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Abstract
In topology there is a well known theorem of Atyiah which states that for a connected
Lie group G there is an isomorphism R̂(G) ∼= K0(BG) where BG is the classifying
space of G. In the present paper we consider an algebraic analogue of this theorem. In
the paper of B.Totaro [8] there is a computation of lim←−K0(BGi) for specially selected

sequence BGi. However, to compute K0(BG) one needs to prove that lim←−
1K1(BGi)

vanishes. For split reductive groups we present another approach and prove that the
Borel construction induces a ring isomorphism R̂(G)I(G) = K0(BG), where BG is
an �etale classifying space introduced by Voevodsky and Morel in [6]. Our approach
makes possible to compute Ki(BG), which we expect to provide in a next preprint.

Key words: Atyiah's theorem, classifying space, K-theory, equivariant K-theory

1



2

ÃËÀÂÍÛÉ ÐÅÄÀÊÒÎÐ

Ñ.Â. Êèñëÿêîâ

ÐÅÄÊÎËËÅÃÈß

Â.Ì. Áàáè÷, Í.À. Âàâèëîâ, À.Ì. Âåðøèê, Ì.À. Âñåìèðíîâ, À.È. Ãåíåðàëîâ,
È.À. Èáðàãèìîâ, Ë.Þ. Êîëîòèëèíà, Â.Í. Êóáëàíîâñêàÿ, Ï.Ï. Êóëèø, Á.Â.
Ëóðüå, Þ.Â. Ìàòèÿñåâè÷, Í.Þ. Íåöâåòàåâ, Ñ.È. Ðåïèí, Ã.À. Ñåðåãèí, Â.Í.

Ñóäàêîâ, Î.Ì. Ôîìåíêî.



3

1. Introduction
Morel and Voevodsky constructed the etale classifying space of a linear group G in
the form BG =

⋃
BGk where BGk = EGk/G. EGk are smooth algebraic varieties

connected by a sequence of G-equivariant closed embeddings ik.

· · · ik−1−−−−→ (EG)k
ik−−−−→ (EG)k+1

ik+1−−−−→ · · ·

The motivic space EG =
⋃
EGk is A1 - contractible with a free G-action. We consider

a split reductive a�ne algebraic groupG.We prove thatK0(BG) = lim←−K0(BGk). The
Borel construction sends a representation V to the vector bundle VK = (V ×EGk)/G.
It induces ring morphisms R(G) → K0(BGk) and consequently R(G) → K0(BG).
Here R(G) is the representation ring of k-rational G-representations. Let IG be an
ideal of zero-dimensional representations in R(G). After the IG-adic completion we

get a ring-morphism : R̂(G)→ K̂0(BG) The main theorem of recent paper states that

the Borel morphism becomes an isomorpism after the completion: R̂(G)
∼=→ K̂0(BG).

Also we prove that K0(BG) is complete. So we get R̂(G) ∼= K0(BG).
The main idea of the proof is the reduction to the Borel subgroup B of G. For the
Borel subgroup B the rings K0(BB) and R(B) can be computed explicitly. It results
in

Theorem 1. The Borel construction induces an isomorphism

R̂(B)IB
B̂orelB // K̂0(BB)IB K0(BB)

∼=oo

To make the reduction to Theorem 1 we prove

Theorem 2. The following diagram commutes:

(1.1) R̂(G)IG
B̂orelG //

res

��

K̂0(BG)IG

p̂∗

��

K0(BG)oo

p∗

��
R̂(B)IB

B̂orelB //

ind
��

K̂0(BB)IB

p̂∗
��

K0(BB)
∼=oo

p∗

��
R̂(G)IG

B̂orelG // K̂0(BG)IG K0(BG)oo

With Ind ◦Res = id and p∗ ◦ p∗ = id.
Corollary(Main result) Borel construction induces a ring isomorphism

R̂(G)IG
B̂orelG // K̂0(BG)IG K0(BG)

∼=oo

Acknowledgements. Authors are grateful to prof. Ivan Panin for constant
attention and useful suggestions concerning the subject of this paper.
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2. Auxiliary results

In this section we prove some properties of pullback and pushforward for
KG

0 functor. Thomason in [3] developed G-equivariant K-theory. It is convinient
to us to cite Merkurjev's paper [2].

De�nition 1. Let X be a G-variety. We consider an action µx : G×X → X and
a projection px : G ×X → X. Let M be an OX -module. Following [2] we will call
M a G-module if there is an isomorphism of OG×X -modules α : µ∗X(M)→ p∗X(M)
such that the cocycle condition holds:

p∗23(α) ◦ (idG × µx)∗(α) = (m× idX)∗(α)

where p23 : G×G×X → G×X is a projection and m : G×G→ G is a product
morphism.

Lemma 1. Let f : X → Y be an equivariant morphism and let M be a G-module
on Y Then f∗M has a structure of G-module on X.
Proof:
Consider the following diagram:

G×X
µX

��
pX

��

idG×f // G× Y
µY

��
pY

��
X

f // Y
We construct α as a composition of isomorphisms:

p∗Xf
∗M (idG × f)∗p∗YM∼=
oo

µ∗Xf
∗M

∼= //

α

OO

(idG × f)∗µ∗Y

(idG×f)∗β

OO

Here β is a G-module structure on M . The cocylce condition for α immediately
follows from the cocycle condition for β.

