a A-tree X if every element g € G defines an
isometry g : X — X.

Note, that every group has a trivial action on a A-tree, that is, all its elements
act as identity.

Let a group G act as isometries on a A-tree X. g € G is called elliptic if it has
a fixed point. g € G is called an inversion if it does not have a fixed point, but
g® does. If g is not elliptic and not an inversion then it is called hyperbolic. For a
hyperbolic element g € G define a characteristic set

Azis(g)={pe X |[g"" -p,p|N[p.g - p] = {p}},

which is called the axis of g. Azis(g) meets every (g)-invariant subtree of X.
A group G acts freely and without inversions on a A-tree X if for all 1 # g € G,
g acts as a hyperbolic isometry. In this case we also say that G is A-free.

2.2.2 Length functions

Let G be a group and A be an ordered abelian group. Then a function [ : G — A is
called a (Lyndon) length function on G if the following conditions hold

(L1) Vx e G: l(x) >0 and [(1) =0,

(L2) Vo € G: I(x) =l(z™ 1),

(L3) Vz,y,2 € G: c(x,y) > c(z,z) — ¢z, z) = c(y, 2),
where c¢(z,y) = %(l(w) +1(y) — (=7 y)).

It is not difficult to derive the following two properties of Lyndon length functions
from the axioms (L1)-(L3)

e VuryeG: l(zy) <l(z)+I(y),
e Vz,yeG: 0<c(x,y) <min{l(x),l(y)}.

The axiom below helps to describe the connection between A-valued Lyndon length
functions and actions on A-trees.

(L4) Yz € G: c(z,y) € A.

Theorem 4 ([5]). Let G be a group and | : G — A a Lyndon length function
satisfying (L4). Then there are a A-tree (X,p), an action of G on X and a point
z € X such that | = 1.
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2.2.3 Infinite words

Let A be an ordered abelian group, that is, there is a linear order “<” on A such
that for all a,b,c € A, a < b implies a + ¢ < b+ ¢. Recall that for elements o, 8 € A
the closed segment [, (] is defined by

[, f] ={yeA|a<y<p}

Now a subset C' C A is called convez if for every «, 8 € C the set C contains [«, 3].
In particular, a subgroup C of A is convex if [0, 5] C C for every positive § € C.

An ordered abelian group A is called discretely ordered if A has a minimal positive
element. With a slight abuse of notation we denote it by 1, but it is going to be
clear from the context if 1 represents a natural number, or an element of A. In this
event, for any o € A the following hold:

(1) a+1=min{s | S > a},
(2) a—1=max{f | < a}.

Observe that if A is any ordered abelian group then Z @ A is discretely ordered
with respect to the right lexicographic order ((a1,b1) < (ag,b2) < by < by or by =
by and a; < ay).

Let A be a discretely ordered abelian group and let X = {z; | i € I} be a set.
Put X' ={z;' i€ I} and X* = X UX~'. An A-word is a function of the type

w1, o] — Xi,

where o, € A, @ > 0. The element «, is called the length |w| of w.

By W (A, X) we denote the set of all A-words over X*. Observe, that W (A, X)
contains an empty A-word which we denote by .

Concatenation uv of two A-words u,v € W (A, X) is a A-word of length |u| + |v|
and such that:

| u(w) if 1 <a<ul
(uv)(a) = { v(ia—lul) if Ju] < a < |u] + |y
1

Next, for any A-word w we define an inverse w—
and such that

as an A-word of the length |w|

w(B) = w(w| +1-B)"" (B €L |w]).

A A-word w is reduced if w(B+ 1) # w(B)~! for each 1 < B < |w|. We denote by
R(A, X) the set of all reduced A-words. Clearly, ¢ € R(A, X). If the concatenation
uv of two reduced A-words v and v is also reduced then we write uv = v o v.

For u € W(A,X) and 8 € [1,|u|] by ug we denote the restriction of u on [1, 3].
If u e R(A, X) and § € [1, |u|] then

u = ug oug,

for some uniquely defined ug.
An element com(u,v) € R(A, X) is called the (longest) common initial segment
of reduced A-words v and v if

u = com(u,v) ou, v=com(u,v)ov
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for some (uniquely defined) A-words @, © such that @(1) # ©9(1). Note that com(u,v)
does not always exist, if it does then denote

c(u,v) = |com(u,v)|.

Now, we can define the product of two A-words. Let u,v € R(A, X). If com(u~",v)
is defined then

1

u~! = com(u™?

1 ~

,v)ot, v=com(u ,v)oD,

for some uniquely defined % and . In this event put

uxv=1u tod.

The product * is a partial binary operation on R(A, X).

An element v € R(A, X) is termed cyclically reduced if v(1)™! # v(|v|). We say
that an element v € R(A, X) admits a cyclic decomposition if v =c~! owuoc, where
c,u € R(A,X) and u is cyclically reduced. Observe that a cyclic decomposition is
unique (whenever it exists). We denote by CDR(A, X) the set of all words from
R(A, X) which admit a cyclic decomposition.

Below we refer to A-words as infinite words usually omitting A whenever it does
not produce any ambiguity.

The following result establishes the connection between infinite words and length
functions.

Theorem 5 ([21]). Let A be a discretely ordered abelian group and X be a set. Then
any subgroup G of CDR(A, X) has a free Lyndon length function with values in A
~ the restriction L|g on G of the standard length function L on CDR(A, X).

The converse of the theorem above was obtained by Chiswell [7].

Theorem 6 ([7]). Let G have a free Lyndon length function L : G — A, where A is
a discretely ordered abelian group. Then there exists a set X and a length preserving
embedding ¢ : G — CDR(A, X), that is, |¢(g)| = L(g) for any g € G.

Corollary 3 ([7]). Let G have a free Lyndon length function L : G — A,
where A is an arbitrary ordered abelian group. Then there exists an embedding
¢ : G — CDR(N,X), where N' = Z & A is discretely ordered with respect to the
right lezicographic order and X is some set, such that, |p(g)| = (0,L(g)) for any
g€@q.

2.3 Universal trees

Let G be a subgroup of CDR(A, X) for some discretely ordered abelian group A
and a set X. We assume GG, A, and X to be fixed for the rest of this section.

Briefly recall (see [16] for details) how one can construct a universal A-tree I'g
for G. Every element g € G is a function

g:[1,lg]] = XF,

with the domain [1, |g|] which is a closed segment in A. Since A can be viewed as a
A-metric space then [1, |g|] is a geodesic connecting 1 and |g|, and every « € [1,|g|]
can be represented as a pair («,g). Let

Se ={(9) | g € G, e [0, g]]}-
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Since for every f,g € G the word com(f,g) is defined, one can introduce an equiv-
alence relation on Sg as follows: («, f) ~ (8,9) if and only if @ = 8 € [0,¢(f, g9)].
Now, let I'¢ = S/ ~ and e = (0,1), where (a, f) is the equivalence class of («, f).
It was shown in [16] that I'¢ is a A-tree with a designated vertex e and a metric
d:T'g xT'g — A, on which G acts by A-isometries so that for every g € G the
distance d(e, g - €) is exactly |g|. Moreover, I'¢; is equipped with the labeling function
€:(Tg \ {€}) — X*, where £(v) = g() if v = (a, g).

Next, for every vy, v; € ' such that d(vg,v;) = 1 we call the ordered pair (vg, v1)
the edge from vy to vy. Here, if e = (vg,v1) then denote vy = o(e), v; = t(e) which
are respectively the origin and terminus of e. There exists a natural orientation, with
respect to €, of edges in Iy, where an edge (vg, v1) is positive if d(e,v1) = d(e, vp) +1,
and negative otherwise. Denote by E(I'¢) the set of edges in I'g. If e € E(Ig)
and e = (vg,v;) then the pair (v1,vp) is also an edge and denote e~ = (vy,vg).
Obviously, o(e) = t(e~!). Because of the orientation, we have a natural splitting

E(lg)=E(lg)" UE(g),

where E(I'¢)" and E(I'g)~ denote respectively the sets of positive and negative
edges. Now, we can define a function o : E(I'g)t — X7 as follows: if e = (vg,v1) €
E(l¢)t then o(e) = £(vy). Next, o can be extended to E(I'¢)~ (and hence to
E(Tg)) by setting o(f) = o(f~1)~! for every f € E(T'g)".

Example 1. Let F = F(X) be a free group on X. Hence, F' embeds into (coincides
with) CDR(Z,X) and T'p with the labeling o defined above is just the Cayley graph
of F with respect to X. That is, I'r is a labeled simplicial tree.

The action of G on I'¢ induces the action on E(I'¢) as follows g - (vg,v;) =
(g -vo,g-v1) for each g € G and (vg,v1) € E(T'g). It is easy to see that E(I'g)™
is not closed under the action of G but the labeling is equivariant as the following
lemma shows.

