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Abstract

A field theory is developed for a thermodynamical description of array of paral-
lel non-singular screw dislocations in continuous elastic body. The partition func-
tion of the system is considered in the functional integral form. Expression for
the self-energy of the dislocation cores is proposed in the form suggested by the
gauge-translational model of non-singular screw dislocation. It is shown that the
system of the dislocations at large mutual separations is equivalent to the two-
dimensional Coulomb gas of charges interacting logarithmically. The coupling po-
tential is prevented from a short-distance divergency since the core energies are
taken into account. Analogue of the “electro-neutrality” condition reduces the sys-
tem to a collection of the dislocation dipoles. Two-point correlation functions of the
stress components are obtained. The law of renormalization of the shear modulus
due to the presence of the dislocations is considered in the approximation of non-
interacting dipoles. It is demonstrated that the finite size of the dislocation cores
causes modification of the renormalization law.
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1 Introduction
Topologically non-trivial configurations, such as vortices, dislocations, and other defects,
occurring in ordered states attract appreciable attention in modern condensed matter
physics. For instance, dislocations as imperfections of the crystalline ordering are of im-
portance for structural, transport, and electronic properties of real solids. It is widely
recognized after the pioneer works [1–6] that the two-dimensional ordered states are of
special interest due to significance of the defects for the corresponding phase transitions.
The ideas [1–6] have been further elaborated for description of the dislocation-mediated
crystal melting in two dimensions [7–11]. In their turn, the textbooks [12–14] summarize
an original field-theoretical approach to the ordered states and phase transitions domi-
nated by the line-like disturbances. The peculiarity of [12–14] is due to a systematical
usage of (singular) gauge fields. Certain aspects of the statistical physics of the dislocation
arrays, as well as appropriate correlation functions, are considered in [15–18].

Dislocations have recently attracted considerable attention concerning the physics of
carbon and noncarbon nanotubes [19–22]. In particular, multilayer nanotubes can contain
within their walls screw dislocations lying along the tube axis [21]. Therefore influence
of the dislocation cores can become important provided the core sizes are not negligible
in comparison with thickness of the tube walls. Notice that the electronic properties
of the graphene sheets in presence of dislocations are also of interest in the context of
nanotubes [23].

The topological nature of a single dislocation is manifested through its stress tensor
components displaying singularity on the defect line. In reality, the stress components are
smoothed out within the core regions. Since the first attempts [24,25], various approaches
to the dislocations with non-trivial core are known. For instance, the quasi-continuum
approach [26,27], the gradient elasticity [28,29], and the Lagrangian translational gauging
[31–34] enable to obtain continuous models of non-singular screw dislocation.

Crucially, the elastic stresses of the screw dislocation are obtained in [31–34] in the
form of superposition of conventional far-reaching (“background”) contribution and short-
ranged (“gauge”) correction which modifies the “background” stresses within a compact
core. Therefore the gauge Lagrangians [31–34] allow to cancel the singularity of the
conventional screw dislocation thus leading to so-called modified screw dislocation. Notice
that the second-order elasticity is of importance for the defects in crystals [35]. The
approach [32] admits of extension to the case of second order corrections [36].

The present paper is concerned with a thermodynamical ensemble of the modified
screw dislocations [32] lying within a long enough rod of circular cross-section. The
functional integration [14,37–40] is used to represent the partition function and to study
certain thermodynamical averages for the system in question. The core energies are
accounted for in the way [32] so that the modified screw dislocation plays a role of the
stationarity point of appropriate functional integral (obtaining of the dislocation core
energies from the first principle calculations also attracts attention [41]). It is shown that
the collection of parallel non-singular dislocations is equivalent to the two-dimensional
Coulomb-like system of charges interacting via the potential which is logarithmic at large
distances but vanishes locally (smoothed out coupling). Remind that the two-dimensional
Coulomb gas [42] belongs to the class of systems covered by [1–6] and has a relationship
with the two-dimensional spin models [43,44].

