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Abstract
In topology there is a well known theorem of Atyiah which states that for a connected

—

Lie group G there is an isomorphism R(G) = Ky(BG) where BG is the classifying
space of G. In the present paper we consider an algebraic analogue of this theorem. In
the paper of B.Totaro [8] there is a computation of @KO(BGi) for specially selected
sequence BG;. However, to compute Ky(BG) one needs to prove that 1&11 K (BG;)
vanishes. For split reductive groups we present arﬁger approach and prove that the
Borel construction induces a ring isomorphism R(G);g) = Ko(BG), where BG is
an étale classifying space introduced by Voevodsky and Morel in [6]. Our approach
makes possible to compute K;(BG), which we expect to provide in a next preprint.
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1. INTRODUCTION

Morel and Voevodsky constructed the etale classifying space of a linear group G in
the form BG = |J BGy where BGy, = EGy/G. EG) are smooth algebraic varieties
connected by a sequence of G-equivariant closed embeddings iy,.

Tk—1 Thkt1

- —— (EGQ)ry —— (EG)i11
The motivic space EG = |J EGy, is Al - contractible with a free G-action. We consider
a split reductive affine algebraic group G. We prove that Ko(BG) = lim Ko (BGy). The
Borel construction sends a representation V' to the vector bundle Vx = (V x EG})/G.
It induces ring morphisms R(G) — Ko(BGy) and consequently R(G) — Ko(BG).
Here R(G) is the representation ring of k-rational G-representations. Let Ig be an
ideal of zero-dimensional representations in R(G). After the Ig-adic completion we

get a ring-morphism : R(G) — Ky(BG) The main theorem of recent paper states that

o —

the Borel morphism becomes an isomorpism after the completion: R(G) 5 Ky(BG).

Also we prove that Ko(BG) is complete. So we get R/(-\G) >~ Ko(BG).
The main idea of the proof is the reduction to the Borel subgroup B of G. For the

Borel subgroup B the rings Kyo(BB) and R(B) can be computed explicitly. It results
in

Theorem 1. The Borel construction induces an isomorphism

BZ‘EB

R(B), Ko(BB),, <~ Ky(BB)

B

To make the reduction to Theorem 1 we prove

Theorem 2. The following diagram commutes:

(1.1) R(G),, — "%~ Ky(BG),, Ko(BG)
R(B),, — 27"+ 5(BB),, ~ = Ko(BB)
mdl ﬁil D
R(G)y, — 2 K (BG),, Ko(BG)

With Ind o Res = id and p, o p* = id.
Corollary(Main result) Borel construction induces a ring isomorphism

—

R(G)IG

—

Ky(BG),

R

Borelg

Ko(BG)

G

Acknowledgements. Authors are grateful to prof. Ivan Panin for constant
attention and useful suggestions concerning the subject of this paper.



2. AUXILIARY RESULTS

In this section we prove some properties of pullback and pushforward for
KOG functor. Thomason in [3] developed G-equivariant K-theory. It is convinient
to us to cite Merkurjev’s paper [2].

Definition 1. Let X be a G-variety. We consider an action p, : G x X — X and
a projection p, : G x X — X. Let M be an Ox-module. Following [2] we will call
M a G-module if there is an isomorphism of Ogx x-modules a : p% (M) — p% (M)
such that the cocycle condition holds:

pas(@) o (idg X pa)* (@) = (m x idx)" ()
where po3 : G X G x X — G x X is a projection and m : G X G — G is a product

morphism.

Lemma 1. Let f: X — Y be an equivariant morphism and let M be a G-module
on Y Then f*M has a structure of G-module on X.

Proof:

Consider the following diagram:

Gux X oy

le iux ;DY\L iuy
X ! Y
We construct « as a composition of isomorphisms:

Picf*M ~———— (idg x f)*piyM

aT (idGXf)*»BT

Wi f*M ———— (idg x f)*uy
Here (3 is a G-module structure on M. The cocylce condition for a immediately
follows from the cocycle condition for 3.