Lemma 4. Ife,¢’ € E(I'g) belong to one G-orbit then o(e) = o(€).

Proof. Let e = (vp,v1) € E(I'g)*. Hence, there exists ¢ € G such that vy =
(a, g), v1 = {a+1,g). Let f € G and consider the following cases.

Case 1. ¢(f1,9)=0

Then fxg = fog. Assume that @« = 0 (the case when o # 0 is considered
similarly). Then f -vy = (|f|,f) = {|f|, fog), and f-vy = (|f| + 1, f o g). Hence,
f-e€E(lg)" and o(f -e) =&(f -v1) = g(1) = &(v1) = o (e).
Case 2. ¢(f1,9) >0

(a) a+1<c(f )

Then f-vo = (|f| + @ —2a,f) = (|f| =, f) and f-v1 = (|f| = (@ + 1), f).
So, d(e, f-v1) < d(e, f-v9) and f-e € E(T'g)”. Now,

o(f-e)=o((f-e) ) =o((f vr.frv) ™ =€&(f )™ = f(lfl —a)!
=gla+1) =£(v1) = o(e).

(b) a=c(f",9)
We have f - vy = (|f| — o, f) and f-vi = (|f| + (@ +1) = 2c(f ", 9), f *g) =
(If| —a+1, fx*g). Tt follows that f-e € E(I'g)" and o(f -e) = &(f -v1) =
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(f*9)(|f|—a+1). At the same time, f+g = fiogi, where |fi| = |f|-c(f " g) =
|f|—Oé, g =4go ° g1, |90| = @, S0, (f*g)(‘f‘ —Oé-l—l) :gl(l) :g(a+1) and
o(f-e) =gla+1) =E(a+1,9) =¢(v1) =ofe)

(c) a>c(f 9

Hence, f vy = (|f[+a—2c(f ', g), fxg) and f-v1 = (| f[+a+1-2c(f"",g), f*
g). Obviously, f-e € E(I'g)" and

o(f-e)=¢&(f-v) =(f*g)(fl +a+1—=2c(f""9) =gi(la+1—c(f,9))

=gla+1) =&(v1) = o(e),
where fxg = fiogr, [fil=Ifl—c(f"hg) =Ifl—o, g=goog, lgo] =

Thus, in all possible cases we got o(f - ¢) = o(e) and the required statement
follows. O

Let v, w be two points of I'g. Since ' is a A-tree there exists a unique geodesic
connecting v to w, which can be viewed as a “path” in the following sense. A path
from v to w is a sequence of edges p = {eq}, @ € [1,d(v,w)] such that o(e;) =
v, t(eqww)) = w and t(eq) = o(ea+1) for every a € [1,d(v,w) — 1]. In other words,
a path is an “edge” counter-part of a geodesic and usually, for the path from v to
w (which is unique since I';; is a tree) we are going to use the same notation as for
the geodesic between these points, that is, p = [v,w]. In the case when v = w the
path p is empty. The length of p we denote by |p| and set |p| = d(v,w). Now, the
path label o(p) for a path p = {e,} is the function o : {e,} — XT, where o(ey) is
the label of the edge e,.

Lemma 5. Let v,w be points of I'c and p the path from v to w. Then o(p) €
R(A, X).

Proof. From the definition of ' it follows that the statement is true when v = e.
Let vg = Y (€,v,w) and let p, and p, be the paths from e respectively to v and
w. Also, let p; and ps be the paths from vy to v and w. Since o(py),o(py) €
R(A,X) then o(p1),0(p2) € R(A, X) as subwords. Hence, o(p) ¢ R(A, X) implies
that the first edges e; and ey correspondingly of p; and ps have the same label.
But this contradicts the definition of I'; because in this case t(e;) ~ t(ez2), but

t(@l) 75 t(eg). ]

As usual, if p is a path from v to w then its inverse denoted p~—! is a path from

w back to v. In this case, the label of p~! is o(p)~!, which again an element of
R(A, X).
Define
Ve={velg| 3g€G: v={_lgl.9}

which is a subset of points in I'; corresponding to the elements of G. Also, for every
v € Lq let
pathg(v) = {o(p) | p= [v,w] where w € Vi}.

The following lemma follows immediately.

Lemma 6. Let v € V. Then pathg(v) = G C CDR(A, X).

The action of G on E(I') extends to the action on all paths in ', hence,
Lemma 4 extends to the case when e and f are two G-equivalent paths in I';.
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3 From 7Z"-trees to metric spaces

Let G be a Z™free group and I'g the associated universal Z"-tree described in
Subsection 2.3. In this section we construct a metric space X, which is a compact-
ification of 'y, equipped with an action of G without a global fixed point.

3.1 Compactification of a simplicial tree

Let T be a locally finite simplicial tree (that is, Z-tree) and let d; be a usual metric
onT. That is, if z,y € T then there exists a unique geodesic path p(z,y) connecting
them and hence dy(z,y) = |p(x,y)|, where |p(z,y)| is the length of the path p(z,y).
It is easy to see that dp is an ultrametric on T'.

For z,y,z € T let (z - y), = $(dr(z,2) + dr(y, 2) — dr(z,y)).

Let x € T. Recall (see Subsection 2.2.1) that a T-ray, or a geodesic ray from z is
an isometry r : ZT — T such that r(1) = z. Two geodesic rays r,rs are equivalent
(r1 ~ 7o) if the intersection ) N rg is also a geodesic ray. It is easy to check that
“~” is an equivalence relation on the set of all geodesic rays in T'; let 9T be the set
of equivalent classes. For x € T and a € 9T denote by [z, a) the geodesic ray from
z to a.

Similarly, for a,b € 9T a geodesic line from a to b, denoted (a,b), is an isometry
r : Z — T such that for every n € Z the restriction r|(_m7n} is a geodesic ray from
r(n) to a, and the restriction r|;, ) is a geodesic ray from r(n) to b.

Let w € T. It is easy to see that every a € 0T can be put in correspondence
with a unique infinite geodesic ray w, wy,ws, ..., w; € T from w. Now, let a,b € 9T
corresponding to rays w,z1,%o,... and w,y1,ys,... and define

(a-b)y = lim (z; - Yi)w.

n—oo

Similarly, for a € 0T represented by a geodesic ray w,z1,xs,... and y € T we define

(a-y)w = lim (z; - y)w.
n—oo
Consider T = T U 0T and define a function d’ : T x T — R as follows
d,($,y) = e—(:v-y)w’ T,y € T

Lemma 7. For every x,y,z € T, the function d' satisfies the following properties

(a) d'(z,y) >

(b) d(z,y) =0 & z=yecdT,
(c) d(z,y) =d(y,z),

(d) d'(z,y) < max{d'(z,z),d (y,2)}.

Proof. (a), (b) and (c¢) follow immediately from the definition.

To prove (d) notice that if x # y € JT are represented by the geodesic rays
w, 1, %9, .. and w,y1, Y2, . .. then there exists N > 0 such that (z-y)y = (n - Ym)w
for every n,m > N (otherwise w,z1,x2,... ~ w,y1,y2,... and x = y). The same
holds for z € 0T and y € T, that is, there exists N > 0 such that (z-y), = (- Y)w
for every n > N. In other words it is enough to check (d) for z,y,z € T, that is, we

have to show that
e~ @Vv < max{e” @ o~W2uw],
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In particular, the inequality holds if (z - y)y = (2 2)w = (¥ - 2)w-
Since T is a tree then the following holds for every z,y,z € T

@ Yw > (@ 2)w = (@ 2)w= (Y 2)w-
Thus we can consider the following cases

(1) (@ Yw > (2 2)wor (T Y)w > (Y- 2)uw-

Immediately e~ @V « o=@ 2w — o= (¥2)w

O
Eventually, define d : T x T — R as follows
_ [ d(=zy) ifz#y
o) ={ g HE7Y (1
Lemma 8. d is an ultrametric on T.
Proof. Immediately follows from Lemma 7. O

It is easy to see that d(z,y) < 1 for every z,y € T. In particular, d(z,y) = 1 if
either 2 # y € T and (z,y) is a geodesic line from x to y which passes through w,
orz € T, y € T and the geodesic ray [z, y) contains w.

Let z € T. It is easy to see that for every ¢ > 0 the ball B.(z) of radius e
centered at z is a subset of T of the following type

B.(z) ={z} U{y €T | (= y)w > —Ine}.

Hence, if z is the closest to w vertex of the segment [w,z] such that (z - z),, =
d(w,z) > —Ine then B.(x) = T, UJT,. If such z does not exist, that is, if d(w, z) <
—Ine for every t € [w, z] then B.(z) = {z}.

Similarly, for € 9T'. Here, for every € > 0 we have

Be(z)={yeT|(z-y)p = —Ine} =T, Uy,

where z is the closest to w vertex of the geodesic ray [w,z) such that (z - 2), =
d(w,z) > —Ine. Observe that B.(z) contains .
Using the above considerations we prove the following lemma.