Dislocations available in a solid sample result in renormalization of the values of the
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corresponding elastic moduli [9, 16]. Appropriate two-point correlation functions of the
stress components are calculated below by means of the method of generating functional
(introduced to statistical mechanics in [45,46]) in order to investigate the renormalization
of the shear modulus. It is demonstrated that non-triviality of the core results in a
correction to the law of renormalization of the shear modulus what could be appreciable
for nanotubes. The present field-theoretical approach is influenced technically by that of
Ref. [47], where certain correlation functions have been calculated for the string models
possessing the world-sheet vortices.

The paper is organized as follows. Section 1 is introductive. Section 2 deals with the
partition function, and transformation of collection of the dislocation dipoles to a dual
system of pairs of two-dimensional charges is presented. Section 3 provides estimations for
certain thermodynamical averages, e.g., for the average square of the dislocation dipole
momentum and for the stress-stress correlation function in the approximation of non-
interacting dipoles. The renormalization of the shear modulus in presence of non-singular
dislocations is considered. Discussion in Section 5 concludes the paper.

2 The partition function
Consider a cylindric rod containing array of non-singular screw dislocations which are par-
allel to the cylinder axis. The cylinder’s material is approximated by elastically-isotropic
continuum described by linear elasticity. Remind that the screw dislocation is character-
ized by parallelism between its Burgers vector and tangent to the dislocation line [48].
The modified screw dislocation [32] is a point of departure of the present investigation
which treats the array of the dislocations as a thermodynamical ensemble at non-zero
temperature. The functional integration approach is used below to represent the par-
tition function and certain correlation functions of the collection of non-singular screw
dislocations. In what follows, the Cartesian axis Ox3 is along the cylinder’s axis.

Let us begin with the thermodynamical partition function Z of the elastic cylinder
containing the dislocations which is expressed in the form of the functional integral:

Z =
1

N

∫
e−βW D(σb

ij, σ
c
ij, ui, eij) , (1)

W ≡ E − i

β
Eext , E ≡ Eel + Ecore , (2)

where β is inverse of the absolute temperature T (the Boltzmann constant is unity).
The functional W (2) is expressed by the following contributions (indices repeated imply
summation):

Eel =
1

4µ

∫ (
(σb

ij + σc
ij)

2 − ν

1 + ν
(σb

ii + σc
ii)

2
)
d3x ,

Ecore =

∫
(` eij(inc e)ij − eij σc

ij) d3x ,

Eext =
1

2

∫
σb

ij(∂iuj + ∂jui − 2Pij) d3x .

(3)

The functional Eel (3) is the elastic energy of superposition of two stresses, σb
ij and σc

ij,
provided µ and ν are respectively identified as the shear modulus and the Poisson ra-
tio. The notation σb

ij is reserved for the long-ranged contribution, while the term σc
ij
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describes a non-conventional stress which modifies the background one, σb
ij, within the

core of the modified dislocation [32] 1. The functional Ecore (3) is the dislocation core
energy. The contribution eij(inc e)ij in it originates (by means of linearizations) from
the Hilbert–Einstein gauge Lagrangian proposed in [32] in framework of the translational
gauge approach to dislocations 2. Here the double-curl operator acts on the total strain
tensor eij: (inc e)ij ≡ −εiklεjmn∂k ∂meln (εikl is totally antisymmetric tensor) [54]. The
parameter ` characterizes a scale of the dislocation core energy. The term Eext (3) is
linear with respect of (symmetrized) derivatives of the displacement vector ui, as well
as with respect of a “source” Pij which is related to the plastic strain eP

ij as follows:
Pij = eP

ij + Cij. Specific configuration of singular dislocation lines is prescribed by appro-
priately chosen eP

ij since the plastic strain is concentrated on cut surfaces bounded by the
dislocation lines [55]. The present approach enables to avoid the stress divergencies on
the dislocation lines. Therefore an auxiliary field Cij (which is not a functional variable)
is postulated which allows to fix the background so that the tensor field σb

ij just coincides
with the classical dislocation stresses governed by eP

ij (Cij = 0 at ` = 0).
The notation D(σb

ij, σ
c
ij, ui, eij) implies in (1) the integration measure equal to a prod-

uct of measures corresponding to each functional variable inside the brackets. More details
on definition of the functional integration measure by means of appropriate limiting pro-
cedure can be found in [37–39]. The normalization factor 1/N is to absorb physically
irrelevant multiplicative infinities. It is the present choice of Eqs.(2), (3) which enables
a collection of the modified screw dislocations [32] to provide an extremum of the func-
tional W .