Remark 1. Let X,Y be G-varieties, f be a G-morphism, M be an Ox-module, N be
an Ogx x-module, F=idg x f. Consider the diagram:

GXGXXMG—XI:GXGXY GxGxXMG—XI:GxGxY
mxidxi lidgxux mxidyl lidgx,uy mxidxi J{pzax mxidyl lngy
GxX u GxY GxX u GxY

Notation 1:

Since all vertical arrows are flat, we have natural isomorphisms ([1] Prop. 9.3):
hhy, (M) : p3 R fu M — RIFy i’ M;

hhy(M) : py R f.M — R'F.p5 M

hhmxia(N) @ (m x idy )*R'F,N — R'(idg X F).(m x idx)*N;

hhyy(N) : i, REN — Ri(idg x F).pys, N;

hhidcxu(N) : (ZdG X lLLy)*RZF*N — Rz(idG X F)*(ZdG X ,ux)*N;



Note that since py o (m X idy) = py o (idg X py ), two isomorphisms coincide:
hhyiaex (M) = (id x py )" py R fu M — R'(ide % F).(ide % px)*py M and
hhymxia(M) : (m x idy)*p3 R fu M — R'(idg % F)(m x idx)* s M
Similarly, there is another pair of equal isomorphisms:

hhp pos (M) = 33, py R fuM — R'(idg x F).p33, p%x M and

hhy mxia(M) : (m x idy )*py R fuM — Ri(idg x F).(m x idx)*px M

We need the following lemma about compostion of this isomorphisms.
Lemma 2. Consider the following diagram:

Ve

Xg—2 SV,

o,

Xo Y,

| |
X, #yl

Here ¢ and @ are flat, Xo = X3 xy, Y3, X3 = Xa Xy, Y3. Let M be an Ox,-module.
Define

hhy : ¢*R' f1. — R fo,t*

hhis : Q*q" R fr. — R f3, T*t*

hhs : Q* R fo, — R f3.T* to be natural isomorphisms given by Prop. 9.3 [1]. Then
the following diagram commutes:

Q" hhi (M)

Q*¢' R f1.M Q"R fouit™M
hha(t* M
R f3, T** M

Proof:

Since the statement is local on Y;, we consider the case when all Y; are affine,
Y; = SpecA;. If F is R- module, we will denote by F' the corresponding sheaf on
Spec R. Recall the construction of hh;. Let M be an Ox,-module. Then

Rif. (M) = Hi(X,, M); ¢* R f1, M = Ay @ 4, H (X1, M); R fout* M = Hi(X,, t*M).
Let U; be an affine covering of X;. Denote by K = C(X;, M) the corrsponding
Chech complex. Since Y; and Y, are affine, t = (U;) is the affine covering of X». For
this covering we have that As ® 4, K is a Chech complex of Xs-module ¢* M. Then
hhy is an obvious morphism

Ay @4, H(K) — H'(Ay ®4, K)

which becomes an isomorphism since A, is flat over A;. In similar way one can
construct hhio and hhs. Then one can rewrite the diagram as

; id®@hh .
A3 ®4, Ay @4, H'(K) - A3 ®a, H'(As ®4, K)

hho(t* M
hhyo (M)

H'(A3 ®a4, K)

Which is trivially commutative.
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Lemma 3. Let f: X — Y be an equivariant morphism and M be a G-module on
X Then for any i R'f,M has a structure of G-module on Y.

Proof:

Let B : ux M — p% M be the G-structure on M. Consider the following base-change
diagram:

GxX—=X

pPx
iidcxf lf
Hy

GxY Y

Py

Since py and py are flat, we use Proposition 9.3 from [1]. Sheaf isomorphisms
hh,(M) and hh,(M) are described in Notation 1. Define « to be the unique
isomorphism such that the following diagram commutes :

- hhu(M)
uy R f M Riid x f)oi M
la lRi(ide)*ﬁ
. Rhp(M) .
Py RUfM Ri(id % f)upiM

Now we have to check the cocycle condition for « :
pas x (a) o (idg X py )™ (o) = (m X idy)* ()
This means commutativity of this diagfam:

paz*(a)o(ida xpy )™ (o)

(ide x py ) i REf M PPy R M

(mxidy )™ (e)