Remark 1. Let X,Y be G-varieties, f be a G-morphism, M be an OX -module, N be
an OG×X -module, F=idG × f. Consider the diagram:

G×G×X

m×idX
��

idG×µX
��

idG×F // G×G× Y

m×idY
��

idG×µY
��

G×G×X

m×idX
��

p23X
��

idG×F // G×G× Y

m×idY
��

p23Y
��

G×X
µX

��

F // G× Y
µY

��

G×X
pX

��

F // G× Y
pY

��
X

f // Y X
f // Y

Notation 1:
Since all vertical arrows are �at, we have natural isomorphisms ([1] Prop. 9.3):
hhµ(M) : µ∗YR

if∗M → RiF∗µ
∗
XM ;

hhp(M) : p∗YR
if∗M → RiF∗p

∗
XM

hhm×id(N) : (m× idY )∗RiF∗N → Ri(idG × F )∗(m× idX)∗N ;
hhp23(N) : p∗23Y R

iF∗N → Ri(idG × F )∗p
∗
23XN ;

hhidG×µ(N) : (idG × µY )∗RiF∗N → Ri(idG × F )∗(idG × µX)∗N ;
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Note that since µY ◦ (m× idY ) = µY ◦ (idG × µY ), two isomorphisms coincide:
hhµ,idG×µ(M) : (id× µY )∗µ∗YR

if∗M → Ri(idG × F )∗(idG × µX)∗µ∗XM and
hhµ,m×id(M) : (m× idY )∗µ∗YR

if∗M → Ri(idG × F )∗(m× idX)∗µ∗XM
Similarly, there is another pair of equal isomorphisms:
hhp,p23(M) : p∗23Y p

∗
YR

if∗M → Ri(idG × F )∗p
∗
23Xp

∗
XM and

hhp,m×id(M) : (m× idY )∗p∗YR
if∗M → Ri(idG × F )∗(m× idX)∗p∗XM

We need the following lemma about compostion of this isomorphisms.

Lemma 2. Consider the following diagram:

X3
f3 //

T

��

Y3

Q

��
X2

f2 //

t

��

Y2

q

��
X1

f1 // Y1

Here q and Q are �at, X2 = X1×Y1
Y2, X3 = X2×Y2

Y3. Let M be an OX1
-module.

De�ne
hh1 : q∗Rif1∗ → Rif2∗t

∗

hh12 : Q∗q∗Rif1∗ → Rif3∗T
∗t∗

hh2 : Q∗Rif2∗ → Rif3∗T
∗ to be natural isomorphisms given by Prop. 9.3 [1]. Then

the following diagram commutes:

Q∗q∗Rif1∗M

hh12(M) ((

Q∗hh1(M) // Q∗Rif2∗t
∗M

hh2(t∗M)

ww
Rif3∗T

∗t∗M

Proof:
Since the statement is local on Yi, we consider the case when all Yi are a�ne,
Yi = SpecAi. If F is R- module, we will denote by F̃ the corresponding sheaf on
Spec R. Recall the construction of hh1. Let M be an OX1

-module. Then

Rif∗(M) = ˜Hi(X1,M); q∗Rif1∗M = ˜A2 ⊗A1 H
i(X1,M);Rif2∗t

∗M = ˜Hi(X2, t∗M).
Let Ui be an a�ne covering of X1. Denote by K = Č(X1,M) the corrsponding
Chech complex. Since Y1 and Y2 are a�ne, t−1(Ui) is the a�ne covering of X2. For
this covering we have that A2 ⊗A1 K is a Chech complex of X2-module t∗M. Then
hh1 is an obvious morphism

A2 ⊗A1
Hi(K)→ Hi(A2 ⊗A1

K)

which becomes an isomorphism since A2 is �at over A1. In similar way one can
construct hh12 and hh2. Then one can rewrite the diagram as

A3 ⊗A2 A2 ⊗A1 H
i(K)

hh12(M) ))

id⊗hh1 // A3 ⊗A2 H
i(A2 ⊗A1 K)

hh2(t∗M)

uu
Hi(A3 ⊗A1

K)

Which is trivially commutative.
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Lemma 3. Let f : X → Y be an equivariant morphism and M be a G-module on
X Then for any i Rif∗M has a structure of G-module on Y.
Proof:
Let β : µ∗xM −→ p∗XM be theG-structure on M. Consider the following base-change
diagram:

G×X
µX //
pX

//

idG×f
��

X

f

��
G× Y

µY //
pY

// Y

Since µY and pY are �at, we use Proposition 9.3 from [1]. Sheaf isomorphisms
hhµ(M) and hhp(M) are described in Notation 1. De�ne α to be the unique
isomorphism such that the following diagram commutes :

µ∗YR
if∗M

hhµ(M) //

α

��

Ri(id× f)∗µ
∗
XM

Ri(id×f)∗β

��
p∗YR

if∗M
hhp(M) // Ri(id× f)∗p

∗
XM

Now we have to check the cocycle condition for α :
p23 ∗ (α) ◦ (idG × µY )∗(α) = (m× idY )∗(α)
This means commutativity of this diagfam:

