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Abstract

We study interrelations between the theory of quasimorphisms and theory of random
walks on groups, and establish the following criterion of transience for subsets of countable
groups: if a subset of a countable group has bounded images under any three linearly
independent homogeneous quasimorphisms on the group, then this subset is transient (with
respect to all nondegenerate random walks on the group). From this it follows by results
of M. Bestvina, K. Fujiwara, J. Birman, W.Menasco, and others that generic elements in
mapping class groups of surfaces are pseudo-Anosov, generic braids in Artin’s braid groups
represent prime links and knots, generic elements in the commutant of the free group have
large stable commutator length, etc.
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Introduction

Let G be a countable group and let 4 be a probability measure on . Recall that
the right random walk (Xy)k>0 on G with distribution p (or, briefly, p-walk) is the
time-homogeneous Markov chain whose state space is G, the transition probabilities
are given by P(g,h) = p(g~'h), and the initial distribution is concentrated at the
identity of the group. Realizations of this process are called paths of the random
walk. We say that p is nondegenerate if its support generates G as a semigroup; a
random walk is nondegenerate if its distribution is nondegenerate.

Given a group G and a mapping! f : G — R to some space R, what is the
behaviour of f with respect to random walks on G? (By the “behaviour” of f
with respect to a random walk (X}),>0 on G we mean various properties of random
variables f(X}) and sequences f (i), where (7x)x>0 are paths of (Xj)r>0.) In certain
cases, the study of this question turns out to be productive and helps to obtain a
new insight on the structure of G and properties of f.

In the present paper, we study the case where G is a countable group, R = R¢
(d € N), and f is an RY-quasimorphism, i.e., a map G — RY such that the set

Df = {f(9192) - f(gl) - f(92)}gl,g2eG

is bounded in RY. (See Sec. 1 for definitions.) We say that an R9-quasimorphism is
nondegenerate if its image is not contained in a bounded neighborhood of a hyper-
plane in RY.

Observe that quasimorphisms are similar to homomorphisms, while the “be-
haviour” of homomorphisms G — RY with respect to random walks on G is described
by the classical theory of random walks on Euclidean spaces (due to the obvious fact
that homomorphisms G — RY send random walks on G to random walks on RY).
Therefore, one could expect that some theorems about random walks on Euclidean
spaces may be generalized to describe behaviour of quasimorphisms with respect
to random walks. M. Bjorklund and T.Hartnick [4] proved that the (analogues of
the) central limit theorem and the law of the iterated logarithm are valid for quasi-
morphisms. In this paper, we show that several other properties of random walks
on Euclidean spaces (kindred to the property of transience for random walks in R
with d > 3) still hold true for quasimorphisms. We will also present corollaries for
mapping class groups, braid groups, commutants.

Our basic result is the following theorem, which is the direct analogue of a well-
known fact about random walks on RY (Z9).

0.1. Theorem. Let G be a countable group and let ® : G — RY, d € N, be a non-
degenerate R9-quasimorphism. Then for each nondegenerate probability measure
on G and for every bounded subset Q C RY there exists a constant C := C(G, ®, i1, Q)
such that for any k € N and x € R™ we have

k(@ (x+Q) < k92,
where ** denotes the k-fold convolution of p.

(In the case where d = 1 and ® is square-integrable with respect to p, the
statement of Theorem 0.1 trivially follows from the above-mentioned central limit
theorem of M. Bjorklund and T. Hartnick.)

!The “mapping” might stand here for a characteristic of group elements, an invariant, norm,
homomorphism, etc.



Since the series > ;7 k=92 is convergent whenever d > 3, Theorem 0.1 and
Borel-Cantelli lemma readily imply the following corollary, which generalizes the
well-known fact that every nondegenerate random walk on Z9¢ with d > 3 is transient.

0.2. Corollary. Let G be a countable group. Assume that d > 3. Then each non-
degenerate RY-quasimorphism on G sends a. e. path of every nondegenerate random
walk on G to a sequence tending to infinity.

Theorem 0.1 immediately implies the following corollaries.

0.3. Corollary. If a subset S of a countable group G has bounded image under
a nondegenerate R9-quasimorphism G — RY, d € N, then for every nondegenerate
probability measure u on G there exists a constant C := C(u) such that for each
k € N we have

pw*(8) < kY2

0.4. Corollary. If a subset S of a countable group G has bounded image under
a nondegenerate quasimorphism G — R, then, for every nondegenerate probability
measure 4 on G, the probability that the random p-walk on G hits S ot the k-th step,
tends to 0 as k tends to infinity.

Recall that a subset of a group is said to be transient with respect to a random
walk on the group if a.e. path of the random walk visits the subset only finitely
many times. Corollary 0.2 yields the following criterion of transience for subsets of
countable groups.

0.5. Corollary. If a subset of a countable group has bounded image under a non-
degenerate R3-quasimorphism of the group, then the subset is transient with respect
to each nondegenerate random walk on the group.

Pseudo-Anosov elements in mapping class groups. M. Bestvina and K. Fuji-
wara [2, 3] showed that if the mapping class group MCG(M) of a compact sur-
face M is not virtually Abelian, then there exists an infinite number of linearly
independent homogeneous quasimorphisms MCG (M) — R each of which sends all
non-pseudo-Anosov elements in MCG(M) to 0. This means that (if MCG (M) is not
virtually Abelian) for each d € N there exists a nondegenerate RY-quasimorphism
MCG (M) — RY that sends the set of non-pseudo-Anosov elements in MCG (M) to
(the bounded subset) {0} ¢ RY. By Corollary 0.5, this implies the following result.

