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ABSTRACT:

We prove that for the class of unitary operators with singular spectral measure there exist no
universal regular summation method allowing one to construct averaged wave operators even for
the case of rank-two commutators. Also we discuss the closely related problem of constructing
the Hilbert transform with respect to a singular measure on the unit circle.
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Given a pair of unitary operators Uy : Hy — Hy, Us : Hy — Hs and an operator
X : Hy — Ho, the wave operator is the limit of the sequence (X,,),

X, = UrXU;™.

We consider the past wave operator corresponding to the limit as n — 4o00. According
to the classical scattering theory, the strong wave operator, which is the strong limit of
the sequence (X)), exists if the spectral measures of Uy, Uz are absolutely continuous
with respect to the Lebesgue measure and the commutator U, X — XU is of trace class.
For the example where H; = Hy = C is the one-dimensional space, Uy = I, Uy, = wl
with |w| = 1, w # 1, the limit of X, obviously does not exist unless X = 0. However,
then the Cesaro means of X,, (namely, the operators mL—l—l Yoo Xn) do converge. One
could also apply summation methods that are stronger than the method of Cesaro
means. It was natural to conjecture [5] that, in the general case, if the commutator
K = Uy X — XU, is of finite rank, then the limit of the Abel means (1 —1) % p2 "X,
of the sequence (X,,) exists in the weak operator topology; our main result will disprove
this conjecture.

One can prove that if U; has a complete family of eigenvectors, then the Cesaro
means of X, have a strong limit; if the spectral measures of U; and Uy are mutually
singular, then the Cesaro means of X,, weakly tend to zero, see, e.g., [5]. This reduces
the problem to the case where Uy, Uy have no eigenvectors and their spectral measures
are singular with respect to the Lebesgue measure. In the case rank K = 1 the above
conjecture was essentially proved in [4], the explicit formulation is contained in [5]. For
the case rank K = 2, in [6] the problem was rewritten in terms of truncated Toeplitz
operators (see below) and sufficient conditions for the existence of strong Cesaro wave
operators were obtained.

One can think that U; = Us, and from now on we work with a single unitary operator
U. Consider the spectral decomposition of U. The space H can be written as the direct
integral

H:/@H(z)du(z),

U acts as multiplication by z. The measure p admits the decomposition p = p,, +
Hace + Hhess Where fiyy, flae, fhes are the purely point, absolutely continuous, continuous
singular parts of u, resp. In accordance with this decomposition, H splits into three
direct summands:

H =Hpy,® Hye & He,.

Now we formulate the main result of this article. All necessary information about
summation methods can be found in Section 1.

Theorem 0.1. Assume that U : H — H is a unitary operator with nontrivial continu-
ous singular part, i.e., such that Hqs # {0}. Then for any regular summation method,
which is stronger than the Cesaro summation method, there exists an operator X on
H with rank (XU — UX) = 2 such that the averages of the sequence U"XU™™ do not
have a limit in the weak operator topology.



For an individual operator one can always find, for instance, a weakly convergent
subsequence of the sequence of the Cesaro means, so it is natural to think of a “uni-
versal” summation method working for a certain class of operators. It is important
that the class of operators with rank-two commutator is large. Namely, our proof is
based on the fact that this class in a sense contains all truncated Toeplitz operators.
We show that the averaged wave operator cannot exist for the whole class of operators
determined by any singular measure y in the spectral decomposition of H unless p
is a sum of point masses. Our result is only an existence theorem, while it would be
interesting to find concrete examples and to describe the corresponding asymptotics of
the sequence (X,,), which is bounded, but may thus have a very irregular behaviour.

1. SUMMATION METHODS

Regular summation methods are determined by a directed set {2 of indices with order
< and a collection of nonnegative numbers (p,, ,) with w € €, n > 0, such that

e for any w € Q we have > p,n =1;
® p,n — 0in w for every n.