(idG × µY )∗µ∗YR
if∗M

p23∗(α)◦(idG×µY )∗(α) // p∗23p
∗
YR

if∗M

(m× idY )∗µ∗YR
if∗M

(m×idY )∗(α) // (m× idY )∗p∗YR
if∗M

Let F = idG × f. Subdivide this diagram into the following blocks:

(idG × µY )∗µ∗YR
if∗M

1
//

∼=hhµ,id×µ

��

p∗23Y p
∗
YR

if∗M

∼=hhp,p23
��

Ri(idG × F )∗(idG × µX)∗µ∗XM 2
// Ri(idG × F )∗p

∗
23Xp

∗
XM

Ri(idG × F )∗(m× idX)∗µ∗XM 3
//

∼=hh−1
m×id(µ∗

XM)

��

Ri(idG × F )(m× idX)∗p∗XM

∼=hh−1
m×id(p∗XM)

��
(m× idY )∗Ri(idG × f)∗µ

∗
XM 4

//

∼=(m×idY )∗hh−1
µ (M)

��

(m× idY )∗Ri(idG × f)∗p
∗
XM

∼=(m×idY )∗hh−1
p (M)

��
(m× idY )∗µ∗YR

if∗M
(m×idY )∗(α) // (m× idY )∗p∗YR

if∗M

Square 2 is an image of cocycle diagram for M and therefore commutative.
Square 3 arises from functor isomorphism
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Ri(idG × idG × f)∗(m × idX)∗ ∼= (m × idY )∗Ri(idG × f)∗ ([1], Prop. 9.3) applied
to G-module structure β : µ∗XM → p∗XM So, it commutes.
Square 4 is commutative by de�nition of α.
It remains to show the commutativity of square 1. Let F̃ = idG×F. Rewrite square
1 as follows:

(id× µY )∗µ∗Rif∗M
1.1
//

∼=(id×µ)∗hhµ

��

(id× µY )∗p∗Y R
if∗M

1.2
∼=(idG×µY )∗hhp

��

p∗23Y µ
∗
Y R

if∗M
1.3
//

∼=p∗23Y
hhµ

��

p∗23Y p
∗
Y R

if∗M

∼=p∗23Y
hhp

��
(id× µY )∗RiF∗µ∗XM 1.4

//

∼=hhid×µ(µ
∗M)

��

(id× µY )RiF∗p∗XM

∼=hhid×µ(p
∗
XM)

��

p∗23Y R
iF∗µ∗XM 1.5

//

∼=hhp23 (µ∗
XM)

��

p∗23Y R
iF∗p∗XM

∼=hhp23 (p∗XM)

��
RiF̃∗(id× µX)∗µ∗XM

//RiF̃∗(id× µX)∗p∗XM RiF̃∗p∗23Xµ
∗
XM

//RiF̃∗p23X p
∗
XM

Square 1.1 is an image of functor (idG × µY )∗ applied to the diagram that de�nes
α. Thus it is commutative. Commutativity of 1.2 follows from Lemma 2 and Prop.
9.3[1] applied to the base-change diagram

G×G×X
idG×idG×f //

pY ◦(id×µY )=µY ◦p23Y
��

G×G× Y

pY ◦(id×µX)=µX◦p23X
��

X
f // Y

Square 1.3 is an image of functor p∗23Y applied to the diagram de�ning α. and
therefore commutes.
Prop 9.3 [1] gives us an isomorphsm of functors (idG×µY )∗RiF∗ ∼= RiF̃ (idG×µX)∗.
Applying this isomorphism to β : µ∗XM → p∗XM we get commutativity of the square
1.4.
In a similar way we get commutativity of the square 1.5.
So, commutativity of 1-4 is proved. According to Lemma 2 the composition of
vertical arrows is the identity. So, α satis�es the cocycle condition.
Corollary. If f is projective we can de�ne the pushforward map f∗ : KG

0 (X) →
KG

0 (Y ) by sending M to the alternating sum of Rif∗(M).
Also we need an equivariant version of Proposition 9.3 from [1].

Lemma 4. Consider the base change diagram

A
F //

Q

��

B

q

��
X

f // Y

where X,Y,A,B are G-varieties; f, F,Q, q are G-morphisms; f is �at.
Let M be a G-module on B. Then there is a natural G-module isomorphism on X :

f∗Riq∗M → RiQ∗F
∗M.