Our framework is that of the plane elasticity. Thus it is assumed that the cylinder
containing the dislocations is long enough and influence of its ends is negligible [48, 57].
The independence on the third coordinate reduces our study to two dimensions. Therefore
the functionals (3) take the form:

L−1Eel =
1

2µ

∫
(σb

i + σc
i )

2 d2x ,

L−1Ecore = 2

∫
(` ei(inc e)i − ei σ

c
i ) d2x ,

L−1Eext =

∫
σb

i (∂iu− 2Pi) d2x ,

(4)

where the integrands are (x1, x2)-dependent, and the summation goes over i = 1, 2. Since
the displacement vector of straight screw dislocation is along Ox3 [48], we use u ≡ u3.
Besides, we use the abbreviations: σ#

i ≡ σ#
i3 (# is b or c), ei ≡ ei3, etc. (the same

convention is for ‘inc’). Appropriate specification of the functional integration measure
should be expressed as D(σb

i , σ
c
i , u, ei). Besides, a length L is introduced to keep the

dimensionality.
First, the following notice concerning Z (1) should be made provided three-dimensional

Eqs. (3) are used at ` = 0. Shifting subsequently the integration variables σc
ij → σc

ij + σ̂ij

1Two stress fields σb
ij and σc

ij correspond to subdivision of the total elastic stress into, so-called,
“background” and “gauge” parts [31–34].

2The gauge Lagrangians quadratic in the dislocation densities are used in [31,33] what is equivalent, in
the case of the screw dislocation, to the approach of [32]. The most general gauge Lagrangian for three-
dimensional space has been discussed in [49]. Certain developments in the gauge gravity demonstrate
(see [13,50–53]) the gauge-translational features of the theory of dislocations.
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and eij → eij + êij (where σ̂ij and êij are new adjustable fields), it is possible to remove in
E the terms linear in σc

ij and eij. Then, the integrations over σc
ij and eij are decoupled and

can be compensated by redefinition of 1/N . Eventually, E is reduced to Eel = Eel(σ
b
ij),

and two remaining integrations, over u and σb
ij, result (in agreement with [12–14]) in the

partition function of array of singular dislocations characterized by a specific choice of eP
ij.

Let us go over to Eqs. (4) at ` = 0. The source Pi is taken at ` = 0 in the form:
Pi = eP

i . A single positively oriented straight screw dislocation intersecting the plane
x1Ox2 at x = y (we use x ≡ (x1, x2)) is “produced” by the plastic strain with a single
non-zero component eP

2 = (b/2)θ(−x1 + y1)δ(y2 − x2) [55]. Here θ(·) is the Heaviside
function and b is absolute value of the Burgers vector b lying along Ox3. Further, the
integration over u is equivalent to insertion of the delta-like functional δ(∂iσ

b
i ). The

equilibrium equation ∂iσ
b
i = 0 is fulfilled by the Kröner ansatz σb

i ≡ µ εij ∂jf
b, where εij

is totally antisymmetric symbol of second rank [54]. Vanishing of the variation δW under
the variation fb → fb + δfb allows to determine the potential fb.