(m X idy)*u} R f. M (m x idy )*py- R f. M
Let F =idg x f. Subdivide this diagram into the following blocks:

(ide % py)" iy R f.M Pioy By R f.M

hhﬂ”idx}"l: hhp’p23i2

Ri(idg x F).(idg x px)* i M 2—>Ri(idG X F)upss, px M
Ri(idg X F)o(m xidx)* pic M 3 Ri(idG x FY(m x idx)*ps M
hhmlm<u§<M>lﬂ hhmlxid(p}M)i&
(m x idy)* R (idg x Hapsc M T (m x idy )* R (idg x api M
(mxidy)*hh;l(M)lN (mxidy)*hhljl(M)iN

(mXxidy )" (a)

(m x idy )* 3 R f. M (m x idy )*p}- R f. M

Square 2 is an image of cocycle diagram for M and therefore commutative.
Square 3 arises from functor isomorphism
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Ri(idG X idg X fl«(m xidx)* = (m X idy)*Ri(idG x f)« ([1], Prop. 9.3) applied
to G-module structure 5 : p% M — p5 M So, it commutes.

Square 4 is commutative by definition of a.

It remains to show the commutativity of square 1. Let F= idg X F. Rewrite square
1 as follows:

(id x pry )" p* R fu M=~ (id % py ) pi R fe M===p33, 45 R fe M— 55D 13 R f M

1.1 2
(idxp)*hhy, | = (idgXpy ) hhyp | Py hhy | = P33y hhp |
(id x uy)*RiF*u}M?(id X py )REF.pie M 27 RiF*u;(M?p;SY RiF.p5 M
hhigy (" M) |~ hhigy (P M) | = hhpog (n3 M) | hhpys (DX M) |
RIF.(id x px)* wy M——=R'F,(id x px)*ply M===R'F.p}s  x M——>R'F.pa3 p’ M

Square 1.1 is an image of functor (idg X py)* applied to the diagram that defines
«. Thus it is commutative. Commutativity of 1.2 follows from Lemma 2 and Prop.
9.3[1] applied to the base-change diagram

idg Xidg ><f

GxGxX GxGXxY
pYO(idXﬂY)—l"YopZSyl \pro(idxux)_/_txopgsx
X ! Y

Square 1.3 is an image of functor p3;, applied to the diagram defining o. and
therefore commutes. ~

Prop 9.3 [1] gives us an isomorphsm of functors (idg X py )* R'F, =2 RUF (idg X pux )*.
Applying this isomorphism to 8 : p% M — p% M we get commutativity of the square
1.4.

In a similar way we get commutativity of the square 1.5.

So, commutativity of 1-4 is proved. According to Lemma 2 the composition of
vertical arrows is the identity. So, « satisfies the cocycle condition.

Corollary. If f is projective we can define the pushforward map f. : K§(X) —
K§ (Y) by sending M to the alternating sum of R’ f,(M).

Also we need an equivariant version of Proposition 9.3 from [1].

Lemma 4. Consider the base change diagram

A7

o

B
|
X Y

where X, Y, A, B are G-varieties; f, F, @, q are G-morphisms; f is flat.
Let M be a G-module on B. Then there is a natural G-module isomorphism on X :

f*Riq.M — R'Q,F*M.

Proof:
By Propostion 9.3 from [1] we have a natural isomorphsim of O x-modules
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hhxyap : [*R'¢M — R'Q.F*M. We need to check that hhx y.ap is a G-
morphism. That means commutativity of the following diagram:
N;gf*RZQ*M G —structure p}f*qu*M
ili}h}LX,Y‘A‘B \Lp}hhx,y,A,B

[ RIQ,F* M P RIQ.F*M

_—
G—structure
Consider the diagram:

idxX F

G

X
pA
idXq
Ha
idxQ A
X

px Py

5N

PB

)-<

For any square in this cube denote by hh (with corresponding subscript) the
isomorphism arising from prop. 9.3[1], applied to this square. We rewrite the G-
structure diagram:

Wi f*R g M . pxf*Riq.M
(id x )"y Rig. M . (id x [)*py Rig, M
(idxf)*hhng,Y,GxB,B(M)i (idxf)*hhng,Y,GxB,B(M)l
(i 5 1) Ri(id  q). 1M > (id x f)Bi(id  q).pjM
thXX,GxY,GxA,GXB(NEM)i thxX,GxY,GxA,GXB(pTBM)l
Ri(’id X Q) (id x F)*/LEM 1 Ri(id X Q)4 (id x F)*p*BM
Ri(id X Q)wpty F* M 5 Ri(id X Q)up F*M
hhéxX,X,GxA,A\L hhéxx,x,GxA,A\L
/L}RiQ*F*M p}RiQ*F*M

Square 1 is commutative because of definition of the G-structure on pullback.
Square 2 is an (id x f)* image of the G-structure diagram for Riq,M. Thus it
commutes.

Square 3 arises from the functor isomorphism (idx f)* R'(idx q)« — R'(idx Q). (idx
F)* applied to the G-structure isomorphism piM — pi M. SO, it commutes.



9

Square 4 is commutative because of the definition of the G-structure on pullback.
Square 5 is commutative by the definition of the G-structure on R*Q,F*M.

By lemma 2 compositions of vertical arrows are equal to p5 hhx v, 4,5 and p5hhx v, 4 B.
This concludes the proof of Lemma 4.

Lemma 5. Let X, Y be smooth G-varieties, G - a smooth reductive affine algebraic
group and 7w : X X Y — Y a projection. Moreover let X be projective and Y be
connected
Denote by P, (G; X x Y) the full subcategory of P(G; X x Y) consisting of locally
free G-modules P such that RFr,P = 0 for k > 0.
Then any G- module M possesses a finite length resolution of the form
M — P’ = P! — ... = PN — 0 with P' € OB(P,(G; X xY))
Proof:
First we prove that for every M there is an embedding M < P°. We will construct
PY in the form of M (n) for a large enough n. To do this, we construct a very ample
G-equivariant sheaf Ox (1) and an G-equivariant embedding ¢ : X < P" such that
Ox (1) = i*Op(1). Let L be a very ample line bundle. By corollary 1.6 of [5] L=¥
is G-equivariant for some k. Then it defines the action of G on V = I'(X, L®F)
and equivariant morphism i : X — P(V) which is an embedding since L®* is very
ample. Then we set Ox (1) = L®*.
The standard embedding of the tautological bundle 7y < V x P(V) gives us a
G-equivariant embedding of locally free sheaves Opyy(—1) = Opy @ ... @ Op(v).
After twisting by Op(1) we have Opvy — Opy(1)®...®Opev)(1). Inductively we
have the G-equivariant embedding Opvy < Op(vy(n) @ ... © Opvy(n). Applying
1" we get

Ox — Ox(n) D...P Ox(n)
Define Oxxy (1) = 7*Ox(1). Applying 7* we get an equivariant embedding

M— Mmn)®...®M(n).

for an arbitrary locally free G-module M. Clearely it’s cokernel is G-equivariant.
It’s easy to check that it is a locally free sheaf. Then for every locally free G-module
there is a resolution consisisting of direct sums of modules of the form M (n)

Let us show that M (n) lies in P.(G; X x Y) for a large enough n. RFm,M(n) is
associated to a presheaf V +— H¥(X x V, M(n)). Consider a finite affine covering
V; of Y. By Serre’s theorem H¥(X x V;, M(n)) equals zero for n > n;. Thus
RFm M (n) = 0 for n > ny = maz{n;}.

It remains to show that this resolution ends at some finite step. Let N = dimX x Y.
Let C° be a cokernel or the first resolution step: 0 — M — P° — C° — 0. Then
we have the exact sequence

0=RNm. P’ = RV7x.C" - RNT1r, M = 0.

So, RN7,CY% = 0. For the second cokernel C! we have the exact sequence 0 —
C% - P! — C' - 0. Then

0=RN"z,P' -5 RN"1x,C' - RN#,C° = 0.

So, RN"17,CN~! = 0. By induction we have all Rrr,CN = 0. Then CV €
Ob(P,(G; X xY)).