Proof:
By Propostion 9.3 from [1] we have a natural isomorphsim of OX -modules
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hhX,Y,A,B : f∗Riq∗M → RiQ∗F
∗M. We need to check that hhX,Y,A,B is a G-

morphism. That means commutativity of the following diagram:

µ∗Xf
∗Riq∗M

µ∗
XhhX,Y,A,B

��

G−structure
// p∗Xf

∗Riq∗M

p∗XhhX,Y,A,B

��
µ∗XR

iQ∗F
∗M

G−structure
// p∗XR

iQ∗F
∗M

Consider the diagram:

G×A id×F //

id×Q

��

pA

##µA
##

G×B

id×q

��

pB

##µB
##

A
F

//

Q

��

B

q

��

G×X
id×f
//

pX

##µX
##

G× Y
pY

##µY
##

X
f // Y

For any square in this cube denote by hh (with corresponding subscript) the
isomorphism arising from prop. 9.3[1], applied to this square. We rewrite the G-
structure diagram:

µ∗Xf
∗Riq∗M

1
// p∗Xf

∗Riq∗M

(id× f)∗µ∗YR
iq∗M

2
//

(id×f)∗hhµG×Y,Y,G×B,B(M)

��

(id× f)∗p∗YR
iq∗M

(id×f)∗hhpG×Y,Y,G×B,B(M)

��
(id× f)∗Ri(id× q)∗µ∗BM 3

//

hhG×X,G×Y,G×A,G×B(µ∗
BM)

��

(id× f)∗Ri(id× q)∗p∗BM

hhG×X,G×Y,G×A,G×B(p∗BM)

��
Ri(id×Q)∗(id× F )∗µ∗BM 4

// Ri(id×Q)∗(id× F )∗p∗BM

Ri(id×Q)∗µ
∗
AF
∗M

hhµG×X,X,G×A,A
��

5
// Ri(id×Q)∗p

∗
AF
∗M

hhpG×X,X,G×A,A
��

µ∗XR
iQ∗F

∗M // p∗XR
iQ∗F

∗M

Square 1 is commutative because of de�nition of the G-structure on pullback.
Square 2 is an (id × f)∗ image of the G-structure diagram for Riq∗M. Thus it
commutes.
Square 3 arises from the functor isomorphism (id×f)∗Ri(id×q)∗ → Ri(id×Q)∗(id×
F )∗ applied to the G-structure isomorphism µ∗BM → p∗BM. SO, it commutes.
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Square 4 is commutative because of the de�nition of the G-structure on pullback.
Square 5 is commutative by the de�nition of the G-structure on RiQ∗F ∗M.
By lemma 2 compositions of vertical arrows are equal to µ∗XhhX,Y,A,B and p∗XhhX,Y,A,B .
This concludes the proof of Lemma 4.

Lemma 5. Let X,Y be smooth G-varieties, G - a smooth reductive a�ne algebraic
group and π : X × Y → Y a projection. Moreover let X be projective and Y be
connected
Denote by Pπ(G;X × Y ) the full subcategory of P(G;X × Y ) consisting of locally
free G-modules P such that Rkπ∗P = 0 for k > 0.
Then any G- module M possesses a �nite length resolution of the form
M → P 0 → P 1 → . . .→ PN → 0 with P i ∈ OB(Pπ(G;X × Y ))
Proof:
First we prove that for everyM there is an embeddingM ↪→ P 0.We will construct
P 0 in the form ofM(n) for a large enough n. To do this, we construct a very ample
G-equivariant sheaf OX(1) and an G-equivariant embedding i : X ↪→ Pn such that
OX(1) = i∗OP(1). Let L be a very ample line bundle. By corollary 1.6 of [5] L⊗k

is G-equivariant for some k. Then it de�nes the action of G on V = Γ(X,L⊗k)
and equivariant morphism i : X → P(V ) which is an embedding since L⊗k is very
ample. Then we set OX(1) = L⊗k.
The standard embedding of the tautological bundle τP(V ) ↪→ V × P(V ) gives us a
G-equivariant embedding of locally free sheaves OP(V )(−1) ↪→ OP(V )⊕ . . .⊕OP(V ).
After twisting by OP(1) we have OP(V ) ↪→ OP(V )(1)⊕ . . .⊕OP(V )(1). Inductively we
have the G-equivariant embedding OP(V ) ↪→ OP(V )(n) ⊕ . . . ⊕ OP(V )(n). Applying
i∗ we get

OX ↪→ OX(n)⊕ . . .⊕OX(n).

De�ne OX×Y (1) = π∗OX(1). Applying π∗ we get an equivariant embedding

M ↪→M(n)⊕ . . .⊕M(n).

for an arbitrary locally free G-module M. Clearely it's cokernel is G-equivariant.
It's easy to check that it is a locally free sheaf. Then for every locally free G-module
there is a resolution consisisting of direct sums of modules of the form M(n)
Let us show that M(n) lies in Pπ(G;X × Y ) for a large enough n. Rkπ∗M(n) is
associated to a presheaf V 7→ Hk(X × V,M(n)). Consider a �nite a�ne covering
Vi of Y. By Serre's theorem Hk(X × Vi,M(n)) equals zero for n > ni. Thus
Rkπ∗M(n) = 0 for n > nM = max{ni}.
It remains to show that this resolution ends at some �nite step. Let N = dimX×Y.
Let C0 be a cokernel or the �rst resolution step: 0 → M → P 0 → C0 → 0. Then
we have the exact sequence

0 = RNπ∗P
0 → RNπ∗C

0 → RN+1π∗M = 0.

So, RNπ∗C0 = 0. For the second cokernel C1 we have the exact sequence 0 →
C0 → P 1 → C1 → 0. Then

0 = RN−1π∗P
1 → RN−1π∗C

1 → RNπ∗C
0 = 0.