Lemma 9. T is compact in the topology induced by the metric d.

Proof. It is enough to show that T is totally bounded and complete.

Let € > 0. Let K be a collection of points 2 € T such that d(w,z) > —Ine and =
is the closest to w point with this property. Then K is finite and T, U 0T, = B.(x)
for every z € K. Moreover, Ty = T — |J, (T U 0T}) is also finite and for every
y € Tp one can choose €, < € such that B (y) = {y}. It follows that T" can be
covered by finitely many B.(z), z € K together with finitely many B. (y), v € To.
Hence, T is totally bounded.
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To prove completeness of d consider a Cauchy sequence {z,,} C T, that is, for
every € > 0 there exists N > 0 such that for every n,m > N we have d(z,,z,) <
g, of (T - Tp)w = —Ine. It follows that for every € > 0 there exists N > 0
such that for every n > N we have d(z,,w) > —Ine and z, € Ty, U0T,,. It
follows that {7y, 0Ty, } is a nested sequence of subsets of 7. Hence, take a =
Ny—1(Tey UOT:y) € T and it follows that , — a as n — oo. So, T is complete
and thus compact.

O

Observe that the metric d defined in (4) works for every simplicial tree.

3.2 The case of a Z*-tree

Let I' be a Z2-tree with the metric dp : I' x I' — Z2. v,w € I' are Z-equivalent
(v ~z w) if d(v,w) € Z, that is, d(v,w) = (a,0). From metric axioms it follows
that “~z” is an equivalence relation and every equivalence class defines a Z-subtree
(which is a simplicial tree) of I'. For each Z-subtree T of I denote by Ends(T) the
set of ends of T'.

Let A =T/ ~z. A naturally inherits the tree-structure from I' and in fact A is
a simplicial tree (not locally finite, in general). Denote by da the induced metric on
A. For a Z-subtree T of I denote by v the corresponding vertex in A.

Let us fix a Z-subtree T, of I'. Then T} corresponds to a vertex vy, in A and
now one can define the levels of Z-subtrees of I' using A as follows. A Z-subtree
T belongs to the k-level (with respect to Ty) of Z-subtrees of I if da(vr,,vr) = k.
Also, a Z-subtree T of T is adjacent to T if da(vp/,vp) = 1. Observe that the edge
between vy and vy in A corresponds to the pair of ends (a7, ap) in the adjacent
trees T” and T'.

Similarly to simplicial trees, one can define the set of ends of I'. This set consists
of the ends of each Z-subtree of I' together with the ends of Z2-type, that is, the
equivalence classes of maximal linear subtrees of I' (each maximal liner subtree of
[ is isometric to [0,00)z2 = {a € Z? | a > 0}) defined exactly as in the case of
simplicial trees. Hence, we have

Endz(T) = U{Ends(T) | T is a Z — subtree of T'},

Endy: (') = {maximal linear subtrees of I'}/ ~,

and
Ends(T") = Endg(T)| ) Endz(T).

Now we construct a compactification T' of T' as follows.
[ =T J(Ends(I)/ ~),

where apr ~ ap if apr € Ends(T’), ar € Ends(T) and T', T are adjacent Z-
subtrees of I'. In other words

= (U{T|TisaZ—subtreeofF})/N.

For each Z-subtree T of T, the compactification 7' embeds into I' so we can ideitify
T with its image in ['. Thus, if T and T" are adjacent Z-subtrees then T NT’ =
OT N OT" = {a}, where q is the identified ay and ayp.
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The next step is to introduce a metric on I'. Using the construction of Subsection
3.1 we define a metric on the compactification of each Z-subtree of I' as follows. Here
we assume that d is the metric on the compactification of an arbitrary simplicial
tree T defined in (4). Let 7; be the set of all Z-subtrees of the 1-level in I'. 77 is
countable and we can enumerate its elements in an arbitrary way. Thus we set

dTO(.’E,y) = d(ny)7 T,y € TO
and

1 _
dTn(fL',y) = 2_nd($7y)7 T,y € Tn

for each T,, € 7;. Now we continue by induction on the level of Z-subtrees in T'.
Suppose that the metric is defined on the compactifications of Z-subtrees of the
k-level. Let S be a Z-subtree of I' of the k-level, so, by the induction hypothesis the
metric dg = 2LNd for some N € N is already constructed on S. Let 7g be the set of
all Z-subtrees of the k + 1-level in I' attached to S. Again 7g is countable and we
can enumerate its elements in an arbitrary way. Hence, we set

1 _
dTn(xay) = Wd(xay)v T,y € Tn

for each T, € 7Ts. B
Thus having defined the metric on each T' we define a function dg : I'xI —R
as follows. Let z,yy € T' and we consider three cases.

(i) fx,yel — Endg: (I then there exists a sequence T, ..., T, of Z-subtrees of
I' such that z € T4, y € T, and T; is adjacent to Tj4q for each 1 € 1,n —1].
Denote a; = T; N Tit1, ¢ € [I,n — 1]. Observe that the sequence T1,...,T),

corresponds to a geodesic vyy,...,vy, in A. Now set
n—2
dp(z,y) = dr, (z,a1) + Z dTiH (ai,aiv1) + dTn(an_l, ).
i=1

(ii) If # € T — Endy:(T), y € Endg(T) then there exists an infinite sequence
Ty,...,Ty,... of Z-subtrees of I with T; adjacent to T;4; for each ¢ > 1 such
that = € T and the sequence of linear subtrees [z, ay) converges to the linear
subtree [z,y) as k — oo (here a; = T; N Tyy1, i > 1). Now set

dr(@,y) = dp, (z,a1) + Y _dg__ (ai,ait1).
=1

(iii) If z,y € Endgz(I') then there exists an infinite sequence ...,S_,,..., S0,
.y Sny ... of Z-subtrees of I' with S; is adjacent to S;4; for each ¢ such that
the sequence of linear subtrees (a_, ax) converges to the linear subtree (z,y)

as k — oo (here a; = S; N S;41, i € N). Now set

df(.’L‘,y) = Z d§i+l(a'iaa’i+1)‘

1=—00

Observe that dp(z,y) < 4 for every z,y € T, it follows from the construction.
Indeed, the maximal possible value of d(x,y) is attained when z,y € Endy(I') and
the infinite sequence of Z-subtrees of I' connecting = and y contains Tj - in this case

df(xa y) <2 ZZO:O QL" = 4.
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Lemma 10. d is a metric on T.
Proof. The properties
(a‘) df(xuy) Z 07

(b) dp(z,y) =0 < =y,

(C) df(xv y) = df(ya $),

follow immediately from the definition. Let us prove

Let z,y,z € I'. Then each of these points either belongs to the compactification
of some Z-subtree of I', or it is an element of Endy:(I'), and z,y,z are pairwise
connected by linear subtrees (possibly infinite) in I'. The corresponding vertices (or
ends) in A form a (possibly infinite) tripod in A whose sides are K, ,, K., Ky ..
Ifg=K;yNK;,NK,, then there exists a Z-subtree T" of I' such that ¢ = vp. It
follows that

df(xay) = A+dT(a'7 b) +Ba df(xaz) = A+dT(a7 C) +Ca df(yaz) = B+dT(b7 C) +Ca

where a,b,c € 0T, A = dp(x,a), B = dp(y,b), C = dp(z,c), and the triangle
inequality for the triple z,y, z reduces to one for the triple a, b, ¢ which holds since
dr is an ultrametric on 7.

O

Lemma 11. T is compact in the topology induced by the metric d.

Proof. It is enough to show that I is totally bounded and complete.

Let € > 0. T is compact so it can be covered by finitely many balls of radius 5
and centered at some yi,...,yr € To. Hence, all points of intersection of Ty with
the compactifications of the adjacent trees are covered too. Let T be adjacent
to Ty so that 2LN < 5 and let ay = ToNTy € B.2(yi). Then Cuy C B, j2(yi)-
Indeed, for each y € T',, we have dn(z,y) < Y00 2]\,% = 2%, < 5 and we get the
required from the triangle inequality. It follows that for all but finitely many points
a = ToNT, where T is adjacent to Tp, the subtree I', is in one of finitely many
balls of radius e. If Sy,...,Sy, is the list of the adjacent to Ty Z-subtrees (all of
which belong to the 1-level) then the procedure above can be repeated for each of
them producing another finite list of the 2-level subtrees which are not covered etc.
But with the growth of level the diameters of these subtrees decrease and eventually
become smaller than ¢. Hence, if S is such a Z-subtree of radius 2% then for every
point z € S we have SUT, C B,(e). Thus all but finitely many Z-subtrees of I'
can be covered by finitely many balls of radius e. Now we are done since each of the
balls left is compact, that is, I is totally bounded.