0.6. Corollary. If the mapping class group MCG(M) of a compact surface M is
not virtually Abelian, then the subset of non-pseudo-Anosov elements in MCG(M)
is transient for each nondegenerate random walk on MCG(M).

I.Rivin [13, 14] proved that simple random walks on mapping class groups of
closed orientable surfaces give rise to non-pseudo-Anosov elements with asymptotic
probability zero. J. Maher [11] proved that random walks on mapping class groups
of orientable surfaces with punctures give rise to non-pseudo-Anosov elements with
asymptotic probability zero. (Methods of J. Maher apply to many subgroups of map-
ping class groups.) E. Kowalski [10] showed that the subset T of non-pseudo-Anosov
elements is transient for the case of closed orientable surfaces and simple symmetric
random walks. (The approach developed by E.Kowalski shows that p**(T") decays
exponentially fast with &, while the approach via quasimorphisms gives only the
superpolinomiality.)



We can strengthen Corollary 0.6 in the following way. Denote by T' := T'(M) be
the set of non-pseudo-Anosov elements in the mapping class group MCG(M) of a
compact surface M. It is well known that U, cnugoy T* = MCG(M). For an element

g € MCG(M) we set ||g||7 := min{k € NU{0}|g € T*}.

0.7. Corollary. If the mapping class group MCG(M) of a compact surface M
is not virtually Abelian, then for a.e. path (Ti)k>0 of every nondegenerate random
walk, the sequence (||7x[|l1)y>q tends to infinity.

Proof. The definition of RY-quasimorphism implies that if a subset S of a group G
has bounded image under a nondegenerate RY-quasimorphism ®, then ®(S™) is
bounded for each m. By the mentioned above result of M. Bestvina and K. Fujiwara,
there exists a nondegenerate R3-quasimorphism ® : MCG(M) — R? such that
®(T(M)) = {0}. Therefore, ®(T™) is bounded in R? for each m. In particular, if
(xk)k>0 is a sequence in MCG(M), then the sequence (||z||1),~, tends to infinity
whenever the sequence (®(7%)),, tends to infinity in R3. It remains to notice that,
by Corollary 0.2, for a.e. path (74)x>0 of every nondegenerate random walk, the
sequence (®(7;)),>, tends to infinity in R. O

Braid groups and knots. The above-mentioned result of M. Bestvina and
K. Fujiwara about mapping class groups trivially implies that, for the Artin braid
group B, with n > 3, there exists an infinite number of linearly independent ho-
mogeneous quasimorphisms B,, — R each of which sends all non-pseudo-Anosov
braids in B, to 0. (In order to see this, one can use the natural homomorphism
B,, — MCG(S,+1) to the mapping class group MCG(S),+1) of (n + 1)-punctured
sphere. This homomorphism sends (non-)pseudo-Anosov braids to (non-)pseudo-
Anosov elements in MCG(.Sy,+1); its image is a finite index subgroup in MCG(Sy,+1).)
By Corollary 0.5, this implies that Corollaries 0.6, 0.7 are valid in the case of braid
groups.

0.8. Corollary. Let B, be the braid group of index n > 3 and let T,, C By, be the
subset of all non-pseudo-Anosov braids in By,. Then, for each m € N, the subset T,
is transient for each nondegenerate random walk on By,.

It is deduced in [12, Proposition 6.1] from results of J. S. Birman, W. W. Menasco,
and I. A. Dynnikov that all braids in B, \ T} represent? prime knots and links (that
is, every braid representing composite, split, or trivial link is the product of two
non-pseudo-Anosov braids). By Corollary 0.8, this fact implies the following result.

0.9. Corollary. In the braid group B, with n > 3, the set of those braids that
represent non-prime (i.e., composite, split, or trivial) knots and links is transient
for each nondegenerate random walk on B,,.

We conjecture that techniques developed by T.Ito in [8, 9] may be used to
establish new relations between quasimorphisms of braid groups and properties of
links represented by braids. In particular, we conjecture that these techniques allow
to (prove the existence and) construct a function ¢ : N — N such that, for each
k € N, the set S(n,k) C B, of those braids in B,, that represent knots and links
of genus < k is contained in Tff *®) n view of results presented above, this would
imply that, for any n > 3 and k € N, S(n, k) is transient for each nondegenerate
random walk on B,.

2In the classical sense of J. W. Alexander and A. A. Markov



Commutants and (stable) commutator length. Another direction where we
can apply Theorem 0.1 is the study of (stable) commutator length (see [5] for ref-
erences and definitions). In particular, Corollary 0.2 implies the following result

(ct. [5]).

0.10. Corollary. Let G be a countable group. Assume that the vector space
Q(G)/HY(Q), where Q(G) denotes the vector space of homogeneous quasimorphisms
of G and H'(G) C Q(G) is the vector space of real-valued homomorphisms of G,
has dimension at least 3. Then for a. e. path (T )k>0 of every nondegenerate random
walk on the commutant [G, G, the sequence (scl(1)),~q tends to infinity.

Acknowledgements. The author is cordially grateful to N. Yu.Netsvetaev and
T. Smirnova-Nagnibeda for useful discussions.

1 Preliminaries on R"-quasimorphisms

A function ¢ : G — R on a group G is called a quasimorphism with defect d if the
following condition is fulfilled:

sup |o(g192) — ¢(g1) — @(g2)| = d < oo.
91,92€G
In order to study n-tuples of quasimorphisms, it is convenient to use the following
notion of R™-quasimorphisms. We say that a map ® : G — R" (n € N) is R"”-quasi-
morphism if the set

De = {®(g192) — ®(91) — 2(92)}, goec

is bounded in R".