So, RN−1π∗C
N−1 = 0. By induction we have all Rkπ∗CN = 0. Then CN ∈

Ob(Pπ(G;X × Y )).

Lemma 6. Under the notation of Lemma 5, we have a commutative up to an
isomorphism diagram of exact functors.
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(2.1) PπEGj (G;EGj ×G/B)

πEGj∗

��

PπEGj+1
(G;EGj+1 ×G/B)

(ij×id)∗
oo

πEGj+1∗

��
P(G;EGj) P(G;EGj+1)

i∗j

oo

Proof:
To simplfy notation let πj = πEGj and Pj = PπEGj (G;EGj × G/B) Let us prove
that Pj+1 is mapped to Pj under (ij × id)∗ Let M ∈ Ob(Pj+1). Let dim(EGj ×
G/B) = N. Then RN+1πj∗(ij × id)∗M = 0. By corollary 2�5 of [4]

RNπj∗(ij×id)∗M⊗OEGj k(y) = HN (EGj×{y}, (ij×id)∗M) = HN (EGj×{y},M) = 0

Then RNπj∗(ij × id)∗M = 0. By induction we obtain that all Rkπj∗i∗jM = 0 for
k > 0. Then i∗jM ∈ Ob(P). Now we prove the commutativity of the diagram 2.1
up to a natural isomorphism. By remark 9.3.1 of [1] we have a natural morphism
hh : i∗jπj+1∗M → πj∗(ij × id)∗M. One can easily see that for any y ∈ EGj the
following diagram commutes:

πj∗(ij × id)∗M ⊗ k(y)

(1)

��

i∗jπj+1∗M ⊗ k(y)
hh⊗k(y)
oo

Γ(y ×G/B, (ij × id)∗M) πj+1∗M ⊗ k(y)

(2)

��
Γ(y ×G/B,M) Γ(y ×G/B,M)

.

Here the arrows (1) and (2) are natural isomorphisms given by corollary 2 �5 of [4].
So, hh⊗ k(y) is an isomorphism for any point y of EGj . Therefore hh is a natural
isomorphism. So, the diagram (2.1) is commutative.

Lemma 7. Under the notation of Lemma 5, for each j > 0 the functor

π∗j : P(G;EGj)→ P(G;EGj ×G/B)

takes values in the subcategory PπEGj (G;EGj × G/B). As a consequence the
following diagram of exact functors commutes up to a natural isomorphism.

(2.2) P(G;EGj)

π∗
j

��

P(G;EGj+1)
i∗j

oo

π∗
j+1

��
PπEGj (G;EGj ×G/B) PπEGj+1

(G;EGj+1 ×G/B)
(ij×id)∗

oo

Proof:
To simplfy notation let πj = πEGj and Pj = PπEGj (G;EGj × G/B) First we
prove that π∗j maps P(G;EGj) to Pj . Let M be an object of P(G;EGj). Then
Rkπj∗π

∗
jM is associated to the presheaf V 7→ Hk(V×G/B, π∗jM). Let V be an a�ne
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open subset of EGj . Let {Un} be an a�ne covering of G/B. For any intersection
W = Un1 ∩ . . . ∩ Unk . we have

π∗jM(V ×W ) = M(V )⊗OEGj (V ) OEGj×G/B(V ×W ) = M(V )⊗k OG/B(W ).

Then Čhech complex Č({V×Un}, π∗jM) equalsM(V )⊗kČ({Un},OG/B). Consequently,
Hk(V ×G/B, π∗jM) = M(V )⊗k Hk(G/B,OG/B).

By proposition 4.5 from [7] Hk(G/B,OG/B) = 0 for k > 0. Then πj∗M ∈ Ob(Pj).
The commutativity of (2.2) trivally follows from the equality πj+1◦(ij×id) = ij◦πj .

Proposition 1. There is a commutative diagram with πEGi∗ ◦ π∗EGi = idKG
0 (EGi),

πpt∗π
∗
pt = idKG

0 (pt)

KG
0 (pt)

π∗
pt

��

π∗
pt // KG

0 (EGi)

π∗
EGi

��
KG

0 (G/B)
π∗
G/B //

πpt∗
��

KG
0 (EGi ×G/B)

πEGi∗

��
KG

0 pt
π∗
pt // KG

0 (EGi)

Proof:
Commutativity of the upper square is trivial.
Consider the lower square: Let M be a G-module on G/B, [M ] ∈ KG

0 (G/B). Then

πEGi∗ ◦ π∗G/B [M ] =
∑

(−1)k[RkπEGi∗(π
∗
G/BM)];

π∗pt ◦ πpt∗[M ] = π∗pt(
∑

(−1)k[Rkπpt∗M ]) =
∑

(−1)k[π∗ptR
kπpt∗M ].

By Lemma 4 summands are isomorphic, so πEGi∗ ◦ π∗G/B [M ] = π∗pt ◦ πpt∗[M ].