The averages of a sequence (z,,),>0 are indexed by w € €2 and have the form
pr,nxn-
n

The standard examples are the Cesaro summation method with direction m — +oo, for
1 m

which the averages are —— > ;" #n , and the Abel summation method with direction
r /1 and averages (1 —r) ) r"zy.
We always assume that €2 has a countable cofinal subset, which means that there

exists a sequence (w,) C Q indexed by nonnegative integers such that

o 1y < ng implies wy,, < wp,;

o for any w € ) there exists an integer n such that w < wy,.
The typical example of the set of indices for which this assumption is fulfilled, but
which is not a sequence, is the interval (0,1) with direction » " 1 used as the set
of indices for the Abel summation method. If we consider only the sequence (wy,) in
place of the whole directed set €2, we obtain another summation method. As soon as
we prove the theorem for the new summation method, we immediately obtain a proof
for the original one. This allows us to think that in Theorem 0.1 the set of indices is
equivalent to the set of all nonnegative integers and the averages form a sequence. This
assumption will be used when we apply the weak sequential completeness of L'.

We impose the restriction that the summation method is stronger than the Cesaro
summation method, which means that the corresponding averages converge to the same
limit for every sequence whose Cesaro means converge, or, equivalently,

° #H Yomotn =0 = > punpzn — 0.
Examples of such methods are iterations of the Cesaro averaging procedure and the
Abel summation method. The property that the summation method is stronger than
the Cesaro method is a regularity assumption. One can expect that the result holds
without this assumption. However, we are interested only in the fact that one cannot
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get convergence by taking stronger averaging methods, and hence we do not consider
“exotic” summation methods that are incomparable with the Cesaro method.

Also the assumption that the averaging method is stronger than the Cesaro sum-
mation method guarantees that if the averaged limit of the sequence U" XU ™" exists,
then it commutes with U. Indeed, this follows from averaging the relation

( Z U"XU~ ) ( Z U"XU~ > = %(X —UmXU™),

where the right-hand side tends to 0 as m — oo. If a summation method is not stronger
than the Cesaro method, e.g., takes a sequence to its subsequence, the limit operator
may not commute with U (or intertwine Uy and Us if Uy # Usy: take U = Uy & Us,

and ( )0( 8) in place of X for the reduction to the case of a single operator U). For

instance, once again, consider operators in the one-dimensional space: H = C, Uy = I,
Us = —I, X = I; let the summation method take a sequence (x,) to the subsequence

(z2n). Then all the elements and hence also the limit of the sequence U3" XU 2 are
equal to I, but IU; # Usl.

2. THE CONSTRUCTION

Take a singular probability measure x4 on the unit circle having no point masses.
Construct the inner function 6 in the unit disk by the formula

1+6(z)  [1+&z
(1) 1—9(,2)_/1—5_2

du(§).

Since 1 is a probability measure, we have 6(0) = 0. Consider the space Ky = H2 S 0H?
and the unitary operator U on Kjy,

2) Uh = zh + (1 — 0)(h, 26).

In [3] it is proved that U is unitarily equivalent to the operator of multiplication by the
independent variable in L2 ().
The truncated Toeplitz operator T, on Ky with symbol v € L* is defined by

Tuf = Pﬂufa

where Py is the orthogonal projection onto Ky. Necessary information about truncated
Toeplitz operators can be found in [8], [1]. An important property of truncated Toeplitz
operators is

rank (T,U —UT,) <2

see also formula (4) below. If the symbol u is a bounded function, for any f,g € Kj
we obviously have

(3) (Tuf,g) = (uf,g) / 19,



The truncated Toeplitz operators Ay, |A\| < 1, with bounded symbols TIMQI_)AO,

where by(z) = f_‘;\)‘z, are rank-one operators, namely,

Ay = (- kx)ka,
where

1—-0(MN)0(z) ~ 0(z) —0(N)
k == - k ="
A(2) - A(2) 2 —\

The function k) is the reproducing kernel in Ky, which means that

(f,kx) = F(N)

for any f € Ky. If we set
g =207 € Ky,

using the property of reproducing kernels we obtain

(Arf.g) = (f k) - (kx, 9) = (f,Ex) - (B, §) = F(A) - G(N).
3. PROOF OF THEOREM 0.1

Proof. Take an arbitrary scalar singular probability measure g on the unit circle
having no point masses, construct the inner function 6 by relation (1) and consider
the operator U defined by (2). Then U is unitarily equivalent to the operator of
multiplication by the independent variable in L?(p), see [3]. It suffices to prove the
theorem for the unitary operator U.