It is clear that a map F : G — R" is an R"-quasimorphism if and only if all its
coordinate functions? are quasimorphisms. This yields a natural bijection between
the set of all n-tuples of quasimorphisms of G and the set of all R"-quasimorphisms
of G.

In order to perform basic estimates and characterize properties of R"-quasimor-
phisms (e. g., to define the notion of defect for R”-quasimorphism), we need to pick
a reference norm in R”. In what follows, we will use the 1-norm* defined by

n
||($1,. e 73771)”1 = Z |xl|
=1

We define the defect de of an R™-quasimorphism @ to be

de := sup ||v]1.
veDgy

A quasimorphism ¢ : G — R is said to be homogeneous if ¢(g*) = k¢(g) for
all g € G, k € Z. We say that an R"-quasimorphism ® : G — R" is homogeneous
if ®(g*) = k- ®(g) for all g € G, k € Z. The definition obviously implies that an
R™-quasimorphism is homogeneous if and only if all its coordinate quasimorphisms
are homogeneous.

3By the coordinate functions of F' we mean the functions f; : G — R, ..., f, : G — R such that

F(g) = (£1(9),- -, f2(9))-

“We chose the 1-norm only because it simplifies some of our formulas below.



1.1. Lemma. Fach R"-quasimorphism ® : G — R" has a unique homogeneous
R"-quasimorphism ® : G — R"™ such that the map ® — ® is bounded. For every

g € G we have B(g) = limy_oc &) and [B(g) — B(g)|, < da-

Proof. Since for any h € G, k € N we obviously have
@A) = k- (R)|1 < (k- 1)da,
it follows that for any k,m € N, g € G we have

_ lm-2(g") — 2(6"™) + @(g") — k- @(g™)],
1 km

(m — 1)dg + (k= 1)ds _ (%Jr%_ %) ds. (1)

Therefore, for every g € G the sequence {®(g*)/k}ren converges being a Cauchy
sequence. Consequently, the function
= ©(g")

®(g) := 1i
(9) kgrolo k

k m

Hfb(g’“) D)

km

(2)
is well-defined. From (1) it follows that for every g € G we have
[2(9) = 2(9)]|, < dao.

This means that the map ® — ® is bounded and hence ® is an R"”-quasimorphism.
Moreover, from (2) it easily follows that ® is homogeneous. Observe that the differ-
ence of any two distinct homogeneous R"-quasimorphisms is unbounded. It follows
that ® is a unique homogeneous R™-quasimorphism of G such that the map ® — ®
is bounded. ]

We say that an R"™-quasimorphism is degenerate if its image is contained in a
bounded neighborhood of a hyperplane in R™. Obviously, an R"-quasimorphism is
degenerate if and only if a nontrivial linear combination of its coordinate quasimor-
phisms is a bounded function.

1.2. Lemma. Let G be a group and let ® : G — R" (n € N) be a nondegenerate
R™-quasimorphism. Then the image ®(G) is cobounded (i.e., it forms an e-net)
mn R™.

Proof. Let ® : G — R" be the homogeneous R"-quasimorphism with bounded
difference ® — ®. Since ® is nondegenerate, then obviously so is ®. Therefore, there
is an n-tuple (g1,...,9n) of elements of G such that the vectors

vii=®(g1), ..., vp = ®(gn)

are linearly independent. Since ® is homogeneous, the following inequality holds for
any integers ki,...,kp:

[@(gt" - gkm) — (kb1 vi+ 4k via)1 < (n—1)dg,

where dg is the defect of ®. This means that for each point v of the lattice generated
by the vectors vy, ..., vy, there is a point w € ®(G) such that |v — w| < (n — 1)dg.
The image ®(G) is thus cobounded. Since ® — ® is bounded it follows that ®(G) is
also cobounded. O



2 Proof of Theorem 0.1 and special pairs of sequences

Our proof of Theorem 0.1 is based on the notion of special pairs of sequences. The
definition is as follows.

2.1. Definition. Let A be a set, and let ) be a family of two-element subsets
of A. (In this paper, we mostly interested in the case where A is finite or countable,
and Y is finite and consists of pairwise disjoint subsets of A.) Let V = (vq,...,vy)
and W = (wy,...,wy,), n € N, be two distinct finite sequences over A. We say that
the pair {V, W} is V-special (special when ) is fixed) if the following two conditions
hold:

i) for each i € {1,...,n} we have either v; = w; or {v;,w;} € Y,
ii) there are no 4,5 € {1,...,n} such that v; = w; # w; = v;.

We will study sets of sequences that do not contain special pairs.

2.2. Example. Let Ab be a torsion-free Abelian group (say, the additive group
of real numbers). Let a,b,c € Ab and assume that b # c¢. Let ) be the family
consisting of the unique element {b,c} C Ab. Let L, be a set of finite sequences
over Ab such that the sum of elements in each sequence from L, equals a. Then L,
has no Y-special pairs.

2.3. Notation. If A is a set and n € N, we will denote by A™ the set of all
sequences of length n over A. If v is a measure on A, we will denote by v™ the
corresponding product measure on A™.

We deduce Theorem 0.1 from the following two propositions.

2.4. Proposition. Let A be a countable or finite set, let d € N, and let Y =
{Y1,...,Yq} be a family consisting of d pairwise disjoint® two-element subsets of A.
Let v be a probability measure on A with supp(v) DY :=Y1U---UYy. Then there
exists a constant C(v) such that for each n € N and for every subset L C A™ without

Y-special pairs we have
VML) < C(v)n~92.