Prove that πEGi∗(1) = 1. RkπEGi∗OEGi×G/B is a sheaf associated to the presheaf
V 7→ Hi(V×G/B,OV×G/B). Let V be a�ne. Consider Ui an a�ne covering ofG/B.
Then V ×Ui is an a�ne covering of EGi×G/B. Let Č(V ×Ui,OEGi×G/B |V×G/B) be
a chech complex for this covering. Since Γ(V ×Ui1..ik ,OEGi×G/B) = Γ(V,OEGi)⊗k
Γ(G/B,OG/B), we have the isomorphismHk(V×G/B,O)→ Γ(V,OV )⊗kHk(G/B,OG/B).
It is easy to verify that this isomorphism commutes with the restriction maps:

Hk(V ×G/B,OV×G/B)

resU,V

��

// Γ(V,OV )⊗k Hk(G/B,OG/B)

id⊗resU,V
��

Hk(U ×G/B,OU×G/B) // Γ(U,OU )⊗k Hk(G/B,OG/B)

So, we get the sheaf isomorphism RkπEGi∗OEGi×G/B ∼= OEGi ⊗kHk(G/B,OG/B).
Therefore πEGi∗(1) = χ(G/B,OG/B)·1. By proposition 4.5 [7] we have χ(G/B,OG/B) =
1, so πEGi∗(1) = 1.
This shows that πEGi∗◦π∗EGi is an K

G
0 (EGi)-module endomorphism (by projection

formula) sending 1 to 1. Whence πEGi∗ ◦ π∗EGi = idKG
0 (EGi). By the same reasons

πpt∗ ◦ π∗pt = idKG
0 (pt). This concludes the proof.
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Remark In particular, we get a well-known fact that the natural ring map R(G)→
R(B) is injective.

Proposition 2. The IB-adic topology of R(B) coincides with the IG · R(B)-adic
topology.

Proof:
Let T be a maximal torus in G. Then R(B) = R(T ) and IB = IT , where IT is the
ideal of zero-dimensional representations of T.We will prove that

√
IG ·R(T ) = IT .

Denote by W = NG(T )/T the Weil group of G. The group W acts by conjugation
on R(T ). It is known that W is a �nite group and R(G) is the ring of invariants of
W : R(G) = R(T )W . We prove the following statement:

If q is a prime ideal of R(T ) and q ∩R(G) ⊇ IG. Then q ⊇ IT .

Let x ∈ IT . Let n = |W | and W = {σ1, . . . , σn}. For any symmetric polynomial
f we have that f(xσ1 . . . xσn) is invariant under W -action. Then f(xσ1 . . . xσn) ∈
R(G) ∩ IT = IG ⊆ R(G) ∩ q. Then f(xσ1 . . . xσn) ∈ q. Denote by f1 . . . fn the
elementary symmetric polinomials. It is easy to see that x is a root of polynomial

n∏
i=1

(t− xσi) = tn − f1(xσ1 . . . xσn)tn−1 + . . .+ (−1)nfn(xσ1 . . . xσn).

So we have xn − f1(xσ1 . . . xσn)xn−1 + . . .+ (−1)nfn(xσ1 . . . xσn) = 0.
Then xn = −(−f1(xσ1 . . . xσn)xn−1 + . . . + (−1)nfn(xσ1 . . . xσn)) ∈ q. So xn ∈ q.
Since q is prime, x ∈ q. This ends the proof of the statement.
Consider A = {p | p − prime, p ⊇ IG · R(T )} Our statement implies that IT is a
minimal element of A. So,

√
IG ·R(T ) =

⋂
p∈A

= IT .

Since R(B) = R(T ) and IB = IT , we get
√
IG ·R(B) = IB . Since R(B) is

noetherian, it implies that ImB ⊆ IG · R(B) for some m. Then IB and IG · R(B)
determine the same topology on R(B).

Proposition 3. K0(BG) = lim←−K0(BGi)
Proof:
By [6] we have the following exact sequence:

0→ lim←−
1K1(BGi)→ K0(BG)→ lim←−K0(BGi)→ 0

Let us show that lim←−
1K1(BGi) = 0.

We prove that the sequenceK1(BGi) is a direct summand of the sequenceK1(BBi).
By proposition 1 of [2] We have K1(BGi) = KG

1 (EGi) Since we can choose EGi as
a model for EBi, we obtainK1(BBi) = KB

1 (EBi) = KB
1 (EGi) = KG

1 (EGi×G/B).
So, in fact, we prove that the sequence KG

1 (EGi) is a direct summand of the
sequence KG

1 (EGi ×G/B).
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To simplify the notation denote Pj = PπEGj (G;EGj ×G/B). By lemmas 6 and 7
we obtain a commutative diagram with exact arrows:

(2.3) P(G;EGj)

π∗
j

��

P(G;EGj+1)
(ij×id)∗

oo

π∗
j+1∗
��

Pj
πj∗

��

Pj+1
(ij×id)∗

oo

πj∗

��
P(G;EGj) P(G;EGj+1)

i∗j

oo

Consider the composition of vertical arrows :

P(G;EGj)
π∗
j // Pj

πj∗ // P(G;EGj)