Consider a pair of two screw dislocations with the coordinates x = y1 and x = y2 and
with the Burgers vectors b1 and b2, respectively. Assume that the boundary of the bulk
consists of the cylinder’s outer surface and of a set of cylindric tubes which enclose each
dislocation line. Indeed, a cut-off at small distance from the dislocation line is inevitable,
since the dislocation core is not captured at ` = 0. It is appropriate to require that the
variation δfb, as well as its derivative ∂

∂n
(δfb) in direction normal to the boundary, both

are vanishing on each component of the boundary of the cylinder’s cross-section. Taking
into account the vanishing requirements, we obtain the extremum condition:

∆fb =
2i

β
(∂1e

P
2 − ∂2e

P
1 ) =

−i

β

(
b1

(2)

δ (x− y1) + b2

(2)

δ (x− y2)
)
, (5)

where
(2)

δ (x) is two-dimensional delta-function on x1Ox2, and b1, b2 are absolute values of
the Burgers vectors. We determine fb from (5) as follows:

fb =
i

β
fP , fP ≡ −1

2π
(b1 log |x− y1|+ b2 log |x− y2|) , (6)

where fP is the Prandtl stress potential [54] of two screw dislocations.
Now let us turn to ` 6= 0 and require vanishing of δW under independent variations

of its functional arguments. The variation of σc
ij results in the ‘strain–stress’ constitutive

law
eij =

1

2µ

(
σb

ij + σc
ij −

ν

1 + ν

(
σb

ll + σc
ll

)
δij

)
, (7)

and the variation of eij gives the equation:

(inc e)ij =
1

2`
σc

ij . (8)

Since ∂i(inc e)ij ≡ 0, we put σc
i = µ εij ∂jf

c in order to fulfil ∂iσ
c
i = 0. It is assumed

that the variations δfb and δf c are vanishing on the external cylinder’s boundary. The
same is true for their normal derivatives. Using Eqs. (5)–(8), one obtains the extremum
conditions:

∆
(
fb + f c

)
=

2i

β
(∂1P2 − ∂2P1) ,

∆
(
fb + f c

)
= κ2f c , κ2 ≡ µ

`
,

(9)
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where Pi ≡ eP
i + Ci. Self-consistency of equations (9) requires coincidence of their right-

hand sides and takes the form:

∂1C2 − ∂2C1 =
β

2i
κ2f c +

1

2

(
b1

(2)

δ (x− y1) + b2

(2)

δ (x− y2)
)
. (10)

Analytical form of Ci results from general solution to (10):

Ci =
β

2i
(∂iφ − εij ∂jψ) , (11)

where φ is arbitrary regular function, while ψ is to be found after substitution of (11) to
(10). Provided (10) is respected, either fb or f c can be fixed arbitrarily. Our strategy is
to keep fb still respecting Eq. (5) at ` 6= 0. Then Eqs. (9) lead to a single equation for f c:

(∆ − κ2)f c =
i

β

(
b1

(2)

δ (x− y1) + b2

(2)

δ (x− y2)
)
, (12)

which is solved as follows:

f c = (i/β)fK , fK =
−1

2π
(b1K0(κ|x− y1|) + b2K0(κ|x− y2|)) , (13)

where K0(·) is the modified Bessel function. Besides, the choice φ = 0, ψ = f c ensures
that Eqs. (10) and (12) are coinciding.

Therefore, the whole potential fb + f c = (i/β)(fP + fK) describes a couple of non-
singular screw dislocations. Notice that the fields σb

i and σc
i are rather the stationarity

solutions of the functional W (2), while the proper stress fields are given by β
i
σb

i and β
i
σc

i .
Equations (6) and (13) demonstrate that a modification of the conventional (Prandtl)
stress potential fP occurs within the core regions, i.e., within the tubular vicinities of
transverse size ' κ

−1 (the length κ
−1 should not, in principle, be the same as the lattice

spacing). When κ|x − y1,2| À 1, the total solution is dominated by the conventional
contribution fb. When either κ|x− y1| ¿ 1 or κ|x− y2| ¿ 1, the sum fb + f c behaves
smoothly at x → y1,2, and the known singularities in the total stress distribution β

i
(σb

i +
σc

i ) do not appear.
To sum up, the variational approach gave a couple of the modified screw dislocations

[32]. Remind that the modified screw dislocation [32] agrees with the solution obtained by
means of the gradient elasticity [29,30]. The gradient elasticity itself belongs to a class of
the generalized continuum theories which effectively take into account interatomic forces
in order to explain the material behavior on the nano-scales (and thus inside the defect
cores) [56]. The solution obtained will be used for the stationary phase estimation of the
functional integral in question.