2.5. Proposition. Let G be a group and let ® : G — RY, d € N, be a nondegen-
erate RY-quasimorphism. Let R > 0 be a positive real number. Then there exists
a family Y consisting of d pairwise disjoint two-element subsets of G such that for
each n € N and for every YV-special pair {(g1,...,9n), (h1,...,hy)} C G™ we have
|®(g1---gn) — P(h1---hp)|l; = R. Moreover, if S C G is a subset generating G
as a semigroup, then there exist p € N and a family Y that satisfies all the above
properties and consists of subsets of SP.

The proofs of Propositions 2.4 and 2.5 may be found in Sections 4 and 5 below.
Now, we deduce Theorem 0.1 from these propositions.

Proof of Theorem 0.1. Recall that we consider a countable group G and a nonde-
generate RY-quasimorphism ® : G — RY (d € N). Our aim is to show that for any

°In fact, the statement of the proposition holds true in the (more general) case of pairwise
distinct (not necessarily disjoint) two-element subsets; see Rem. 4.1.



nondegenerate probability measure 1 on G and bounded subset @ C RY there exists
a constant C' := C(G, @, 4, Q) such that for any £ € N and x € R"™ we have

pt (@t (x+Q) < Ck YA

Let 1 be a nondegenerate probability measure on G and let @ C RY be a bounded
subset. Set S, := supp(u). (S, generates G' as a semigroup since p is nondegener-

ate.) Set Q" := Q+Dg, where Do := {®(g192) — ®(91) — ®(92)},, goe- (Theset Q'
is bounded in RY because Dg is bounded by the definition of R%-quasimorphism.)
Let Rq denote the diameter of @' with respect to our reference norm || - ||, (de-
fined by ||(z1,...,2z4)|1 = 2?21 |zi|). Let pry, k € N, denote the natural projection
from G* to G (this projection sends the sequence (g1,...,gx) € G* to the element
gL gk € G)

By Proposition 2.5, there exist p € N and a family ) = {Y7,..., Yy} consisting of
d pairwise disjoint two-element subsets of S% = supp(u*?) such that for each k € N
and for every Y-special pair {(g1,...,9%), (h1,...,hx)} C G¥ of k-sequences over G
we have ||®(g1 ---gx) — ®(h1---he)||1 > Rgr + 1.

This means that, for any & € N and x € RY, the set pr,;1 (2 (x+ Q') has no
Y-special pairs.

Since supp(p?) DY ;=Y U---UYy and Y7, ..., Yy are pairwise disjoint in G,
it then follows by Proposition 2.4 that there exists a constant C(u*?, Q') such that
for any k € N, x € RY we have

(W) (prt (@71 (x+ Q) < CW?”,Q )k,
which is equivalent to
w7 (x+ Q) < O, Q) (3)

(since for any measure v on G and k € N we obviously have pr, (V%) = v*¥).
Let us show that for any £ € N and x € R"” we have

P (e (x+ Q) < Ck™Y2,
where  C, := max{p"?, 2p)"*C(u?,Q)}. (4)
Indeed, if £ < p, then
/J,*k (q)—l (X + Q)) <1< pd/2k—d/2 < C*k_d/Q.

Suppose that k > p. Let k = mp + r, where m € N, r € {0,1,...,p — 1}. Then we
have

pr (e (x4 Q) = W (07! (x + Q)
= > o™ (g7 x4+ Q). (5)

geG@
Observe that
gl (x+Q) c o7 (2 (g7 (x+Q))

C o' (g +x+Q+Dg) = &7 (297 +x+Q)
= o' (x,+Q), where x,:=x+(g7"). (6)



By (3) and (6) we have
P (g (x4 Q) < @7 (x+ Q) < CWT Q)R (7)
Since Y e ™" (9) =1, (5) and (7) yield
P x+Q) = W (@7 (x+Q) < CW?,Q)m 2 (8)
Sincek=mp+r,meN, pe N, and r € {0,...,p — 1}, we have k < 2mp, whence
Cuw?,Qym ™ < Cuw?, Q2K < Ck™2. 9)
Inequality (4) and the theorem are thus proved. O

3 A result from Sperner theory

In this section, we prove the following proposition, which will be used in the proof
of Proposition 2.4.

3.1. Proposition. Let X = XjU---U Xy (d € N) be the union of finite (may be
empty) pairwise disjoint sets Xy, ..., Xq. Let A C 2% be a family of subsets of X
such that for any S,T € A there exists j € {1,...,d} for which (SNX;) ¢ (T'N X;)
and (T NX;) ¢ (SN Xj). Then

d | X
i=1 2

As it is common in combinatorics, Proposition 3.1 has a number of interpreta-
tions® and relates to a number of deep theorems’. It is related to the Sperner theory
(see, e.g., [7]), to the theory of perfect graphs (see, e.g., [1]), etc. As a consequence,
there are various ways to prove the proposition. Despite the Sperner theory seems to
be the most relevant one, we will prove our proposition in the more general settings
of graph theory.

Recall that a simple graph (i.e., an undirected graph without loops or multiple
edges) is a pair I' = (V, E), where V' = V(I') is the set of vertices of I' and E = E(T)
(the set of edges) is a subset of the set of all unordered pairs of elements of V. Two
vertices x, y of " are adjacent if {x,y} € E(I"). Throughout this section, by a graph
we mean a simple graph. A graph I is said to be a comparability graph if there exists
a partial order on V(') such that the vertices of each edge in E(T") are comparable
with respect to this order.