For any locally free G-equivariant sheaf M we are going to prove that πj∗π∗jM is
naturally isomorphic to M, that is th fucntor πj∗π∗j is isomorphic to the identity
functor. The sheaf πj∗π∗jM is associated to presheaf V 7→ π∗j (M)(V ×G/B). Since
π∗jM is a sheaf associated to W 7→M(πj(W )) we see that πj∗π∗jM is associated to
the presheaf V 7→ M(V ). So, in category of presheaves πj∗π∗j ∼= id. Applying the
shea�cation functor to this isomorphism, we get a natural isomorphism πj∗π

∗
jM
∼=

M.
In the proof of Lemma 6 it is checked that (ij × id)∗(Pj+1) ⊆ Pj By Lemma 5,
each G-module in P(G;EGj × G/B) has a �nite resolution consisting of sheaves
from Pj . Then by the Quillen's theorem we get the isomorphisms αj such that the
following diagram of groups commutes:

(2.4) K1(Pj)

αj

��

K1(Pj+1)
(ij×id)∗

oo

αj+1

��
KG

1 (EGj ×G/B) KG
1 (EGj+1 ×G/B)

(ij×id)∗
oo

De�ne Πj∗ : KG
1 (EGj ×G/B)→ KG

1 (EGj) as the composition of

KG
1 (EGj ×G/B)

α−1
j // K1(Pj)

πj∗ // KG
1 (EGj)

Commutativity of the diagrams (2.3) and (2.4) gives us a commutative diagram:

(2.5) KG
1 (EGj)

π∗
j

��

KG
1 (EGj+1)

(ij×id)∗
oo

π∗
j+1∗
��

KG
1 (EGj ×G/B)

Πj∗

��

KG
1 (EGj+1 ×G/B)

(ij×id)∗
oo

Πj+1∗

��
KG

1 (EGj) KG
1 (EGj+1)

i∗j

oo
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As we have shown, compositions of vertical arrows are identity, so KG
1 (EGj) is a

direct summand of sequence KG
1 (EGi×G/B) = K1(BBj). Since lim←−

1(K1(BBj)) =

0 we get lim←−
1(KG

1 (EGj)) = 0. This concludes the proof.
Remark 3.1. By the same reasons, there is an analogous retraction diagram for
KG

0 functor:

(2.6) KG
0 (EGj)

π∗
j

��

KG
0 (EGj+1)

(ij×id)∗
oo

π∗
j+1∗
��

KG
0 (EGj ×G/B)

Πj∗

��

KG
0 (EGj+1 ×G/B)

(ij×id)∗
oo

Πj∗

��
KG

0 (EGj) KG
0 (EGj+1)

i∗j

oo

3. proof of main result

Theorem 1. The Borel construction induces an isomorphism

R̂(B)IB
B̂orelB // K̂0(BB)IB K0(BB)

∼=oo

Proof:
Let T be a maximal torus of G. Then the restriction map R(B) → R(T ) and
projection pullback K0(BT ) → K0(BB) are isomorphisms. So, it su�ces to prove
this theorem for maximal torus T. Since G is split, T = Gm × . . .×Gm (n times).

Let us compute R(T ) and R̂(T )IT .

R(T ) = Z[λ1 . . . λn, t]/(λ1 · . . . · λn · t = 1). IT = (1− λ1, . . . , 1− λn, 1− t). So, we
have:

R̂(T )IT = lim←−Z[λ1, . . . , λn, t]/((Πλi · t− 1), (1− λ1)k, . . . , (1− λn)k, (1− t)k) =

= lim←−Z[1− λ1, . . . , 1− λn, 1− t]/((Πλi · t− 1), (1− λ1)k, . . . , (1− λn)k, (1− t)k) =

= Z[[1−λ1, . . . , 1−λn, 1− t]]/(Πλi · t− 1) = Z[[µ1, . . . , µn, 1− t]]/(Π(1−µi) · t− 1)

Since 1
1−µi = 1+µi+µ2

i +µ3
i + . . . it follows that t =

∏
(1+µi+µ2

i + . . .) Therefore
we have 1− t = 1− (1 + µ1 + . . .+ µn + . . .) = −(µ1 + . . .+ µn + . . .). Then

R̂(T )IT = Z[[µ1, . . . , µn]].

Let us compute K0(BT ).
We can choose by ET the space A∞\{0}× . . .×A∞\{0} This is contractible space
with free T−action. Then ETk = Ak+1\{0}×. . .Ak+1\{0} and BTk = Pk×. . .×Pk.
Then K0(BTk) = Z[x1 . . . xn]/(xk1 = 0, . . . , xkn = 0). So we have BT = P∞ × . . . ×
P∞, and it is known that K0(BT ) = lim←−K0(BTk) = Z[[x1 . . . xn]].

Borel construction R(T )→ K0(BTk) works as follows:
λi 7→ 1− xi
t 7→ 1

(1−x1)...(1−xn) = (1 + x1 + . . .+ xk−1
1 ) . . . (1 + x1 + . . .+ xk−1

1 )

Then on R̂(T )IT . Borel construction induces an isomorphism µi 7→ xi This completes
the proof of theorem 1.