To prove completeness of ' let {z,} C T be a Cauchy sequence, that is, for every
e > 0 there exists N > 0 such that for every n,m > N we have dp(z,,z,) < €.
Let Ty be the subtree of I' spanned by {z,} U {z}, where 2 € Ty and consider the
following cases.

(a) There exists a Z-subtree T' of I' such that T'o N JT" is infinite.

In this case there exists a subsequence {yx} of {z,} such that every segment
[, yx] intersects OT. If {ax} C OT then {ay} is a Cauchy sequence, hence it
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converges to some b € 0T. But dp(yx,ar) — 0 as k — 00, 50 dp(yg,b) — 0 as
k — oo. It follows that {y)} converges to b € I' and since {z,} is a Cauchy
sequence then {x,} also converges to b.

(b) The intersection I'g N OT is finite for every Z-subtree T' of T.

It follows that I'y is locally finite and infinite, so there exists an infinite branch
which converges to some b € Endy2(T"). Here, since the level of S, such that
Tn € Sy grows to infinity, it follows that dp(zn,b) — 0 as n — oo and {z,}
also converges to b.

So, T is complete and thus compact. ]

3.3 General case

Let I' be a Z"-tree. Hence, similarly to the case n = 2 one can introduce the notion
of Z"1-subtree of T, the set of ends of Z*-type of I" for k < n etc., and then use the
induction on n. That is, one can assume that the compactification on an arbitrary
Z"~'-tree T is already constructed and then using rescaling argument introduce the
compactification T' of I' with respect to the metric dg.

3.4 Action of G on 'y

Let G be a Z"-free group and let I'¢ be the corresponding minimal tree with the
base point €. Let I' be the compactification of I'¢ with respect to the metric dfc
constructed in Subsection 3.3.

Theorem 7. Let G be a non-abelian Z™-free group.

(i) The action of G on I'¢ induces an action of G on T'q without a global fized
point. Moreover, no point of U'q has a finite orbit under the action of G.

(ii) The action of G on T'q is continuous with respect to the metric dfc’ that 1s,

if a sequence {x,} C T'q converges to b € T then for each g € G we have
g Ty —g-basn— oo.

Proof. (i) The action of G' on I'g is minimal and free. Since every end of Z*-type
of I', where £ < n, belongs to some geodesic ray from e then the action of G on
I' considered as a collection of geodesic rays from e naturally extends to the action
on I'. Let @ be an end of ZF-type of I, where k < n. Then « is fixed by g € G
only if o € Awxis(g). Moreover, if (o, ) is a pair of ends of ZF-type of I" so that
a € 0T, p € 0S and T, S are adjacent, then either both « and f are fixed by g,
or both are moved by g. It follows that no end of I'¢ and hence no point of ¢ is
fixed by every element of G unless G is abelian and I'¢ is a linear subtree, which is
impossible by the assumption.

Similarly, since the action of G on I'g is free, it follows that no point of I'¢ can
have a finite orbit under the action of G. If z € T'¢ ~ ' then z is an end of I'g
and, since G is infinite, it can have a finite G-orbit only if « is fixed by all elements
of G. But in which case G is abelian and I' is a linear subtree — a contradiction

(ii) Let ¢ € G. Without loss of generality we can assume that g does not
stabilize any Z*-subtree of I" for k < n. Let Tj be the Z"~!'-subtree containing ¢ and
let T'=g-Ty. Then dp = 2LNdTO and dg.5 = 2LNd5 for every z,, such that z, € S,
where S is a Z" !'-subtree of I'g. That is, the action of ¢ is equivalent to rescaling
the metric by QLN and the required statement follows. U
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Recall that an action of a group on a topological space is said to be minimal if
each orbit of the action is dense (or, equivalently, if the action has no proper closed
invariant subsets)

Theorem 8. Let G be an irreducible non-abelian Z"-free group. Let 0L be the
set of all ends of Z™-type in the compactification U';. Then the induced action of G
on 0,L'q is minimal.

Proof. Let pd,I'¢. We are going to show that the closure of G - p coincides with
0,Lq. Since p is an end of Z"-type of g, it follows that there exists a sequence
{gi} of elements of G such that g; - € — p as i — co.
Let q0,'g. Again, since ¢ is an end of Z"-type of I'g, there exists a sequence
{h;} of elements of G such that h;-€ — q as j — oo.
(to be completed)
O

Remark 2. (a) If n > 2 then 9,I'¢ may be neither open nor closed in T'g. Of
course, O,'q is Borel-measurable in I'g.

(b) Observe that the action of G on the “boundary” I'g ~ I'q = Uke[l,n} ol
may not be minimal. This is the case when the closure of 0, does not
coincide with T \ T'. For example, let X = {a,b} and let u € CDR(Z?, X)
be such that |u| = (0,1) and u(a) = a for every a € [1,|ul]. Now, consider
G = (a,b,u’) C CDR(Z? ,X). Note that u ¢ G. Then the Z-type end of I'
represented by the sequence {ua®} is an element of ;T which does not belong
to the closure of 9L (nor to the closure of G - €)).

Proposition 1. Let G be an irreducible non-abelian Z"-free group, ' the associated
universal Z"-tree, I'; the compactification constructed above, and 0,I'¢ C I'q be the
set of ends of Z"-type. Let s be a non-degenerate measure on G and v a p-stationary
measure on L'¢. Then

(i) v is continuous,
(11) V(anFG) =1,
(iii) v(E) > 0 for every open non-empty set E C T with EN0,T¢ # @.

Proof. (i) The continuity of v follows from Lemma 1, because the action of G on T'g
has no finite orbits (see Theorem 7).

(ii) In the case n = 1 the set I'q \ 9,I'¢ = I'¢ is countable. Then, since v is
continuous, we have v(I'¢) = 0. Hence, v(9,[g) = 1.

Assume n > 2. Let E,_; be the set of all Z"~! subtrees of I'; and let fn 1=
{S clg | S 6 Z,_1} be the set of closures of these subtrees in I'g. Observe that
E,_1 is countable, that the action of G’ on I'¢ induces an action of G on =,_;, and
that the orbits of the latter action are countable.

Let K = UsyéTeén_l (SNT). Then K is a countable subset of T'¢;, because Z,,_,

is countable and for any S # T € gn_l the set S NT consists of at most one point.
Consequently, v(K) = 0 (since v is continuous).

Now, let =;,_; be the family of subsets in T'¢ of the form S~ K, where S €= 1.
By construction, we obviously have:

(1) E/_, is countable,
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(2) the action of G on T'¢ induces an action of G on En_1, and that the orbits of
the latter action are countable,

(3) for any S € 5,1 the set S~ K € é;l_l is a measurable subset of I', because
S is closed and K is countable,

4) for any g € G, S" € g%—l we have either (g-5') =5, or (¢-5)NS =02.

It then follows by Lemma 1 that v(S’) = 0 for each §" € E/, |, whence v({J=, S') =
“n—1

n—1»

0. Thus, we have v(UJz  S)=v(Uz ') +v(K) =0. Consequently
=n— “n—1

v(0Ta) =v(Ta)—v(|] §)=1-0=1

n—1

(1)

(iii) This follows from (ii) by Lemma 2, because G is countable and acts on 9, '
minimally (see Theorem 8). O

3.5 Additional constructions concerning 'y

Let G be a Z™-free group with n > 2 and let ' be the aisociated universal Z"-tree
(with the base point €) described in Subsection 2.3. Let I'¢ be the compactification
of I'z constructed in Subsections 3.1-3.3.

Definition 1. For a pair a,b € ', we denote by [a,b] the geodesic in I'g connecting
a and b. If a # b, we denote by [a,b] the closure of [a,b] in the space Tg. We also
set [a,a] = {a} for every a € T'g.

Lemma 12. Let a,b € T'g. Then there exists ¢ € T'g such that [e,a] N [e, b] = [e, c].
Ifa,b € T'q, then c€ T'. If a ¢ [e,b] and b & [e,a], then ¢ € .
Definition 2. For a pair a,b € T with [e,a] N [e,b] = [e,c] we set
Y(e,a,b) =c.
Let =,,_; be the set of all Z"~! subtrees of ['¢ and let
En1={ScT¢ | Ses, 1}

be the set of closures of these subtrees in ['¢;. (In the case n = 1, the sets =,,_; and
én_l both coincide with the set of vertices of the usual tree I'.) Let 0, _1T¢ be the
set of those points in T'¢; that correspond to Z" '-ends in I'¢. (In the case n = 1,
the set 9, _1'g is empty.)

Definition 3. For a pair of points a # b € Iz, we define

#{8n_1FG N {a, b}}
5 _
where #{S € Z,_1 | SNa,b] # @} is the number of distinct Z"'-subtrees of T'c
intersecting with [a,b] and #{0,-1T¢ N {a,b}}/2 is a number from {0,1/2,1}. If
a or b is an end of Z"-type, then hy(a,b) = co. We set also hy(a,a) = 0 for each
a € Fg.
For a point p € T, we set

F(a,b) = #{S € Ep_y | SN [a,b] £ 2} +

L,

i (p) = hi(€,p).