Lemma 6. Under the notation of Lemma 5, we have a commutative up to an
isomorphism diagram of exact functors.
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(2.1) 'Pﬂ—EGJ (G, EGj X G/B) (G xid)" PTVEGj+1 (G, EGj.H X G/B)
WEGj*i WEGj+1*i
P(G; EG)) P(G; EGj41)
Proof:

To simplfy notation let 7; = mgg, and Pj = Pry, (G; EG; x G/B) Let us prove
that P;41 is mapped to P; under (i; x id)* Let M € Ob(P;+1). Let dim(EG; x
G/B) = N. Then RN+, (i; x id)*M = 0. By corollary 2§5 of [4]

RYmj(ijxid)* M®ogs k(y) = HY (EG;x{y}, (i;xid)"M) = H (EG;x{y}, M) =0

Then Rij*(ij x id)*M = 0. By induction we obtain that all Rkﬂj*i§M = 0 for
k > 0. Then ifM € Ob(P). Now we prove the commutativity of the diagram 2.1
up to a natural isomorphism. By remark 9.3.1 of [1] we have a natural morphism
hh @ iimip1M — mj.(i; x id)*M. One can easily see that for any y € EG; the
following diagram commutes:

Wj*(ij X ’Ld)*M X k(y) 7% 7TJ+1*M® ]{7 )

hh®k(y)
o
I'(ly x G/B, (i; x id)*M) Tit1:M ® k(y)
°)
I'(y x G/B,M) I'y x G/B,M)

Here the arrows (1) and (2) are natural isomorphisms given by corollary 2 §5 of [4].
So, hh ® k(y) is an isomorphism for any point y of EG;. Therefore hh is a natural
isomorphism. So, the diagram (2.1) is commutative.

Lemma 7. Under the notation of Lemma 5, for each j > 0 the functor
m; : P(G; EG;) — P(G; EGj x G/B)

takes values in the subcategory Pr,. (G;EG; x G/B). As a consequence the
following diagram of exact functors commutes up to a natural isomorphism.

(2.2) P(G; EG;) P(G; EGj41)

"
i
« "
’Tji 7’;‘+1l

PWEGj (G7 EG] X G/B) ,Pﬂ—EGJ_Jrl (G, EGj+1 X G/B)

(i; xid)*
Proof:

To simplfy notation let m; = mpg, and Pj = Pryq, (G; EG; x G/B) First we
prove that 77 maps P(G; EG;) to P;. Let M be an object of P(G; EG;). Then
Rkwj*ﬂjM is associated to the presheaf V + H*(V xG/B, m; M). Let V be an affine
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open subset of EG,. Let {U,} be an affine covering of G/B. For any intersection
W =U,, Nn...NU,,. we have

W;M(V X W) = M(V) ®OEGj(V) OEijg/B(V X W) = M(V) Rk Og/B(W).
Then Chech complex C({V xU,}, 77 M) equals M(V)@,C({Un}, Og/p)- Consequently,
HY(V x G/B, 7' M) = M(V) @, H*(G/B,Oqp).

By proposition 4.5 from 7| H*(G/B,Og,p) = 0 for k > 0. Then ;M € Ob(P;).
The commutativity of (2.2) trivally follows from the equality 7;410(i; xid) = i;0m;.

Proposition 1. There is a commutative diagram with TpG,« © Tpg, = idgs(Ba;)

.
TptxTpt = 1 G (pr)

K& (pt) K§(EG,)

* *
Tpt TEG;
*

KS(G/B) "9 KG(EG, x G/B)
’Trpt*l WEGi*i
K§pt T K§(EG;)

Proof:
Commutativity of the upper square is trivial.
Consider the lower square: Let M be a G-module on G/B, [M] € K§(G/B). Then

56« 0 MGy p[M] = Y (D R Tpc, (18 s M));