A clique in a graph T" is a set U C V(I') of pairwise adjacent vertices, and an
independent set (stable set, anticlique) is a set of pairwise non-adjacent vertices. The
set of all cliques (resp., anticliques) of a graph I' is denoted by €(I') (resp., 2(L)).
For a finite graph T, let «(I") be the number of vertices in the largest independent set
of I' («(I") is called the independence number or stability number). Let 6(I') denote
the clique covering number of T', i.e., 6(T') is the least number of cliques which cover
all the vertices of I'. Clearly, for any finite graph I' we have

o) < 6(I) (10)
since every clique of I" has at most one vertex in each independent set of I'.
3.2. Theorem (Dilworth). For each comparability graph T' we have

al) = o).

6See, e.g., the formula for random walks, which appears in the proof of Proposition 2.4.
"For example, in the case where d = 1, the proposition is the Sperner theorem.

10



3.3. Remark. The equality a(I') = 6(I") holds true for every perfect graph. (This
follows from the Perfect Graph Theorem (Lovéasz 1972), which states that a graph
is perfect if and only if its complement is perfect.) Every comparability graph is
perfect (Mirsky’s theorem).

Recall that the normal (or strong) product T's A of two graphs I' and A is a
graph with vertex set V(I') x V(A); two distinct pairs (z1,y1) and (z2,y2), where
z1,x2 € V(I') and y1,y2 € V(A), are adjacent in I'w A if and only if 1 is equal or
adjacent to x2, and y; is equal or adjacent to ys. Note that the normal product is
an associative operation.

3.4. Lemma. Let ' and A be finite simple graphs. Then

El E2 E3
aD)a(A) < o(T=A) < 0CaA) < OT)(A).

Proof. Observe that the product A x B of independent sets A € 2(I") and B € A(A)
is an independent set in 'z A. This obviously implies inequality E1. Inequality E2
is a particular case of (10). In order to check E3, we observe that the product
Cy x Cy of cliques C; € €(I'), Cy € €(A) is a clique in I'w A. Consequently, if
C1 C €') and C2 C €(A) are minimal “covering” families of cliques (such that
IC1| = O(T) and |Ca| = #(A)), then {C) x Cy : Cy € C1,C2 € Ca} is a family of
cliques that covers all the vertices of I'm A and contains 6(I')0(A) cliques, whence

O(CrA) <O()o(A). O
3.5. Corollary. Letd € N and letI'y, ..., I'y be finite simple graphs with o(L';) =
0(T;) for each i. Then
d d
[[er) = a@ie...8Tq) = 0I1=...aTq) = [JOr).
i=1 i=1
Proof. This follows from Lemma 3.4 by induction on d. U

For a finite set Z, let By denote the graph with the set of vertices V(By) := 2%
and the set of edges E(By) consisting of all the pairs {S,T'}, S # T € 2%, for which
SCTorTCS.

3.6. Theorem (Sperner). For every finite set Z we have

a(BZ):qu).

Proof of Proposition 3.1. Consider the graphs Bx,, ..., Bx, and their normal prod-
uct Bx, ®...n By,. We have a natural one-to-one correspondence between sets 2X
and V(Bx, ®...® Bx,). Observe that, under this correspondence, the family A of
the proposition is an anticlique in the graph By, =...= By,. Consequently, we have

|./4| < OJ(BX1IZ|...IZ|BXd). (1].)

Since By,, ..., Bx, are comparability graphs, it follows by Dilworth’s theorem
(Theorem 3.2) and Corollary 3.5 that

d

a(Bx,=...uBy,) = []a(Bx,). (12)
i=1

11



By Sperner’s theorem (Theorem 3.6) we have
d d ‘Xz’
[[e®x) = 11 (VXM J>' (13)
i=1 i=1 2

The desired inequality follows from (11)-(13). O

4 Proof of Proposition 2.4
Proof. Our proof consists of two parts.

Part 1. First, we prove that the proposition holds true in the case where the measure v
is uniform on the set Y =Y, U---UYy (i.e., v(a) = v(Y)/|Y] for each a € Y).

Part 2. We show that the general case reduces to the case where v is uniform on Y.

Part 1. Assume that v is uniform on Y and adopt the following notation:

_vY) _vlY)
A= Y| — 2d’
Yo = AN (Y),

vy ‘= I/(Yg) =1-—2d\.

Let us show that for each n € N and for every set L. C A™ without )-special
pairs the following inequality holds:

V(L) < C(d,n,vp), where C(d,n,vp) :=

d
e (0 V().
nnznd <° N0, - -, N 1:11 Bl )

no+ni+--+ng=n
10,11 5. eryT0g >0
It is sufficient to consider the case where Yy # @ (i.e., A # Y) because the case
A =Y transforms to the former one via passing to the set A’ := AU {w} with a
new element w ¢ A and assigning v(w) = 0. In order to prove (14), we split A" into
(d+1)™ classes of the form

Yi, XY, x - xY; where i; € {0,1,...,d}.

n’

(This is possible because we assume that Y;’s are pairwise disjoint, while A = Y, U
Y1 U---UYy by definition of ¥y.) If K =Y;, xY;, x---x Y] is a class of this partition
and £ € {0,1,...,d}, we set
IK(K) = {] S {1,... ,n} : ij = g},
ny(K) = [L(K)|.