For an element g € G, we set

i (g) = hu(g - €) = hn(€,g - €).
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Remark 3. Consider the simplicial tree A,_1 of Z" '-subtrees of T'q. Then each
geodesic segment [a,b] C ', where a # b € U, naturally projects to A,_1 forming
a path there. The value hy(a,b) equals to the length of this path.

If v € Tq lies at the Z"'-subtree of the k-level (with respect to the Z" '-subtree
Ty containing €) then hy,(v) = k.

If g € G and |g| = (21,...,2,) €Z", then hy,(g) = zy. In particular, hy, : G — Z
1S 4 Sseminorm.

Lemma 13. Let a,b € ' and p € [a,b], then

hin(a,b) = hy(a,p) + hn(p,b).
Proof. Easily follows from the definition. O

Lemma 14 (convergence-1). Let {a;} and {b;} be two sequences of points in I'q.
Suppose that for each vertex v € I'y, the set {i € N | v € [a;,b;]} is at most finite.
Then dr (a;,b;) — 0 as i — oo.

Proof. (to be completed) O

Lemma 15 (convergence-2). Let {g;} be a sequence of elements from G, and let
y € 0,L'g be an end of Z"-type. Assume that there ezist a verter vy € I'q such
that the sequence {g; - vo} converges to y. Then all the sequences {g; - v}, v € T'q,
converge to y.

Proof. Consider the sequence of numbers {H;} = {h,(g; - vo)}. Since {g; - vo} con-
verges to an end of Z"-type, it follows that {H;} tends to infinity. Let H = A, (vg, v).
Observe that hy, (g - vg,g-v) = hy(vy,v) = H for every g € G. Consequently, for any
i € Nand z € [g;-v9, g;-v] we have hy,(z) > H;—H. Since the sequence { H;—H } tends
to infinity, it follows that for each vertex w € I'; the set {i € N | w € [g; - vo, g; - v]}
is at most finite. The result then follows by Lemma 14. O

Corollary 4 (convergence-3). Let {a;} and {b;} be two sequences of points in I'c.
Suppose that Ty (Y (€, ai, b;)) — o0 as i — oo. Then dr_(a;,bi) — 0 as i — oo. In

particular, {a;} converges to a point w € L' if and only if {b;} converges to w.

Proof. Observe that if € T and y € [e, 2], then Ay, (y) < hy(2) for each z € [y, z]
(Lemma 13). If a,b € T'; and ¢ = Y (¢, a,b), then we have ¢ € [¢,a], ¢ € [e,b], and
[a,b] = [c,a] U e, b]; it then follows that

min 7, (2) = "y, (Y (e, a,b)).
z€[a,b]

Therefore, we have min, ¢y, 5,1 Mn(2) = Fn(Y (€,ai,b;)) for all i € N. Since we
assume f, (Y (e, a;,b;)) — o0 as i — oo, it follows that for each v € T'¢ the set
{i € N | v € [aj,b;]} is at most finite (because we have v ¢ [a;,b;] whenever
min,e[q,; b,] fin(2) > Mn(v)). Then the result follows from Lemma 14. O

Definition 4. Let vi,ve be a pair of wvertices in I'q. We define the branch
Branch(vy,v3) to be the subset {w € Tg | [v1,w] 3 va}.

Lemma 16. Let v1,v9 be a pair of vertices in I'c. Then Branch(vy,vs) is open and
closed in I'q.
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Proof. If v; = vg, then Branch(vy,v2) = I'g. Suppose v; # v2. Let vg be the vertex
of I'¢ lying on the geodesic [v1,v9] and adjacent to ve. Then Branch(vy,ve) =
Branch(vg, v2). Observe that

T'¢ ~ Branch(vg,v2) = Branch(vs, vy),

and that for any a € Branch(ve,vy), b € Branch(vg,v2) the geodesic [a,b] con-
tains the edge (vp,v2). Consequently, there exist § > 0 such that dp,, (a,b) > 0
whenever @ € Branch(vs,vy) = T'¢ . Branch(vg,v2) and b € Branch(vg,vs).
Therefore, U,cpranch(vs )i € T | dr,,(z,p) < 0} = Branch(vy,vz), which
means that Branch(vi,vz) is open. Similar argument shows that I' \. Branch(vy,
vy) = Branch(vy, v1) is open, hence Branch(vy,vy) is closed. O

4 The Poisson—Furstenberg boundary

In this section, we prove the following theorem, which implies our main Theorem 1.

Theorem 9. Let n be a positive integer, let G C CDR(Z™,X) be an irreducible
non-abelian Z"-free group over a finite alphabet X, I' the associated universal Z"-
tree with the base point € described in Subsection 2.3, T the compactification of I'g
constructed in Section 3, and 0,L'q the set of ends of Z"-type in T'. Then, for
every non-degenerate probability measure u on G, the following hold true:

(0) There ezists a unique p-stationary measure v, on L' (by Proposition 1, this
measure is continuous, Vu(anfg) =1, and v,(E) > 0 for every open non-
empty subset E C I'q with EN0,I'q # 9).

(1) The pair (T, vy) is a p-boundary of G, i.e., for a.e. path T = {7;} of the ran-
dom p-walk, the sequence of measures {T;-v,} converges to a (random) Dirac
measure 8-y, where w(t) € Tg; moreover, with probability 1 = v,(9,q) we
have? w(t) € 9, .

(2) If 7 = {7;} is a path of the random p-walk such that w(t) € 0,T¢, then the
sequence {T;-v} converges to w(t) for each vertez v € . (Since the point w(T)
is defined and lies in 0,Tq for a. e. path T = {;}, it follows that the sequences
{ri-v}, v € T, converge to w(r) for a.e. path T = {1;}.)

(3) If G is finitely generated and p has finite first moment with respect to a word
metric® on G, then the measure space (Tq, v,) is a Poisson—Furstenberg bound-

ary of (G, ).

The structure of this section is as follows.

In Subsection 4.1, assertions (0) and (1) of Theorem 9 are proved.

In Subsection 4.2, assertion (2) of Theorem 9 is proved.

In Subsection 4.3, assertion (3) of Theorem 9 is proved.

Note that assertion (2) is not used in our proof of assertion (3).

In Subsection 4.4, we explain why Theorem 1 follows from Theorem 9.

2 The fact that for a.e. path 7 = {r;} of the random p-walk, the limit point w(7) is an end
of Z"-type, follows from Theorem 2 and Proposition 1. (By Theorem 2, the distribution of limit
measures d,,(-) is given by v, while by Proposition 1 we have v, (9,I'¢) = 1.)

#We consider an arbitrary word metric that is induced by a finite generating set.
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4.1 The G-space ' is a Furstenberg boundary of G

In this subsection, we prove the following theorem, which implies assertions 0) and
1) of Theorem 9.

Theorem 10. Under assumptions of Theorem 9, the G-space I'; is a Furstenberg
boundary of G.

Assertion 0) of Theorem 9 follows from Theorem 10 by Assertion 2 (the last
one is applicable, because I is compact and metrizable). The main statement of
assertion 1) is equivalent to Theorem 10 by definition.

The standard pattern to prove that a (compact metrizable) G-space X of a
countable group G is a Furstenberg boundary of G is as follows. We consider an
arbitrary p-stationary measure v on X’ (for an arbitrary non-degenerate measure p
on G) and show that a.e. path {7;} of the random p-walk contains a subsequence
{7, } such that the sequence {7;, -} converges to some Dirac measure. By combining
this with Theorem 2, we see that for a.e. path {r;} the sequence {7;-v} converges
to some measure, and at the same time has a subsequence converging to a Dirac
measure. It follows that the limit of {7;-v/} is this Dirac measure, and the proof is
done (see the definition of Furstenberg boundary).

In order to prove Theorem 10, we will follow the above pattern. We will show
that there exists a subset & C G%+ such that, for any nondegenerate measure j
on G and any p-stationary measure v on I'g,

1) A.e. path of the random p-walk contains a subsequence from &,

2) For each {g;} € &, the sequence {g;-v} converges to a Dirac measure.

We define & to be the subset in G%+ consisting of all sequences {g;} with the
following three properties (here, € is the base point in I'g):

i) {gi-€} converges to a point of ' \ I'g,
ii) {g; '-e} converges to a point of T'; \ I'¢,

iii) {h,(g;)} tends to infinity as i — oo, where A, is the seminorm described in
Subsection 3.5 (Definition 3).

Remark 4. For some groups and spaces, in order to apply the above pattern, it
suffices to consider the set of sequences with property i) only. In fact, property
ii) is redundant in our case too; we include it due to the local tactic of our proof.
However, property iii) (or some analogue of it) is indispensable in our case. Note
that property iii) does not imply that the ends where {g;-¢} and {g; '€} converge
to are ends of Z"-type.

