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ABSTRACT:

I would like to present the Bellman function related with the classical weak form of
the John—Nirenberg inequality. This result was obtained about four years ago, this text
was written that time as the beginning of a paper. The result was already presented
several times on conferences, moreover, new papers based on this result appear (see,
e.g. [5]). By this reason, after minimal changes in the list of references, I decided to
make this old text accessible to everybody.
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1. INTRODUCTION

A crucial property of elements of BMO-space, the exponential decay of their
distribution function, was established in the classical paper [1]; it is known as the
John—Nirenberg inequality.

For an interval I, and a real-valued function ¢ € L*(I), let (), be the average

of ¢ over [, i.e.,
1
@, =7 [ v
Ty

where |I| stands for Lebesgue measure of I. For 1 < p < oo, let
BMO(J) = {¢ € L'(J) : {l¢ — (¢),I"), < C? < o0, VI C J} (1.1)

with the best (smallest) such C being the corresponding “norm” of ¢. For e > 0,
let

BMO.(J) = {¢ € BMO(J) : ||| < e}.

The classical definition of John and Nirenberg uses p = 1; it is known that the
norms are equivalent for different p’s. For every ¢ € BMO(J) and every A € R
the classical John-Nirenberg inequality consists in the following assertion.

Theorem (John, Nirenberg; weak form)

1 2/l

m|{seJ: [p(s) = (@), | = A} < cre BMOW),

I refer to this statement as to the weak form of the John—Nirenberg inequality
to distinguish it from the following equivalent assertion.

Theorem (John, Nirenberg; integral form) There exists ey > 0 such that for every
g, 0 < e <eg, there is C(g) > 0 such that for any function ¢, ¢ € BMO.(J), the
following inequality holds

(€9), < Cle)e'l.

The sharp constants in the integral form were found in [9] and [7]. In the second
paper the dyadic analog BMO? is considered as well, for which every subinterval
I of J in definition (1.1) is an element of the dyadic lattice rooted in J. It appears
that the constants in the dyadic case and the usual one are different.

The mentioned constants were found by using so called Bellman function
method (see, [3], [4]). Namely, the Bellman function of the corresponding ex-
tremal problem (the definition see below) was found explicitly. This function
carries all the information about the problem: not only the sharp constants, but,
for example, construction of extremal test functions (extremizers). The Bellman
function corresponding to the integral John-Nirenberg inequality was found by
solving the boundary value problem for the Bellman equation. In that case the
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Bellman equation was a second order PDE with two variables, and due to a nat-
ural homogeneity of the problem, the Bellman PDE was reduced to an ordinary
differential equation, which was successfully solved. The corresponding Bellman
equation for the week John-Nirenberg inequality has an additional parameter
A preventing a similar reducing of the Bellman PDE to an ordinary differential
equation.

The Bellman equations for all these problems are in fact partial cases of the
Monge—-Ampere equation. After finding possibility to solve this type of equation
explicitly (see [6], [10]) we are able to find the Bellman function (and therefore,
the sharp constants) for the weak John-Nirenberg inequality as well. And this
solution is described in the present paper.

We shall work with L?-based BMO-norm, i.e., p = 2 will be chosen in (1.1).
For the classical case p = 1, Korenovskii [2] established the exact value ¢, = 2/e
using the equimeasurable rearrangements of the test function and the “sunrise
lemma”. But to apply the Bellman function method the L2-based BMO-norm is
more appropriate. Some Bellman-type function (so-called supersolution) for the
weak John—Nirenberg inequality was proposed by Tao in [8], where there was no
attempt to find true Bellman function and sharp constants. In the present paper
it will be proved that for p = 2 the sharp constant are ¢; = ;% and cy = 1.

2. DEFINITIONS AND STATEMENTS OF THE MAIN RESULTS

2.1. Bellman functions. Now the main subject of the paper will be introduced,
the Bellman function corresponding to the John-Nirenberg inequality. First of
all we define the following set of test functions

Se(z) = S(x1,w058) =
{o € BMO(J): (p), = z1, ("), = w2, {0 — (p),I?), <> VI C J}.

For any test function ¢ the point 2 = (21,22) = ({¢),, (¢?),) belongs to the
parabolic strip

Q. = {o = (v1,22): 22 < 1wy < a7+ 7},

Indeed, the left inequality 27 < x5 is simply the Cauchy—Bunyakovsky—Schwartz
inequality, but the right one zo < 22 +¢? follows from the fact that ¢ € BMO,(J):
zy —ai = (¢°), — (p)? = lp — (p), 1), <.

Now we define the Bellman B function corresponding to the weak John-
Nirenberg inequality:

B(z; )\, e) & |—}|sup [{sel:|p(s)|>A}:peS.(z)}. (2.1)



FIGURE 1

This function is defined on €2 and it supplies us with the sharp estimate of the
distribution function

1
m|{s € J:lp(s) —(p), | = A} < gs[lgp'}B(O,f; A) Ve € BMO.. (2.2)
€[0,e2

To check this, we consider a new function ¢ % p+c. If p € Se(x), then ¢ € S.(Z),
where &1 = 1 +c and Z9 = x5+ 2cx1 + ¢?. Therefore, by definition (2.1), we have

1 N ~
ml{s € J:|@(s)| = A < B(z;A).
If we take now ¢ = —<90>J = —xy, we get T; = 0, Ty = o — 22, and the latter
inequality turns into
1 -
—{s € J: |o(s) = (¢),| > A} <B(0,2; 1) < sup B(0,& ).
]| £€f0,6?]