In order to prove (14), let us show that for an arbitrary class K of the above
partition of A™ we have

=1

vHLAK) <yt T <[.ni(K>+1.J>' (15)
2
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In order to prove (15), we split K into subclasses in the following way: we let two
sequences (wy,...,wy) and (w),...,w)) from K be in one and the same subclass if
and only if w; = w] for each i € Iy(K). (Thus, each subclass of K consists of 2" ~"0(K)
elements. If A is finite, then K splits into |Yp|"0%) subclasses.) If J is a subclass
of K and W = (wy,...,wy) € J, then the elements w;, i € IH(K), are determined
by J and do not depend on W & J. It follows that the value HiEIO(K) v(w;) is
determined by J. We set v5(J) := [[;cf,(x) v(wi). Then we have

V(INJT) = 5(J) - AveE) D). (16)

Proposition 3.1 implies that for each subclass J of the class K we have

d ng
LnJ| < g({(i{i‘ﬁ J>' (17)

(In order to see this in terms of Proposition 3.1, assign X; := [;(K) for each i €
{1,...,d}. Then, for each i € {1,...,d}, choose an element y; in the pair Y;, and
let . : J — 2% be the bijection defined by

F(wi,...,wp) ={i € L(K)U---UIy(K) : w; € {y1,...,ya}}-

Since L has no Y-special pairs, it follows that the image A := % (L N J) satisfies
the requirement of Proposition 3.1 (cf. the definition of Y-special pairs with this
requirement). Therefore, the inequality of Proposition 3.1 gives us inequality (17).)

Let K denote the set of all subclasses of the class K. Then (16) and (17) yield

2

VMINK) = > vH(LnJd)< | Y v(d) -,\”—"O(K)-f[qz(ig?lp. (18)

JeK JeK =1
At the same time, we clearly have

Su = I S vw) = ot (19)

JeK i€lp(K) weYp

Inequality (15) directly follows from (18) and (19). The required estimate (14)
readily follows from (15) by summing over all classes of the partition.

In order to complete the proof of Part 1, it suffices to show that there exists a
constant C' := C(v) such that for each n € N we have C(d,n,1y) < Cn~%2. This
property may be easily derived from well-known facts of the theory of random walks
on integer lattices. Let 6 = 6(d, ) be the probability measure on Z9 defined by

H(GZ) :0(—ei) :>\, 1= 1,...,d;
0(0) = vo(= 1 — 2dN),

and let
D:={(z1,...,24) €Z° : z; € {0,1} for each i € {1,...,d}}.

Then it is obvious that for each n € N we have 6*"(D) = C(d,n,1y), i.e., the value
C(d,n, 1) is equal to the probability that the random walk in Z¢ with distribution @
will hit D at the nth step. Since 6 is nondegenerate in Z9, there exists a constant
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N > 0 such that §*"(z) < Nn=9/2 for all z € Z9, n € N (see, e.g., [15, p. 72]). Since
D consists of 29 elements of Z9, we have C(d, n,1y) < 29 Nn~9/2 for each n € N.

Part 2. Let Y =: {{a1,b1},...,{aq,bq}} so that Y = {ay,b1,...,aq,bq}. Let
Y = {a},b],...,a},b,} be a set of 2d elements not in A, and let A’ := AUY".
Let vy, := mingey v(z). (Note that v, > 0 since supp(v) D Y.) Let v/ be the
probability measure on A’ defined by

Viz)i=v(z)ifz e ANY,

V(z) i=vp ifz e, and

V'(z') = v(z) — vy, if & € Y, where x is the element in Y that corresponds
to .

Let f denote the map A’ — A of “forgetting the primes” for elements
(i.e, flw)=wifw € A and f(v') = w if w’ € Y’ and w is the element in Y that
corresponds to w'). Let F : (A")™ — A™ denote the map of “forgetting the primes”
for sequences (i.e., F'(wy,...,wy,) = (f(wi),..., f(wy))). (W = (wy,...,wy,) is a
sequence over A with precisely ¢ € Ny occurrences of elements from Y, then F~(W)
is a set of 2¢ sequences over A’.)

The following two claims are obvious. (In order to check the second one, it is
enough to notice that F' sends each )Y-special pair to a Y-special pair.)

Claim 2.1. For anyn € N, S C A", we have (V/)*(F~1(5)) = v"(S).

Claim 2.2. If L C A" is a subset without Y-special pairs, then F~1(L) C (A")" is also a
subset without YV-special’ pairs.

Since v is homogeneous on Y, it follows by Part 1 of this proof that there exists
a constant C’ := C’(v') such that for each n € N and for any subset L' C (A)"
without )-special pairs we have

(Vl)n(L/) < C,Tb_d/2.

Therefore, by Claims 2.1 and 2.2, for each n € N and for any subset L C A™ without
Y-special pairs we have

VML) = (V)N(FHL) < C'nY2
Proposition 2.4 is thus proved. U

4.1. Remark. The statement of Proposition 2.4 holds true in the (more general)

case where the family ) = {Y7, ..., Yy} consists of d pairwise distinct (not necessarily
disjoint) subsets. This may be proved by an argument similar to the one from Part 2
above.

Let A, d, Y = {Y1,...,Yy}, v be as in Proposition 2.4, and assume that Y3,
..., Y4 are pairwise distinct but not disjoint (|Y'| < 2d). Let Zy be the set of d|Y|
elements not in A that contains the elements wyj,...,wyq) for each w € Y. Set
At := AN Y U Zy. Let v! be the probability measure on A’ defined by

vi(z) =v(z)ifre AT\ Zy = AN Y,

VT(a;[i]) = v(z)/d if z;) € Zy, where z is the element in Y that corresponds
to Ty

8In (A")™, we consider special pairs with respect to Y, not with respect to Y UY".
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Let YT = {YlT, . ,YdT} be the family of d two-element subsets of Zy defined as
follows: we set YiJr = {vy, wy} if Y; = {v,w}. It is obvious that the set YT :=
YlT U---u YO;r consists of 2d elements and V' consists of d pairwise disjoint subsets.
(Observe also that supp(vf) D Zy D Y1)

Let f denote the map A' — A of “forgetting the indexes” for elements in Zy
(i-e., f(wy) = w if wy) € Zy and w is the element in Y that corresponds to wy;;
flw)=wifw e AT\ Zy = A\Y). Let F : (A")* — A* denote the corresponding
map for sequences (i.e., F(wy,...,wg) = (f(wy),..., f(wg))).