W;t O Tptx [M] = W;t(Z(*l)k[Rkﬂpt*M]) = Z(*l)k[W;tRkﬂpt*M]-
By Lemma 4 summands are isomorphic, s0 g, © 75, p[M] = 75, 0 mpe[M].
Prove that Tgg,«(1) = 1. R*mpe,«Opa,xa /B is a sheaf associated to the presheaf
Vi H'(VXG/B,Oyyqg/p)- Let V be affine. Consider U; an affine covering of G/ B.
Then V x U is an affine covering of EG;xG/B. Let C(V x U, Ogc.xa/Blvxa/B) be
a chech complex for this covering. Since I'(V x Uy, i, , Opg, xa/B) = I'(V, Org,) ®
I'(G/B,Og, ), we have the isomorphism H*(VxG/B,0) — T'(V,Ov)@rH*(G/B,0g/B).
It is easy to verify that this isomorphism commutes with the restriction maps:

H*(V x G/B,0y g p) ——T(V,0v) @ H*(G/B,0¢/p)
T(:SU’V\L id®TESU'Vi

H*(U x G/B, Ouxa/B)

I'(U,0v) @ H*(G/B,0¢/p)

So, we get the sheaf isomorphism R¥rgq,.Opa,xa/p = Opa, @k H*(G/B,Og /).
Therefore 7pg,«(1) = x(G/B, Og,p)-1. By proposition 4.5 [7] we have x(G/B, O¢,p) =
1, SO WEGi*(l) =1.

This shows that Tpg,«0mp¢, is an K§'(EG;)-module endomorphism (by projection
formula) sending 1 to 1. Whence TEG* © Tpa, = K& (pg,)- By the same reasons
Tpts © My = id g6 ). This concludes the proof.
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Remark In particular, we get a well-known fact that the natural ring map R(G) —
R(B) is injective.

Proposition 2. The Ig-adic topology of R(B) coincides with the I - R(B)-adic
topology.

Proof:

Let T be a maximal torus in G. Then R(B) = R(T) and Ig = I, where It is the
ideal of zero-dimensional representations of 7. We will prove that v/Ig - R(T) = Ir.
Denote by W = N¢(T)/T the Weil group of G. The group W acts by conjugation
on R(T). It is known that W is a finite group and R(G) is the ring of invariants of
W: R(G) = R(T)". We prove the following statement:

If g is a prime ideal of R(T') and ¢ N R(G) D I¢. Then q D Ir.

Let « € Ip. Let n = |W| and W = {oy,...,0,}. For any symmetric polynomial
f we have that f(z?'...x°") is invariant under W-action. Then f(z°'...2%") €
R(G)NIr = I¢ € R(G)Ng. Then f(z°'...2°") € q. Denote by fi...f, the
elementary symmetric polinomials. It is easy to see that x is a root of polynomial

n

[[t=a7)=t" = fi@™ .2+ (1) fu(@™ . 2m).

i=1

So we have 2™ — fi(z ... 2% )a" L + ...+ (=1)"f (2%t ... 2%") = 0.

Then 2" = —(—fi (2% ... 2%)2" L + ...+ (=1)"fn(z°...2°")) € q. So 2" € q.
Since q is prime, & € ¢q. This ends the proof of the statement.

Consider A = {p | p — prime,p 2 I¢ - R(T)} Our statement implies that I is a
minimal element of A. So,

VIo R = () = I.

pEA

Since R(B) = R(T) and Ip = Ip, we get \/Ig-R(B) = Ip. Since R(B) is
noetherian, it implies that I} C Ig - R(B) for some m. Then Ip and I¢ - R(B)
determine the same topology on R(B).

Proposition 3. K((BG) = @KO(BGZ»)
Proof:
By [6] we have the following exact sequence:

0— yﬂlKl(BGi) — Ko(BG) — lim Ko(BG;) — 0

Let us show that @111(1 (BG;) =0.

We prove that the sequence K1 (BG;) is a direct summand of the sequence K (BB;).
By proposition 1 of [2] We have K;(BG;) = K¢ (EG;) Since we can choose EG; as
a model for EBZ, we obtain K1 (BBZ) = KlB(EBl) = KlB(EGl) = Kla(EGZ X G/B)
So, in fact, we prove that the sequence K&(EG;) is a direct summand of the
sequence K& (EG; x G/B).
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To simplify the notation denote Pj = Pry (G;EG; x G/B). By lemmas 6 and 7
we obtain a commutative diagram with exact arrows:

(2.3) P(G; EGj) i P(G;EGj+1)
W;‘\L 77;+1*l
7] (i, xid)" ij:rl
P(G,EGJ) T ,P(G;EGJ'JFI)

Consider the composition of vertical arrows :

P(G; EG;) — > P; — "> P(G; EG))

For any locally free G-equivariant sheaf M we are going to prove that ;.77 M is
naturally isomorphic to M, that is th fucntor 7.7} is isomorphic to the identity
functor. The sheaf ;.77 M is associated to presheaf V — 77 (M)(V x G/B). Since
77 M is a sheaf associated to W — M(m;(W)) we see that m;.m; M is associated to
the presheaf V' +— M(V). So, in category of presheaves ;.7 = id. Applying the
sheaffication functor to this isomorphism, we get a natural isomorphism 7,77 M =
M.

In the proof of Lemma 6 it is checked that (i; x id)*(Pj+1) € P; By Lemma 5,
each G-module in P(G; EG; x G/B) has a finite resolution consisting of sheaves
from P;. Then by the Quillen’s theorem we get the isomorphisms «; such that the
following diagram of groups commutes:

(24) Kl(P]) (G, xid)" Kl (Pj+1)
ajl %‘+1i
KS(EG; x G/B) T K{(EGj:1 x G/B)

Define I1;, : K¢(EG; x G/B) — KF(EG;) as the composition of

1

K¢(EG; x G/B) —2— ~ K\(P;)

7Tj*

K{(EG))

Commutativity of the diagrams (2.3) and (2.4) gives us a commutative diagram:

(2.5) KY(BG;) xid KY(BGj4)
“:l 7";+1*i
KY(BEG; x G/B) e K{(EGj1 x G/B)

Hj*l

K{(EG))

H.1+1*i

K{(EG;41)

(O
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As we have shown, compositions of vertical arrows are identity, so K (EG;) is a
direct summand of sequence K (EG; x G/B) = K;(BBy). Since %iLnl(Kl(BBj)) =
0 we get lgll(ch(EGJ)) = 0. This concludes the proof.

Remark 3.1. By the same reasons, there is an analogous retraction diagram for
K§' functor:

(2.6) K§(EG,) K§(EGj41)

« "
”jJ/ ”j+1*i

(ij Xid)
Hj*l H]‘*i

K§(BG;) K§(BGj41)

(ij XZd)*

(O

3. PROOF OF MAIN RESULT
Theorem 1. The Borel construction induces an isomorphism

—
— Borelp —

R(B), KO(BB)IB ;KO(BB)

B

Proof:

Let T be a maximal torus of G. Then the restriction map R(B) — R(T) and
projection pullback Ky(BT) — K(BB) are isomorphisms. So, it suffices to prove
this theorem for maximal torus T Since G is split, T = G, X ... X G, (n times).

—

Let us compute R(T") and R(T);,_.
R(T) :Z[Al)\n,t]/()q)\nt:1> IT: (1—)\1,...,1—)\n,1—t). SO, we
have:

R(T)p, = WmZ[A, o Ay ]/ (T - = 1), (1= A)*, o (1= A)%, (1= 1)%) =

=HmZL = Ay, = A, 1=/ (A - £ = 1), (1= A", (L= A)5, (1= 1)F) =
= [~ Ay 1= A L= )] /(TN -t = 1) = Zl[ps - iy L= ]/ (1 = i) -t — 1)
Since 1%% = 14 p; +p2+p +.. . it follows that ¢ = [](1+ u; +p? +. ..) Therefore
wehave 1 —t=1-(14+m+...+pn+...)=—(11+...+ pn+...). Then

—

R(T), = Zl[pas- - pnl].

Let us compute Ky(BT).

We can choose by ET the space A®\{0} x ... x A>\{0} This is contractible space
with free T—action. Then ET}, = A**1\{0} x... A**1\{0} and BT} = P* x...x Pk,
Then Ko(BTy) = Z[zy ... x,)/(z¥ =0,...,28 = 0). So we have BT = P> x ... x
P and it is known that Ko(BT) = @KO(BT;C) =Z[x1 ... zy]]

Borel construction R(T') — Ko(BT})) works as follows:

)\i’_>1_xi
tei(l_m/}_\(l_m =4z 4. +2" Y A4z +.. 2

Then on R(T);, . Borel construction induces an isomorphism g; — x; This completes
the proof of theorem 1.