So, to find the sharp constants in the weak John—Nirenberg inequality we prove
the following theorem:.

Theorem 1. For 0 < A < e split Q2 in three subdomains (see Fig. 1):
Q= {2 €Q: 1y > N},
Qy = {x € Q: Aay| < 2y < N},
Qs ={x € Q: xy < Ay},



Qr
—e—A
FIGURE 2
then
( 1 R x € Ql R
o)
B(z;\¢) = A2’ z €y,
2
, x € Q3.
(5 + A2 — 2|z ’

For e < X\ < 2¢ split Q in four subdomains (see Fig. 2):

QO ={2€Q: |21 > X and x5 <2\ +&)|x1| — A2 — 2e) for |o1| < A +¢,},

D ={r€Q: A—c<|n| < A+¢, 29 > max{2\|z;| — A\* £ 2e(|21| — N},

Qs ={x € Q: xy < Aay|},

Q= {2 € Q: 2y > May| and z9 < 2(\ — &)|z1| — A\ + 26 for |1 > A\ — €},
then

( 1, 'IEQIJ
2(\2 — &2 — (A — (22 A—\?
( e?) x| — ( e)xy + A(2e® + ¢ )7 reQ,,
2e \?
B(.T,)\,E): ZEQ—JI%
Q
Ty 4+ A2 — 2\|zy|’ vt
x
\ )\—3, LE€Q4.



FIGURE 3

For A > 2¢ split Q) in five subdomains (see Fig. 3):

O ={x€Q: |21 >\ and 29 <2\ +¢)|wy]| — A2 — 2 for |z < A +¢,},
Dy ={r€Q: A—c<|n| < A+¢, 29 > max{2\|z;| — A* £ 2e(|21| — N},
Q3 = {2 € Q: 1y <2(\—&)|z| — A +2e)},

Qy = {2 €Q: 2y > 20\ —&)|z1| — N + 22\ and 2y < glay| for |11] < €},
Qs ={2 € Q: 2y >c|ny]},

then
( ]_7 J"EQIJ
1_:102—2()\+5)|$1|+)\2~}—25)\7 reQ,.
Re2
xQ—xf z €
B(m;A)g) = To + A2 — 2)\‘5171‘ ’ 3

72 - _ a2
g(l— 1_$2€2$1>exp{|$1‘6 + 1—x282$1}, x €y,

) A
\ 4—€2€Xp{2—g}, .TEQ5
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Corollary. If ¢ € BMO.(I), then
1, if 0<A<e,

Tils € It lp(s) = (@) | =AM < if e<A<2e,

%ﬁ‘”e if 26 <\,

and this bound is sharp.

Proof. According to formula (2.2) it is sufficient to calculate

sup B(0,&; ), ¢).

£€[0,e2]

Since B(0, x9; A, £) is an increasing function in x5, this supremum is just the value
B(0,£%; A\, €), what yields the stated formula. O

Before we start to prove Theorem 1, where the Bellman function has two sin-
gularities on the boundary at the points & = (£, \?), let us consider the simplest
possible extremal problem with one singularity. We shall consider two extremal
problems simultaneously: one estimate from above and the second estimate from
below. So, we define two Bellman functions: B, and B,.

def 1

an@nka)z‘ﬂmm{Hsef p(s) = AH: g € So(a)},

Bui(ai A 2) & rint {[{s € I+ (o) = A} 0 € S (o)}

For these function the following formula will be proved:

Theorem 2. Split 2 in the following five subdomains (see Fig. 4):

={r€Q:ia; > A+e 1y >2\+e)z; — A2 —2e)},
={z€Q:ay <2\ + )z — A —2e)},

={r e r—ec<a < A+e 23> 2 1 — N+ 2|z, — M},
= {2 €Q: 2y <20\ —&)wy — A2 +2e)},

={r €z <A—g, 1y >20\—&)wy — A\ +2e)}.



Then

Bunax (25 A, €) =

and

Bmin(x; )‘7 8) =

\

A—2¢ A—¢ A Ate A+2¢e

FIGURE 4
1, x € UQy,
—2(A A2 4 2e )\
LT (A4 &)z + A+ 2¢ | e,
82
xg—xf z €
.CL'2+)\2—2)\£L'17 +
a2 _)\ a2
Clioy 1= 20 exp! 2 1270 ey
2 g2 € g2
0, x € Q5 Uy,
:c2—2()\—5)x1+)\2—25)\’ reQ,
Re2
1 Ty — T z €N
.T2+)\2—2)\£U17 2

2 )\_ 2
1—%(1— 1—x2€2m1>exp{ €$1+ 1_33262331}7 x €.
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