Proposition 2. Let G, ', g, i be as in Theorem 9. Then a. e. path {7;} of the
random p-walk contains a subsequence {7;;} € ©.

Proof. First, we prove that a.e. path {7} of the random p-walk contains a sub-
sequence with property iii) from the definition of &. Let d € N. Since G is an
irreducible Z™-free group (see the definition of irreducibility in the introduction and
Lemma ?7), it follows that there exists an element goy € G such that f,(gaq) > 2d.
Since p is a non-degenerate measure, there exists k& € N such that p**(goq) > 0. It
follows that for a.e. path {r;} of the random p-walk there exists m € N such that
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Tm+k = Tm924- (To see this, use the ergodicity of the Bernoully shift in the space of
sequences of j**-equidistributed random variables {Tﬁcl’rﬂﬂ,k}jez ., or observe that
the measure P, of the set of all u-walk paths with 714 # Tjrg2q for each 7 € N
equals limy .o (1 — €)* = 0, where ¢ := p**(ga4) > 0.) Then

P (T Tinctke) = P (924) > 2d.

Since hy, : G — Z is a seminorm (see Remark 3; in particular, it satisfies the triangle
inequality, and Ay, (h) = h,(h™!) for each h € G) it follows that

min{ A (Tm+k), A (Tm) } > d.

We have thus showed that for any d € N the path {7;} a.s. has an element 7; such
that h,(7;) > d. It obviously follows that {7;} a.s. has a subsequence {7/} such that
{hn(7])} tends to infinity (property iii)).

Since I'¢ is compact, G-e is discrete, and {7/} has no infinite constant subse-
quences, it follows that {7/} has a subsequence {7;'} such that {7]"-e} converges to a
point of I'¢ \I'¢; (property i)). Similar argument shows that {7’} has a subsequence
{r!"} such that {(7")~1-€} converges to a point of '\ I'¢; (property ii)). Therefore,
{7]"} is a subsequence of {7;} and {7} € &. O

Lemma 17. Let {g;} be a sequence from &. Let w and @ be points* of T the
sequences {g;-¢} and {g; *-¢} converge to. Then for each p € T \ & the sequence
{gi'p} converges to w.

Proof. In order to prove the lemma, we will show that for every p € I'¢ \. & we have
hn (com(g;-€, gi-p)) —— o0 (5)
and then apply Corollary 4.
For each 7 € N, set
pi := com(gi-€, gi-p)-

Observe that for each ¢ we have

because

~1 —1,

g tpi = g;t-com(gie,gip) = g; Y (6,916, 9ip) =

Y(gi_l'eu €7p) = Com(gi_l'EJP)'
(Here, Y (a,b,c) := [a,b] N [b,c] N[c,a]. It is clear that Y (a,b,c) is a point of I'¢.
For any g € G, we have g-Y(a,b,c) = Y(g-a,g-b,g-c). For any z,y € ', we have
com(z,y) =Y (€, z,y).)
Let us prove that the sequence

{hn(com(g; "€,p))}

is bounded. Assume that it does not. Then it would have a subsequence
{hn(com(gi; L.e,p))} tending to infinity. Then, by Corollary 4, {g; L.e} would con-
verge to p, which contradicts the assumption that gi_l-e — @ # p. Thus, our
sequence is bounded, i.e., there exists N € N such that

hy(com(g; *-€,p)) < N for each i€ N.

*We do not require that w # @.
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Therefore, for each ¢ € N we have

ha(gi-6,pi) = (e, 97 pi) L ha(g; " pi) = Bn(com(g; e, p)) < N.

Since {g;} € & and hence A, (€, g;-€) f hn(gi-€) def hn(gi) tends to oo (property

iii)), while p; € [e, gi-€] and hence hy, (€, p;) + hn(pi, gi-€) = hn (€, gi-€), it follows that
hn(p;) — oc.
By Corollary 4 this implies that {g;-p} converges to w as {g;-€} does. O

Lemma 17 obviously implies the following corollary.

Corollary 5. Let {g;} be a sequence from & with {g;-€} converging to a point w €
L. Then for any continuous Borel probability measure \ on I'q, the sequence {g;-\}
converges to the Dirac measure d,.

Proof of Theorem 10. We follow the pattern described above. Let p be a non-
degenerate probability measure on G, and v a u-stationary measure on I'¢;. Let {7;}
be a path of the random p-walk. Then by Theorem 2 the sequence {7;-v} a.s. con-
verges to some limit. By Lemma 2, {7;} a.s. contains a subsequence {7;;} € &. By
Corollary 5, the subsequence {7;;-v/} converges to a Dirac measure (since v is contin-
uous; see Proposition 1). Thus, the limit of {7;-v} is a.s. the same Dirac measure.
It remains to recall definitions of y-boundaries and Furstenberg boundaries. O

4.2 Stability of paths in Z"-free groups

In this subsection, we prove the following proposition, which obviously implies as-
sertion 2) of Theorem 9.

Proposition 3. Let G, T'q, Tq, 0.Lq, 1, vy, be as in Theorem 9, and let w € oLa
be an end of Z"-type. Assume that a sequence {g;-v,}, g; € G, converges to the
Dirac measure 6,,. Then, for each x € T, the sequence {g;-x} converges to w.

Proof. Take two distinct® points wi, we in 0,I'q, then take two distinct vertices v, vo
(of I'¢;) on the geodesic [wy, ws], and consider the branches® B, := Branch (v, v3) and
Bs := Branch(vg, v1). Observe that By and By are open subsets of [ (Lemma 16),
and that the intersections By N ,'¢ and By N d,I¢ are nonempty (because our
definition of B; and Bs implies that B; containes one of the points wi, we, while
By contains another one). It then follows by assertion (iii) of Proposition 1 that
vu(B1) > 0 and v, (B2) > 0.

Let us show that the sequences {g;-v1} and {g;-v2} converge to w. For this,
it suffices to prove that for each vertex v € [¢,w] the branch B, := Branch(e,v)
contains all but finitely many elements of our two sequences. Since B, 3 w, the
condition that {g;-v,} converges to &, implies” that the sequence {(g;-v,)(By)} con-
verges to 0,(B,) = 1. Consequently, there exists N, € N such that (g;-v,)(B,) >

®Such points exist, because the set 9,¢ of ends of Z"-type is infinite. It is non-empty by
Lemma ?7 (because we assume that G is an irreducible Z"-free group). It consists of G-orbits
(i.e., it is G-invariant). All G-orbits in T'¢ is infinite by Theorem 7.

See Definition 4.

"To see this implication, recall that we consider the weak topology on the space of regular Borel
probability measures. That is, the condition that {g;-v,} converges to d., means that, for every
bounded continuous function f : T¢ — R, the sequence {ffc fdgi-v,} converges to ffe fdd, =
f(w). Since the subset B, C T'¢ is open and closed (Lemma 16), it follows that the characteristic
function 1p,, which is defined by 1p,(z) =1 if x € B, and 1p,(x) = 0 otherwise, is continuous.
By substituting f = 1p, in the above formulas, we see that the sequence {ffc 1p,dgiv,} =
{(g9i-vn)(Bv)} should converge to 1p, (w) = 1.
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1 — min{v,(B1),v,(B2)} whenever j > N,. In particular, since (g;-v,)(By) =
Vu(gj_l-Bv), for each 7 > N, we have (gj_1 ‘By) N By # & and (g; “L.B,)N By £ @,
whence B, N (gj-B1) # @ and B, N (g;-B2) # @. Therefore, for each j > N, there

exist points pg) € B, N (g;-B1) and p( ) e B, N (gj-B2). Now, on the one hand,
U )] () )

we have [p1 , Dy B, (because p’’,ps’ € B,, while B, is geodesically convex,

being a branch). On the other hand, we have [pgj),pgj)] D [gj-vi,g;-v2) (because
pgj) € g;-B1 = Branch(g;-v1, gj-v2) and pgj) € gj-Bo = Branch(g;-va, g;-v1); see defi-
nition of branches and [6, Ch. 2, Lemma 1.5]). It follows that g;-vi,gj-v2 € B, (for
each j > N,). We have thus proved that the sequences {g;-v1} and {g;-v2} converge
to w.

Since w is an end of Z"-type, it then follows by Lemma 15 that {g;-x} converge

to w for every z € I'g. O

4.3 Maximality of the boundary I';

In this subsection, we verify assertion 3) of Theorem 9, which says that if our Z"-free
group G is finitely generated and the distribution u € P(G) has finite first moment
(with respect to a finite word metric on G), then the space I'¢ with p-stationary
measure is a maximal Furstenberg boundary, that is, a Poisson—Furstenberg bound-
ary of (G, ). Our plan is to prove Proposition 4 below, which states the existence of
maps ' x g — 29 satisfying the requirements of the Kaimanovich Strip Criterion
(see Theorem 3 and Corollaries 1, 2). Proposition 4 and Corollary 2 obviously imply
assertion 3).