Here, we can use claims, similar to Claims 2.1 and 2.2:

Claim 3.1. For any n € N, S C A", we have (v")*(F~1(S)) = v"(9).

Claim 3.2. If L C A" is a subset without J-special pairs, then F~Y(L) C (AN)" is a subset
without YT -special pairs.

Claim 3.1 is obvious. Let us prove Claim 3.2. It is enough to show that F' sends
each Yi-special pair to a Y-special pair. If V = (vy,...,vx), W = (wq,...,wg) is a
YVi-special pair in (A")", then by definition we have

(a) V; = W Whenever {Uiawi} ¢ yT’

(b) there are noT i,j € {1,...,k} such that v; = wj, w; = v;, and {v;,w;} =
{vj, wi} € YT

The definition of YT yields that f sends Y to ) (bijectively). In view of (a) this
implies that

(A) F(vs) = £ (ws) whenever {f(v:), f(w;)} & V.

Furthermore, condition (a) implies that {v;,w;} is in P! if and only if
{f(vi), f(w;)} is in Y. (Indeed, if {v;,w;} is in YT then {f(v;), f(w;)} is in Y by
definitions of YT and f; if {f(v;), f(w;)} is in Y then {v;, w;} is in YT because other-
wise we have v; = w; by condition (a) whence f(v;) = f(wj;).) This fact shows that
condition (b) directly implies the following

(B) There is no i # j € {1,...,k} such that f(v;) = f(w;), f(w;) = f(v;), and
{F i)y Fw)} = {F(07), F ()} € V.

Conditions (A) and (B) mean exactly that F(V) = f(vy)... f(vg), F(W) =
flwy)... f(wg) is a Y-special pair. Claim 3.2 is thus proved.

Since V' consists of d pairwise disjoint subsets and supp(vt) D Zy D YT, it
follows by

Since the quadruple (d, AT, YT, 1) satisfies condition (C,), it follows by Propo-
sition 2.4 that there exists a constant CT := CT(v") such that for each n € N and
for any subset LT C (AT)" without Yf-special pairs we have

whrh < ctn=972,

Therefore, by Claims 3.1 and 3.2, for each n € N and for any subset L C A™ without
Y-special pairs we have

(L) = (WHFHL)) < T~/

5 Proof of Proposition 2.5

In order to prove Proposition 2.5, we introduce the following auxiliary notion.
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5.1. Definition. Let n,m € N, and let (vy,...,v,,) be an m-tuple of vectors

in R". We define the characteristic V (vy,...,vy,) as follows:
m
oty
V(Viyeooy Vi) 1= in —”Zz_l - ZHI.
(t1,eestm) ERT (O} || (B -+ s En) ||

5.2. Properties of V. We give several simple properties of the characteristic V.
1. For any vyi,...,vy, € R” and ty,...,t, € R we have, by definition,

m

i=1

2. V(v1,...,vy) = 0 if and only if the vectors vy, ..., vy, are linearly dependent.
3. For any vy,...,v,, € R" and d1,...,8,, € {+1,—1} we have
V(01:-ViyeooyOm Vi) = V(Vi,e.oyVin).

5.3. Claim. Letn,m €N, let vi,...,v,, € R" and let (x1,...,%xk), k €N, be a
sequence of vectors in R™ such that x; € {v1,...,vp} for each i € {1,...,k}. Then
> k-V(Vi,..o, Vi) = V(Vi,..., V).

we have
k
> xi
=1 1

Proof. This readily follows from (20). O

m
> Vv V) [ tm)ll = Vv, vm) Y L6l (20)
1 i=1

5.4. Lemma. Let G be a group and let ® : G — R" be an R"-quasimorphism with
defect dg. Let k € N and let gy g1, ..., gk, h1, ..., hg be elements of G. Then

k
> (ki)
=1

Proof. From the definition of defect, it follows by induction that we have

— 3kdg.
1

H<1>(90h191 - higr) — @(g091 - ”gk)Hl >

k k
O(gohagr - hegr) — Y ®lgi) — > @(hi)| < 2kdg,
=0 i=1 ]
k
O(gogr---gk) — > _ 20| < kde.
1=0 1

Consequently, we have

k
H‘I)(gohlm < hkgr) — ®(gogr -+ gk) — > D(hs) | S 3kde,

=1

which obviously implies the statement of the lemma. O

5.5. Lemma. Let G be a group and let ® : G — R", n € N, be an R"-quasi-
morphism with defect dg. Let c1, ..., ¢y be elements of G. Let k € N and let
(90,915 --,9K), (h1,...,hx) be sequences of elements of G such that h; € {c1,...,cm}
for each i € {1,...,k}. Then we have

H‘I)(90h191 -+ hige) — ©(gog1 - 'gk)Hl > k- (V(®(cr),...,P(cm)) —3de), (21)

whence it follows that

|2(0higr - heg) = @(gogr - gn)]| = V(@) @len)) ~3ds. (22)
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Proof. By Lemma 5.4, we have

k
|2(gotagy - hugi) = @(gogi---g0)|| | = Do @h)|| —3kdo.  (23)
=1 1
By Claim 5.3 we have
k
Do) = kY (@), P(cm)) - (24)
=1 1

Inequality (21) follows from (23) and (24). Inequality (22) follows from (21) because
|®(g0h191 - - hkgk) — ®(g0g1---gk)|l1 = 0 and k € N. 0

5.6. Lemma. Let G be a group and let ® : G — R", n € N, be a homogeneous
R"-quasimorphism with defect dg. Let Y = {{a1,b1},...,{am,bm}}, m €N, be a
family of two-element subsets of G. Set

V() =V (@(a;'b1),..., 2(ap, bn)) -

Then for each t € N and for every Y-special pair {(g1,...,9t), (h1,...,h)} C Gt we
have

[®(g1---g:) — @(h1---he)lly, = Vg(Y) — 3dg.