Let us estimate the partition function given by (1), (2) and (4) using the stationary
phase method [37–39]. Integration by parts transforms ei(inc e)i in W into the quadratic
expression: −1

2
(∂iej − ∂jei)

2. It is invariant under the shift ei → ei + ∂ig, where g
is an arbitrary function (the Abelian gauge transformation). It is necessary to restrict
the functional integration over ei by imposing, say, the “Coulomb gauge” ∂iei = 0. This
procedure is widely known as the ‘Faddeev–Popov trick’ [37]. Eventually, the contribution
`ei(inc e)i in W is replaced by `ei∆ei. The shift of the integration variable,

ei → ei + (2`)−1 ∆−1σc
i , (14)
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cancels the term linear in ei (the gauge condition is respected due to ∂iσ
c
i = 0). Here

∆−1 is the operator of convolution, and its kernel is given by the Green function of two-
dimensional Laplacian. The resulting Gaussian integration over ei,

∫
e−2`βL

∫
ei∆ei d2xD(ei) ,

is absorbed into 1/N , and the partition function Z takes the form:

Z =
1

N

∫
e−βW̃D(σb

i , σ
c
i , u) , (15)

W̃ ≡ Ẽ − i

β
Eext , Ẽ ≡ Eel + Ẽcore , (16)

where the source Eext is given by (4), and Ẽcore is expressed as follows:

L
−1

Ẽcore ≡ −1

2`

∫
σc

i ∆−1σc
i d2x . (17)

The functional W̃ includes the elastic energy of two non-singular dislocations, Eel, while
the (localized) core energies are given by (17). The representations expressed either by
(1), (2) or by (15), (16) are equivalent, i.e., the same Eqs. (5) and (9) arise for fb and
f c, respectively, provided vanishing of δfb and δf c is properly required.

Let us estimate (15) by the stationary phase approximation. First, we obtain:

L−1Ẽ =
−µ

2
κ2

[∫
f cfb d2x − κ−2

∮ (
fb + f c

) ∂

∂n

(
fb + f c

)
ds

+

∮
f c ∂

∂n

(
∆−1f c

)
ds

]
, (18)

where the Green theorem is used. The contour integrations in (18) are along the outer
boundary and the circles of small radius ε around the dislocations. It is appropriate to
renormalize the integration variables in (15) so that fb → (1/β)fb, f c → (1/β)f c. Using
again Eqs. (5), (9), we formally express (in the renormalized terms):

∫
f cfb d2x = 4

∫
∂1e

P
2 (x) ∆

−1

(∆− κ2)
−1

∂1e
P
2 (s) d2x d2s , (19)

where the convolution of two Green functions of the corresponding operators ∆ and ∆−κ2

depends on the difference x−s. Recall that expression for the plastic source of the couple
of dislocations reads:

∂1e
P
2 (s) =

−1

2

2∑

k=1

bk

(2)

δ (s− yk) .

We estimate right-hand side of (19) and obtain after the limit ε → 0:

κ2

∫
fbf c d2x =

b2
1 + b2

2

2π
log

(γ

2
κ
)−

− b1b2

π
(K0(κ|y1 − y2|) + log |y1 − y2|) + O(e−κR) ,

(20)

∮ (
fb + f c

) ∂

∂n

(
fb + f c

)
ds = − (b1 + b2)

2

2π
log R + O( |y12|

R
, e−κR

)
, (21)
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where O(e−κR) implies negligible contributions due to the external boundary. The no-
tation O( |y12|

R
, · ) in (21) stands for the contributions, which are unimportant provided

|y12| ≡ |y1−y2| is not too large with respect to R. The third integral in (18) is estimated
as O(e−κR). Further, estimation of the term −i

β
Eext demonstrates that the absolute value

of its leading part is greater twice than that of Ẽ (see (18)), while their signs are opposite:

−i

βL
Eext = µκ2

[∫
fbf c d2x − κ−2

∮
fb ∂

∂n
f c ds

]
. (22)

It is just the contribution due to Ci, which is responsible for the smoothed out represen-
tation (22). After all, we redefine β → β−1, and the leading estimate for Z acquires, with
respect of (18) and (22), the following form:

Z ∼ const× e−βW ,

W
L

≡ −µb1b2

2π
U(κ|y1 − y2|) , U(s) ≡ log

(γ

2
s
)

+ K0(s) .