Suppose that the theorem is not true and for some summation method which is
stronger than the Cesaro method, for some f,g € Ky, the averages of the sequence
T, U "f,g) = (T, ,U™f,U"g) have a limit for every truncated Toeplitz operator
T, with bounded symbol u. Therefore, by formula (3), the averages of the sequence

Ju-w s TG = [wst- s U9 = [ued-F,

where
F,=U"f-U™ngeH,
have a limit for any u € L>. Since L! is weakly sequentially complete, the averages of
F,, have a weak limit in L', which is a function from H'; denote it by F.
For rank-one operators Ay we have strong convergence of the Cesaro means of the

sequence UM A\U ™" to the zero operator, see, e.g., [5]. Hence the Cesaro means of the
numbers

—_~—

(U ANUT"f,9) = (ANUT"f,UT"g) = (UT"F)(N) - (UT"g)(A) = Fr(})
tend to zero. The convergence to zero holds also for summation methods that are
stronger than the Cesaro method, therefore F/(A\) = 0.

Thus, F' = 0, and for any truncated Toeplitz operator T,, with bounded symbol u the
averages of (U"T,U~"f,g) tend to 0. To get a contradiction, it suffices to consider the
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truncated Toeplitz operator 13, with symbol v = 1 and any pair of functions f,g € Kp
with (f,g) # 0. Then T,, = I, and we obtain the constant sequence,

U"TU™"f,9) = (f,9),
whose averages and the limit are also equal to (f,g) # 0. O

Remark. Another proof of the fact that the Cesaro means of the sequence (F,) tend
to zero is based on the duality between the classes of continuous functions and finite
complex measures on the unit circle. Namely, if u is a continuous function on the circle,
then the operator Ty, is compact, and this implies the desired convergence. Similarly,
the fact that T, —u(U) is a compact operator whenever  is continuous implies that the
Cesaro means of the sequence (20F,) = (U™"f - U~"g) *-weakly tend to the complex
measure fgu. Also the operator Tp, is compact and therefore the Cesaro means of
220%F,, x-weakly tend to 0.

4. THE HILBERT TRANSFORM

Let 1 be a finite measure on the unit circle having no point masses. For f € L?(u)
define H,f € L?(u) by

1)) = [ 2T g,

If the functions H,f converge in L?(), the limit function will be called the Hilbert
transform of f. The class of functions, for which the Hilbert transform is defined,
contains all sufficiently smooth functions and is dense in L?(i). However, for every
singular measure p having no atoms, the Hilbert transform is not a bounded operator
in L?(p) [4], moreover, it is not even closable [2].

For a singular probability measure p, let 8 be the inner function determined by
relation (1). We have 6(0) = 0, which means that 1 € K. Define the unitary operator
U on Ky by formula (2). An operator T on Ky is a truncated Toeplitz operator if and
only if the commutator TU — UT has the form

(4) TU —UT = (-, 20)p — (-, 20p)1

for some function ¢ € Kpy, see [6]. (In general, the symbol of a bounded truncated
Toeplitz operator may belong to L?; in this case the operator is initially defined on
bounded functions from Ky, and then extended to the whole space by continuity.)

Functions from Ky have angular boundary values p-almost everywhere, and the
operator V : Ky — L?(u) taking a function from Ky to its boundary function is
unitary, see [3], [7]. Given a truncated Toeplitz operator T" on Ky, define the function
from L?(u) associated with T by

f=Ve,

where ¢ is determined (up to an additive constant) by relation (4).

The function 0 is associated with a truncated Toeplitz operator 1" if and only if T’
commutes with U, that is, T = (U) for some v € L*(u). Therefore, if a function
f € L?(p) is associated with a truncated Toeplitz operator 7', then the class of all
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truncated Toeplitz operators for which f is the associated function equals {7+ v(U) :
v € L= (p)}-

Proposition 4.1. A function f € L?(u) is associated with some truncated Toeplitz
operator on Ky if and only if

) |21 aue

<C-lsllzzgy s € L(n)
L2 ()

for some constant C' depending on f.

Proof. We need some formulas from [5], [6], whose proofs will be briefly sketched
here.

Denote by Z the operator of multiplication by z on L?(p); then VU = ZV. Suppose
that f is associated with T, set K = (-,1)f — (-, f)1.

It follows from formula (4) that

V(TU —UT)V Y =(,2)f - (,2f)l = KZ.