Theorem 2. The following diagram commutes
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(3.1) R̂(G)IG
B̂orelG //

res

��

K̂0(BG)IG

p̂∗

��

K0(BG)oo

p∗

��
R̂(B)IB

B̂orelB //

ind
��

K̂0(BB)IB

p̂∗
��

K0(BB)
∼=oo

p∗

��
R̂(G)IG

B̂orelG // K̂0(BG)IG K0(BG)oo

with Ind ◦Res = id and p∗ ◦ p∗ = id.
Proof:
To construct (3.1) We use the following interpretation: R(G) = KG

0 (pt), R(B) =
KB

0 (pt) Since EGi → BGi is a G-torsor, K0(BGi) = KG
0 (EGi). (by Proposition

1 of[2]) EG can be chosen as a model for the contractible space EB Proposition
1 of [2] allows us express all these objects in terms of G-equivariant K-theory:
KB

0 (pt) ∼= KG
0 (G/B) KB

0 (EGj) = KG
0 (EGj ×G/B)

So, �rst we construct :

(3.2) KG
0 (pt)

π∗
pt //

π∗
pt

��

KG
0 (EGi)

π∗
EGi

��
KG

0 (G/B)
π∗
G/B //

πpt∗

��

KG
0 (EGi ×G/B)

πEGi∗

��
KG

0 (pt)
π∗
pt // KG

0 (EGi)

Proposition 1 proves that this diagram commutes and the bottom arrow is a retract
of the middle one. By the isomorphism construction of corollary 1 [2] one can check
that horizontal arrows in this diagram coincide with the Borel morphisms. We
consider (3.2) as a KG

0 (pt)-module diagram (KG
0 (pt)-module structure is induced

by pullback morphisms) Proposition 2 tells us that IB-adic topology on R(B) =
KG

0 (G/B) coincides with IG ·R(B)-adic topology. So we consider IG completion of
(3.2) as KG

0 (pt)-modules:

K̂G
0 (pt)IG

π∗
pt //

π∗
pt

��

̂KG
0 (EGi)IG

π∗
EGi

��
̂KG
0 (G/B)IG·R(B)

π∗
G/B //

πpt∗

��

̂KG
0 (EGi ×G/B)IG·R(B)

πEGi∗

��

K̂G
0 (pt)IG

π∗
pt // ̂KG

0 (EGi)IG

It remains to show that KG
0 (EG) is complete in IG-adic topology. To show that we

consider the diagram:
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(3.3)

K̂G
0 (pt)IG

π̂∗
pt

��

π̂∗
pt // ̂KG

0 (EGi)IG

π̂∗
EGi
��

KG
0 (EGi)∼=

oo

π∗
EGi

��
̂KG
0 (G/B)IG·R(B)

π̂∗
G/B //

π̂pt∗
��

̂KG
0 (EGi ×G/B)IG·R(B)

π̂EGi∗

��

KG
0 (EGi ×G/B)∼=

oo

πEGi∗

��
K̂G

0 (pt)IG

π̂∗
pt // ̂KG

0 (EGi)IG KG
0 (EGi)∼=

oo

By Remark 3.1 the diagram (3.3) commutes.
Recall that KG

0 (EGj) = K0(BGj) , KG
0 (EGj×G/B) = K0(BBj), K

G
0 (pt) = R(G)

and KG
0 (G/B) = R(B).

Therefore we can rewrite the diagram (3.3) in the terms of non-equivariant K-
theory:
(3.4)

R̂(G)IG

π̂∗
pt

��

π̂∗
pt // ̂K0(BGi)IG

π̂∗
EGi
��

K0(BGi)∼=
oo

π∗
EGi

��
R̂(B)IG·R(B)

π̂∗
G/B //

π̂pt∗
��

̂K0(BGi ×G/B)IG·R(B)

π̂EGi∗

��

K0(BGi ×G/B)∼=
oo

πEGi∗

��
R̂(G)IG

π̂∗
pt // ̂K0(BGi)IG K0(BGi)∼=

oo

By Proposition 3 after taking the projective limit we get the diagram :

(3.5) R̂(G)IG

π̂∗
pt

��

π̂∗
pt // K̂0(BG)IG

lim←− π̂∗
EGi
��

K0(BG)∼=
oo

lim←−π∗
EGi

��
R̂(B)IG·R(B)

π̂∗
G/B //

π̂pt∗
��

K̂0(BB)IG·R(B)

lim←− π̂EGi∗

��

K0(BB)∼=
oo

lim←−πEGi∗

��
R̂(G)IG

π̂∗
pt // K̂0(BG)IG K0(BG)∼=

oo

Here the completion morphism K̂0(BG)IG ← K0(BG) is an isomorphism since it

is a retract of the completion morphism K̂0(BB)IG·R(B) = K̂0(BB)IB ← K0(BB)

which is the isomorphism by Theorem 1. By proposition 1 and 3 we have π∗pt◦πpt∗ =
id and π∗EG ◦ πEG∗ = id. So, we have constructed the diagram (1.1) in the form
(3.5). The theorem is proved.
Corollary. The Borel construction induces the isomorphism.

R̂(G)IG
B̂orelG // K̂0(BG)IG K0(BG)

completionGoo

Proof:
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Theorem 2 states that B̂orelG and completionG are retracts of B̂orelB and completionB
which are isomorphisms by theorem 1. Then B̂orelG and completionG are also
isomorphisms.
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