Proposition 4. Let G, T'q, T'q, 0,I'c be as in Theorem 9. Then there exists a
measurable G-equivariant map S :Tg xTqg — 29, assigning to pairs of points
(b_,by) €Tg x L certain “strips” S(b_,by) C G, such that

1) For all pairs (b_,b;) € T x T and for all k € N we have®

card{g € S(b_,b4) : hn(g9) <k}

2) For every non-degenerate probability measure p on G with p-stationary mea-
sure’ vy on g and ji-stationary'® measure v_ on T'q, the strips S(b_,by) are
(v— X vi)-almost surely non-empty.

In the proof of Proposition 4 we will use several additional notions and lemmas.

Definition 5. Let w : [1zn,|w|] — X* be a Z"-word and B € Z". We say that
w is B-periodic if w(a) = w(a + P) for each a € [1zn, |lw| — F]. (In particular, w
is p-periodic if |w| > B.) We say that w is faithfully periodic if it is S-periodic for
some (3 € Z with 8+ 8 < |w|.

Lemma 18. Let wy and we be distinct Z™-words such that |wi| = |ws]
| com(wy, ws)| 4+ 1zn. Then at least one of wy, wy is not faithfully periodic.

Proof. Let w := com(wy,ws) and let v := |wy| = |wy| = |w| + 1zn. Observe that
for every a € [lzn,|w|] we have wi(a) = wa(a) = w(a). Since w; # wy and
|wi| = |wa] = |w| + 1z, it then follows that wy(y) # wa(y).

8See Subsection 3.5 for the definition of 7.

%In fact, the above-proved assertion 0) of the theorem says that p-stationary measure is unique,
but it is not of importance for this proposition.

"YRecall that we denote by ji the reflected measure of p defined by ji(g) := u(g™").
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Assume that w; and wy are both faithfully periodic. Then there exist 31 € Z"}
and f; € Z" with 2- ) < |wi| =y and 2- 2 < |wy| = such that w; is f;-periodic
and wsy is Be-periodic.

Since wy is fi-periodic, we have wy(y) = wi(y — f1). Since wy is fo-periodic, we
have wy(y) = wa(y — B2). Observe that S; # B2, because otherwise we would have
w1 (7) = wi(y— 1) = wly — Br) = w(y — o) = ws(y — Bz) = ws().

The conditions 2 - 81 < 7y, 2- 2 < 7, and By # (o imply that §; + B2 < 7.
Therefore, the elements v — 1, 7 — f2, and v — 5 — 2 lie in [1zn, |w|]. Observe that
w is a-periodic and ao-periodic'!. It follows that

wi(y —a1) =w(y — 1) =w(y —ar — az) =w(y — az) = wa(y — az).

Therefore,
wy(y) = wi(y — a1) = wa(y — az) = wa(y).

This contradiction proves the lemma. ]

Definition 6. Recall that a measurable G-space X, with a (quasi-invariant) measure
v, is said to be ergodic if for each G-invariant measurable subset Y C X we have
v(Y) € {0,1}.

Lemma 19 ([12]). Let G be a countable group, u € P(G) a measure, and i € P(G)
the reflected measure fi(g) := pu(g~t). Let (My,vy) and (M_,v_) be p-boundary
and fi-boundary for G, respectively. Then the action of G on the product (M_ X
My, v_ xvy) is ergodic'?.

Recall that the characteristic set (or axis) of an isometry ¢g : '¢ — I'¢; is the
subset A, of I defined by

Ag={peTallg " -p,pIN[p,g-pl = {p}}.

Lemma 20 ([6, Corollary 1.5 of Chapter 3]). Let G, I'¢ be as above. Let g € G,
x € Ag. Then for any y € I'q we have d(z,g-x) < d(y,g-y).

Lemma 21. Let G, I'g be as above. Let x # y € I'q, g € G. Assume that
[z,9-y] D ly,g-x]. Then z,y € Ag.

Proof. Following [6], we write [z9,z;] = [zo,Z1,...,2k] to mean that, if o :
[0,d(z0,xk)]zn — ' is the unique isometry with «(0) = z¢ and a(d(zp,zr)) = =k,
then z; = a(a;), where 0 = ag < a1 < -+ < ay, = d(z9, k). In other words, =g, =1,
..., xj are elements of [z, zj] listed in order of increasing Z"-distance from z.

In this notation, since [z, g-y| D [y, g-z], we have either

A) [.’Jc,g'y] = [w,y,g-x,g-y] or

B) [z,9y] = [z,9-%,y,9Y].

In the case A) we have [ '2,y] = [¢7 2,97y, 2,9]. Tt is shown in [6, Ch. 2,
Lemma 1.5] that we can splice the geodesics

-1

[g_l'x7y] = [g_l'xug_l'nyJy]

UFor the sake of clarity we remark that these conditions does not imply that w is faithfully
periodic.

12Tn [12], the lemma is stated and proved in the case where (M4, vy) and (M_,v_) are maximal
(Poisson) p-boundary and fi-boundary, respectively. The lemma and its proof hold verbatim for
the general case.
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and [z, g-y] = [z,y,9-z,g-y] by their common part [z,y] to obtain a geodesic (here,
we use the assumption that z # y).

In other words, we have [ 'z, g-y] = [ 2,97y, 1, y, 92, gy

Consequently, [¢~ 'z, 2] N [z,g9-2] = {z} and [¢~'y,y] N [y,9-y] = {y}. This
means that z,y € A,.

In the case B) we have [~ z,y] = [¢7 2, 2,97 Ly, ).

By using splicing similar to that one in the case A), we see that either

Ba) [g~" -z, gyl = [g "z, 2,97y, g2, y, g-y] or

Bb) [¢7 "z, 9-y] = [97 "2, 2, 92,9y, y, gy

In both cases (Ba and Bb) we clearly have [¢ 'z, 2] N [z,9-27] = {z} and
g7 y,y] N [y,g-y] = {y}, which means that z,y € A, by definition of the char-
acteristic set. O

Proof of Proposition 4. First, let us show that there exists a pair of distinct points
wi, we € O, and a pair of vertices vy, vy of I'g lying on the geodesic [w,w2]
such that i) A,(v1,v2) > 9 and ii) ofvy,ve] is not faithfully periodic. Recall that
0, is non-empty (because G is irreducible; see Lemma ??) and hence infinite
(because G has no finite orbits in 9,I'¢ C I'g; see Theorem 7). Consequently, we
can pick up a triple of distinct points wi, wy, w3 € 0, . Since I'¢ is a universal Z"-
tree for a Z"-free group, it follows that the geodesics [w1,ws], [w1,ws], and [wa,ws]
have a unique common vertex w := [wy,ws| N [w1,ws] N [we,ws]. Let v; be a vertex
lying on the geodesic [w;,w] such that 7, (v, w) > 9 (a vertex with this property
exists, because w; € 9,[¢ and w € ', whence h,(wi,w) = 00). Let uy, us be
vertices lying on the geodesics [w,ws] and [w, ws], respectively, such that d(w,us) =
d(w,uz) = 1zn (that is, (w,uz) and (w,us) are edges of I'¢). Then Lemma 18
clearly implies that at least one of two Z"-words o[vi,us2], o[vi,us] is not faithfully
periodic. Without loss of generality, we can and will assume that o[vy,us] is not
faithfully periodic. Set vy := uy. Thus, v; and v9 lie on the geodesic [wy,ws] (where
wi, wy € O,Lq), ofvi,ve] is not faithfully periodic, and Ay, (v1,v2) = Ay (v, w) > 9
(because d(vy,v2) = d(vi,w) + 1z ), as required.
Now, we fix the constructed above pair v1,v9 and define the map

S = SUl,U2 :FG X FG — 2G
in the following manner:
Soro (b=, b4) :=={g € G : (g-[vr,02] C [b—,b1]) & ([b—, g-v2] 5 g-v1)}.

Here, the condition g-[v1,ve] C [b—,by] is equivalent to the conditions g-v; € [b_, b ],
g-vy € [b_,bs]. The second condition [b_, g-ve] 5 g-v; says that g maps [v1,v3] to
[b_,by] preserving certain orientation.

Our Sy, v, is obviously measurable and G-equivariant. Let us check that S,, .,
has required properties 1) and 2). We start with property 2).

2) Let p be a non-degenerate probability measure on G, vy a p-stationary mea-
sure on ', and v_ a ji-stationary measure on I'. Then Theorem 10 implies that
(Tg,v,) is a p-boundary for G and (Tg,v,) is a fi-boundary for G. In particu-
lar, the action of G on the space I'¢ x I'¢ is ergodic with respect to the product
measure v_ X V4 (see Lemma 19).