We must prove that the norms of the operators X, on L?(u),

() = [ FE=TEs(aue) = Soma [(766) - D& du)

n=0

are bounded by a constant not depending on r. We have

X, => r"Z"KZ" =Y r"Z"V(TU - UT)V 'z~

n2=0 n=0

=V | rm@rrur -ttty | vl
n>0

=V|T-@1-n)) rmurTu™ |V,
n>1

and one can see that the norm of X, does not exceed 2 - ||T.

Conversely, take f € L?(u) and suppose that (5) is fulfilled for all s € L?(u). For

s =1 find a sequence (r,) tending to 1 such that the functions [ fgz_);fg(f)du(f ) weakly

converge. Let Y be the operator taking a function s € L?(u) to the weak limit of the
functions [ Ms(f)du(f). Y is defined on the set of s € L?(u) for which the limit

l—rngz
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exists; by the construction of the sequence rn) Y1 is well defined. For r < 1 we have

[ 0me - = [ HE T s@aue

= [t~ €)= 5; £s()du(€)

- [ = rnes@ne - 1 =)= [ HI=LE scyance

1 [ FE) = F(€)Es(du€) = (K Zs)(2)-

Therefore, Y's is defined if and only if Y'(Zs) is, and, moreover, Y Z — ZY = K Z, where
K =(,1)f —(-,f)1. Thus Yz" is defined for all integer n, and hence by linearity Y is
defined on a dense subset of L?(;1). By condition (5) we have ||Y|| < C, hence Y is a

bounded operator defined on the whole space L2(u).
Now define the operator 7" on Ky by T'=V~'YV. Then

TU -UT =V YN\YZ-2zY)V =V 'KZV,
which coincides with the right-hand side of (4) for p = V=1 f € Kj. O

It follows from relations (6), (7), and Proposition 4.1 that for a truncated Toeplitz
operator T on Ky the limit of the Abel means of the sequence UM TU™™ exists if and
only if the limit of the functions H,f exists in L*(u) as r /' 1, where f € L?(u) is
associated with T .

If T is a compact operator, then the Cesaro means of UM TU ™" strongly tend to 0,
see, e.g., [6]. As follows from the proof, if ;1 is a Menshov (or Rajchmann) measure, that
is, [ 2"du(z) — 0 as n — oo, then even the sequence U"TU ™ itself strongly tends to
0. In any case, this implies that if 7" is a sum of a compact truncated Toeplitz operator
and an operator commuting with U, i.e., having the form (U) with v € L*(u), then
the Abel means of U T'U~" have a strong limit. Thus, if f € L?(u) is associated with a
compact truncated Toeplitz operator, then the Hilbert transform of f is well defined, that
is, the limit of H,f exists in L?(p). It would be interesting to know if this condition
is also necessary for convergence of the Abel means, and to get any information about
the asymptotic of the sequence U™ T'U~" if the convergence fails.

The class of compact truncated Toeplitz operators contains all operators of the form
T = u(U,) — u(U), where u is a continuous function on the unit circle, |a] = 1, U, is
the unitary operator defined by Uyh = zh + (o — 0)(h, 20) (cf. formula (2): for a =1
we have U; = U). For the operator T having this form, the corresponding function
¢ € Ky (such that ¢ = f p-almost everywhere) coincides with a continuous function

Oa- almost everywhere see [6], where the measure o, is determined by the relation
a+6‘ f 1+§z

“do(¢) (for a =1 we obtain o1 = p, cf. (1)).

Sufﬁment condltlons for the existence of the Hilbert transform can be formulated in
terms of continuity, however, not for a function f itself, but for its unitary transplanta-
tion. R. Bessonov [2] constructed a measure p and a continuous function f, for which
(5) fails and hence by Proposition 4.1, f is not associated with any truncated Toeplitz
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operator. Also it follows from the results of [2] that if continuity of every f associated
with a truncated Toeplitz operator implied the convergence, then the wave operators
would exist in the general case of rank-two commutators. Since this contradicts our
Theorem 0.1, we obtain the following result.

Theorem 4.2. For any singular measure y on the unit circle having no atoms, there
exists a continuous function f on the unit circle such that (5) is fulfilled, but the func-
tions H,. f do not converge.
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