Theorem 2. The following diagram commutes
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(3.1) R(G),, — "%~ Ko(BG),, < Ko(BG)
ol - ;
R(B),, — "% ~ Ky(BB),, <~ Ko(BB)
] | .
RG),, — 27+ Ky(BG,, Ko(BG)

with I'nd o Res = id and p, o p* = id.

Proof:

To construct (3.1) We use the following interpretation: R(G) = K§ (pt), R(B) =
KB(pt) Since EG; — BG, is a G-torsor, Ko(BG;) = K§(EG,). (by Proposition
1 of[2]) EG can be chosen as a model for the contractible space EB Proposition
1 of [2] allows us express all these objects in terms of G-equivariant K-theory:
KE(pt) = K§(G/B) K& (EG;) = K§(EG, x G/B)

So, first we construct :

(3.2) K§ (pt) - K§(EG;)
- |
K§(G/B) _ Tom K§(EG; x G/B)
K§(pt) —— 2 KE(EG)

Proposition 1 proves that this diagram commutes and the bottom arrow is a retract
of the middle one. By the isomorphism construction of corollary 1 [2] one can check
that horizontal arrows in this diagram coincide with the Borel morphisms. We
consider (3.2) as a K§ (pt)-module diagram (K (pt)-module structure is induced
by pullback morphisms) Proposition 2 tells us that Ip-adic topology on R(B) =
K§ (G/B) coincides with I - R(B)-adic topology. So we consider I completion of
(3.2) as K§ (pt)-modules:

K¢ (pt),,, ” K§(EG)),,
W;tl “Eci l

N
= TG/B

K(?(G/B)IG'R(B) K§(EG; x G/B)IG-R(B)

Wpt*\L WEGi*\L

KS (pt) K§(EG:)

I I

It remains to show that Kg(EG) is complete in I5-adic topology. To show that we
consider the diagram:
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(3.3)
RS, i KG(EG.),, . K§(EG))
K@B)IGR(B) & K(?(EE\XG/B)]GJ{(B) = K (EG; x G/B)

W/Z,T*l WEG\I*\L TEG;*

<G (pt i KS(EG))

—

K o) K§(EG:)

Ia Ia

1R

By Remark 3.1 the diagram (3.3) commutes.

Recall that K§(EG;) = Ko(BG;) , K§(EG; x G/B) = Ko(BB;), KS (pt) = R(G)
and K§(G/B) = R(B).

Therefore we can rewrite the diagram (3.3) in the terms of non-equivariant K-
theory:

(3.4)
E(-CT)IG o K@i)zc = Ko(BG:)
;;\tJ/ @Zl Tha,
R(B),, s _ Ters Ko(BGi x G/B),_ p(s) <= Ko(BGi x G/B)
ﬂm*J{ WEG\I-*J/ TEG;
R/(E)IG i K@Z)IG = Ko(BG;)

— Tpt —

(3.5) R(G),,, Ko(BG),, ~———— Ko(BG)
_ e —
R(B),, gy —— > Ko(BB),_ . ps) Ko(BB)
Wpt*l 11m7rfc;\i*l I@U‘FEG *
R(G),, o Ko(BG),, - Ko(BG)

Here the completion morphism Ko(BG); + Ko(BG) is an isomorphism since it

is a retract of the completion morphism KO/(B\B)Ic~R(B) = Ko(BB);, + Ko(BB)
which is the isomorphism by Theorem 1. By proposition 1 and 3 we have 7}, o, =

id and 7}, o Tpg« = id. So, we have constructed the diagram (1.1) in the form
(3.5). The theorem is proved.

Corollary. The Borel construction induces the isomorphism.

R@G Borelg KO/(E?G’>1G completiong KO(BG)

Proof:
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Theorem 2 states that Bﬁg and completion are retracts of Bﬁg and completionpg

which are isomorphisms by theorem 1. Then Bmg and completiong are also
isomorphisms.
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