Let By := Branch(vy,v1) and By := Branch(v;,v3), and consider the set

Q.= Qvl,v2 =By X By C FG X FG'.
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Our definitions immediately imply that

Svlyv2(b—ab+) = {g €qG : g_l-(b_,b+) € Qvl,vz}'

Observe that B; and B, are open subsets of T'g (Lemma 16), and that the inter-
sections By N 9,I'¢ and By N 8, are nonempty (because By N §,['¢ > w; and
BN 0,Tg 3 ws). It then follows by assertion (iii) of Proposition 1 that v_(B;) > 0
and v (Bg) > 0. Consequently, we have

(v % 1) Quy) = (- X 4) (By x By) = v_(B1) - v (By) > 0.

Since the action of G on the space (I'¢ x I'g, v x v ) is ergodic (see Lemma 19)
and (v— X vy )(Qy, vo) > 0, it follows that (v— x v;)(G-Qy, 4,) = 1. In particular, for
(v— x vy)-a.e. pair (b_,by) € T x [ theset {g € G: g7 1-(b_,b1) € Dy, 0, } is not
empty. It remains to notice that (as it was already mentioned above) Sy, ,, (b—,b1) =
{g SHE g_l'(b—7b+) € Q’Ul,’UQ}'

Remark: a more accurate argument with, e.g., the Ergodic Theorem shows
that Sy, 4, (b—,by), indeed, “looks like a strip” for (v— x v )-a.e. pair (b_,b, ), but
here we need to check only that S, ,,(b—,b;) is a.s. non-empty. (Note also that
(v_ x vy)-a.e. pair (b_,by) lies in 9,T¢ x 0,'¢ C T'g x [g.)

1) Let (b_,by) € Tg x T'g be fixed. We will prove two auxiliary claims.

Claim i): If g1,92 € Sy, v, (b—,b4) and g1 # g2, then hy,(g1-v1, g2-v1) = 5.

Proof: Suppose that hy(g1-v1,g2-v1) < 4. Our definition of S, ,, implies that
the vertices g;-v1, g1-v2, g2-v1, g2-vy lie on the geodesic [b—,by]. Let us use the
following notation: if z,y € [b_,by], we will write z < y if and only if z € [b_,y] (if
z <y and z # y, we write z < y). Under this notation, we have g;-v; < g1-v9 and
g2-v1 < go-vz (see the definition of S, ,, again). Without loss of generality, we can
assume that g;-v; < gg-v;. Then, since we have assumed that %y, (g1-v1, g2-v1) < 4,
while according to the choice of the pair vy, vy

T (g1-v1, 91-v2) = Iy (g2-v1, g2-v2) = hy(vi,v2) > 9,
it follows that
g1v1 < G201 < g1+U2 < g2-02.

Now we consider the Z"-word o[g;-v1, g2-ve] and its subwords. Let

wy = 0[g1-v1, g2-v1),

wy = 0[ga-v1, g1-V2),

w3 = 0[91'02792'021-
Then o[g;-v1, g2-v2] = wiwows. Observe that

wiwy = o[g1-v1, g1-v2] = olv1, V2] = Tlg2-v1, g2-ve] = wrws.

This equality shows that the Z"-word o[vy,v3] = wiws = wows is |wy|-periodic'3.
Observe that 2 - |w;| < |o[v1,v2]|, because

hn(|w1|) = hn(gl'vlagQ'Ul) < 47

13We follow the definition of S-periodicity. Since |o[vi,v2]| — |wi| = |wiws| — Jwi| = w2, it
follows that for each a € [1z»,|o[v1, v2]| — |wi]] we have

w(a) = (waws)(a) = w2(a) = (wiw2)(Jwi] + @) = w(|wi] + a),

as required by the definition.
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while 7, (v1,v2) > 9. Thus, o[vy,v2] is |wy|-periodic and 2 - |w| < |o[v1,v2]|. This
means that o[vy,ve] is faithfully periodic (see Definition 5). Recall that v; and
vy were chosen to have o[vi,ve] not faithfully periodic. The claim is proved (by
contradiction).

Claim ii): If g1, 92 € Sy, v, (b—, b5 ), then

1\ def
(9297 ) = hn(g1€, g2-€) = hn(g1-v1, g2-01).

Proof: In the case n = 1, the desired inequality follows from the fact that
gle_l : ¢ — T is a hyperbolic isometry of I'¢ and g1-v1, g2-v1 lie on the axis of
this isometry. This argument generalizes to the case of arbitrary n in the follow-
ing way. Consider the isometry g := gggl_1 : I'¢ — D', which sends [g;-v1, g1-v2]
to [g2-v1,92-v2], and let A, be its characteristic set (see Definition ??). Observe
that gi-v1 € Ay (in fact, [go-vi,g2-v2] and [gi-vi,g1-v2] are in Agy). This fol-
lows from Lemma 21, because the definition of S, ,,(b—,b1) clearly implies that
I :=[g1-v1,92-v2] = [g1-v1,991-v2] and J := [g1-v2, g2-v1] = [g1-v2,gg1-v1] lie on the
geodesic [b_,b;] and we have either I C J or J C I. It then follows by Lemma 20
that d(g1-v1,g2:-v1) < d(g1-€, g2-€), which implies the desired inequality. Claim ii) is
proved.

Now we are ready to prove property 1). Let £ € N and let M} denote the set
{9 € Sy 0, (b—,b4) : hy(g) < k}. We have to show that card My, < k. By Claim ii),
we havel

diamp,, (Mj-v1) < diamp, (M) < diamg, ({9 € G @ hy(g) < k}) = 2k. (6)

On the other hand, all the points of Mj-v; lie on the geodesic [b_,b;] and by
Claim i) for any g¢1,92 € My we have h,(g1-v1,92-v1) > 5. This implies (use, e.g.,
Lemma 13) that

diamp, (Mj-v1) > 5(card My, — 1). (7)

We combine (6) and (7) and get
5(card My — 1) < 2k. (8)

In our case, where £ € N and card M} is integer, inequality (8) implies that
card My < k, as required. ]

4.4 Proof of Theorem 1

Theorem 1 readily follows from Theorem 9. To see this, recall that we have a natural
one-to-one correspondence g — g-¢ between the set of elements of our group G and
the subset G-e in the universal Z"-tree I'¢, where ¢ € I'g is the basepoint. This
correspondence is equivariant and induces an equivariant homeomorphism between
the topological G-spaces G U 0,G and (G-€) U 3,'¢. (The fact follows from our
definitions in a routine way.) Under the homeomorphism

GUO,G = (Ge)Ud,Tg, 9)
YHere,
diamy, (X) := sup {A.(z,y)} for X CTq,
z,y,eX
diamp, (H) := sup {hi.(¢"'h)} for H CG.
g,heH
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it is clear that the first assertion of Theorem 1 (saying that for every non-degenerate
probability measure p on G, a.e. path of the random p-walk converges to a point
in 0,G) is equivalent to the proven fact that for a.e. path 7 = {7;} of the random
p-walk, the sequence {r;-€} converge to w(r) € 9, (see assertions 1 and 2 of
Theorem 9).

Now, let i be a non-degenerate probability measure on G. Then, by Theorem 9,
there is a unique p-stationary measure v, on Ta, the pair (Tgq, 1/&) is a pu-boundary
of G, and v, is concentrated on 9,I'G. Since v,(0,I'¢) = 1 and 0,I'¢ is a measurable
G-invariant subset in I'g, it then follows that the pair (9,T,v,,), where v/, is the
measure in P(9,I¢) associated with the measure v, € P(L'¢), is also a y-boundary
of G' (see Lemma 3). Consequently, the pair (0,G,v);), where v, is the measure in
P(0,G) that corresponds to the measure v, under the homeomorphism 9,G = o.I'a,
is (again) a p-boundary of G. We have isomorphic measure spaces

(FG,V“) = (8nFG'7VL) = (8nG, VZ) (10)

Since the p-boundaries (I, 1,) and (9, G, VZ) are isomorphic as measure spaces, it
follows that one of these boundaries is a Poisson-Furstenberg (maximal) boundary
of (G, ) if and only if the other one is so. Thus, the second (and last) statement
of Theorem 1 is equivalent to assertion 3) of Theorem 9. (To take into account all
the details of the second statement of Theorem 1, remark also that the measure
I/Z is precisely the distribution of limits of paths of the random p-walk. This can
be seen from the homeomorphism (9) and isomorphisms (10), since Theorems 9
and 2 imply that the measure v, determines the distribution of limits of sequences
{7;-€} for the paths 7 = {7;} of the random pu-walk, while the homeomorphism
(G-€) U8,T'¢ — GUO,G turns limits of sequences {7;-¢} to limits of corresponding

paths {7;} and sends v}, Z v, to v.)
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