Proof. Set g := g1---g; and h := hy---hy. Since {(g1,-.-,9t), (h1,...,h¢)} is V-
special, there exists a family (x1,...,2z,,) with z; € {ai_lbi,bi_lai} for each ¢ such
that for some k € N and g, ..., g, € G we have

!/ /
9= 9091 "9k
and

h = goz191 %Gk
where z; € {z1,..., 2y} for each j € {1,...,k}.
By Lemma 5.5 we have

[#0) -B0)| > V@), Blam)) - 35

It remains to observe t}@t, since ® is homogeneous and x; € {a; b, b; 1a¢} for each 1,
we have V (®(z1),...,®(zm)) = Vg (V) (see properties of V in 5.2). O

5.7. Lemma. Let G be a group and let ® : G — RY, d € N, be a nondegenerate
RY-quasimorphism. Then for any r > 0 there exists a d-set {g1,...,94} C G such
that

Vfb(glw'wgd) > (25)

Moreover, if S C G is a subset generating G as a semigroup, then for any r > 0
there exist p € N and a d-set {g1,...,9q} of elements from SP such that (25) holds.

Proof. By Lemma 1.2, the image ®(G) is cobounded in RY. This means that there
exists € > 0 such that for each w € RY there is v € ®(G) with |w — v|; <e. Let
Vi,...,Vq be points from ®(G) such that

||Vi—(7"+6)'ei||1§6 (iZI,...,d).
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Then for any ti,...,tq4 € R we have

d d
Vil 2 Z ilr+e¢)- Ztﬂ”+8 € — 1 V;)
1 =1 i=1 1
d d
> (7”+6)Z|ti| —6Z|tz’| = 7”2|tz’|-
i=1 i=1 i=1
This means that V(vi,...,vq) > 7. It remains to choose g; € ®~!(v;) for each
ie{l,...,d}.

Now, let S C G be a subset generating G as a semigroup. Let us show that
for each m € N the image ® (UkeN Smk) is cobounded in RY. Observe that the set
m - ®(G) is cobounded in RY since ®(G) is cobounded in RY. Recall that for any
g € G we have

[@(g™) —m-@(g)ll, < (m—1)ds,

where dg is the defect of ®. Therefore, the set | J
Since S generates G as a semigroup, we have

Us= U 5=

keN keNU{0}

gec ®(g™) is also cobounded in RY.

Therefore, we have

Usm= U o cUsH = UM

9eG 9€Upen S* keN keN

It is thus shown that for each m € N the image ® (UkeN Smk) is cobounded in RY.

Obviously, there exists my € N such that S™° contains the identity of the group.
By the above, the image ¢ (UkeN Smok) is cobounded in RY. Then the argument
from the first part of the proof shows that there exists a d-set {g1,...,gq} of elements
from |Jj,cy S™F such that (25) holds. At the same time, we have S™0 C S§?mo C
S§3mo ... because S™ > e. Therefore, there exists ¢ € N such that S contains
all the elements ¢1,...,9q. It remains to set p := gmy. O

Proof of Proposition 2.5. 1t is clearly enough to prove the second statement of the
proposition, which is stronger than the first one. Let S C G be a subset generating G
as a semigroup. Let @ be the homogeneous quasimorphism corresponding to ® (see
Lemma 1.1). By Lemma 5.7, there exist p € N and a d-set {g1,...,94} C SP such
that

V(@(gﬂ,...,@(gd)) > R+ 3dg + 2dsg, (26)

where dz and de are the defects of ® and @, respectively. From the proof of
Lemma 5.7 it is clear that we may assume without loss of generality that SP contains
the identity e of G. Then S* contains the set Y := {g1,...,94,9%,...,93}. We set
Y:={{g1,9%},...,{94,93}} and show that 2p and Y meet the requirements of the
proposition. Indeed, suppose that & € N and {(z1,...,%x), (y1,...,yx)} C G¥ is a
Y-special pair. Set « :=x1---x and y := y; - - - y,. Then by Lemma 5.6 we have

_ _ _ _ (26)
[®(z) —@(w)||, > V(2(gigr"),-.-,Plgdgg ")) —3dg > R+2dg.  (27)
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Since ® is the homogeneous quasimorphism corresponding to ®, we have
“6(35) - <I>(.7U)H1 <dg and !’6(1;) - <I>(y)H1 < dgp (see Lemma 1.1). Consequently,

— — (27)
[2() — @), > [[®(z) - By, —2de > R.

It remains to show that the elements g1,...,g4,9%, .-, gg are pairwise distinct. In
order to see this, observe that for any 4,5 € {1,...,d} and r,s € Z such that
(i,7) # (4,s) we have

|@(ig)| = Ir-Ble) - s-Blgp)], — dg

;
_ - (26)

whence it follows that g # 9; (because, due to the homogeneity of ®, we have
®(e) = 0 and |‘6(6)H1 =0). O
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