(23)

Equation (23) is valid provided the “electro-neutrality” condition b1 + b2 = 0 is respected,
i.e., the pair of dislocations in question forms the dislocation dipole. This condition pre-
vents divergency due to the large logarithm in (21).

Let us calculate the force F = − dW
d|y12 |

. Its expression

F

L
=

µb1b2κ

2π
f(κ|y12|) , f(s) ≡ dU

ds
= s−1 − K1(s) , (24)

demonstrates that W (23) at large separation |y12| corresponds to the energy of the
Coulomb attraction between two point charges of unlike signs (b1b2 < 0). The function
f(s) is positive and goes to zero like 1/s at s → ∞, or like s log(A/s) at s → 0. The
maximum of f(s) (24) occurs at s ≈ 1.1, i.e., the maximal attraction of two opposite
dislocations forming the dipole occurs at |y1−y2| ≈ 1.1

κ
. Effect of so-called image disloca-

tions [57], which ensure a free surface boundary condition, is neglected so far inW (23) 3.
Effects due to rotation of the ends of the cylinder containing the dislocations are neglected
also.

Generalization to the case of N dislocations is straightforward. For instance, the
corresponding extremum condition (5) takes the form:

∆fb = i
2

β
∂1e

P
2 =

−i

β
ρ(x) , ρ(x) ≡

N∑
I=1

j(x− yI) , (25)

where j(x− yI) ≡ bI

(2)

δ (x− yI), and ρ(x) is thus the dislocation density. Eventually, the
effective energy we are interested in, W ≡ −1

β
logZ, takes the form:

W = 2µ

∫
∂1e

P
2 (x)

(
(∆− κ2)

−1 − ∆
−1)

∂1e
P
2 (s) d2x d2s , (26)

3The free-boundary problem for the stress distribution around a screw dislocation inside the wall of
hollow cylinder has been investigated in [21].
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where Eq. (25) has been used (here and below the shear modulus is re-scaled: µL → µ).
Transforming W (26) further, we represent it as the “pair” potential dependent on the
dislocation positions {yI} ≡ {yI}1≤I≤N :

W ≡ W({yI}
)

=

=
−µ

4π

∫
ρ(x) (log |x− s| + K0(κ|x− s|)) ρ(s) d2x d2s

=
−µ

4π

∑

I 6=J

bIbJ U(κ|yI − yJ |) ,

(27)

where U(·) is defined by (23), and the “electro-neutrality” condition
∑N

I=1 bI = 0 is taken
into account. The distances in (27) are referred, for simplicity, to unit lattice spacing of
a cubic crystal.

Let us consider thermodynamical ensemble of positive and negative modified screw dis-
locations located, respectively, at {y+

I }1≤I≤N and {y−I }1≤I≤N and possessing unit Burgers
vectors |bI | = 1. The corresponding partition function ZC can be written as that of electro-
neutral plasma of positive and negative charges with modified Coulomb-like coupling:

ZC =
∞∑
N=0

1

N !N !

N∏
I=1

∫
d2y+

I

N∏
J=1

∫
d2y−J exp

[
−2βNΛ +

+
βµ

4π

(∑

I 6=J

U(κ|y+
I − y+

J |) +
∑

I 6=J

U(κ|y−I − y−J |) − 2
∑

I 6=J

U(κ|y+
I − y−J |)

)]
,

(28)

where 2N is the number of charges, and the chemical potential Λ (per dislocation) is
introduced. The representation (28) implies that the exponentials e−βW , where W corre-
sponds to (27), are summed up with respect of all possible positions of the dislocations
inside the cylinder’s cross-section (in fact, the summations are replaced by the integra-
tions). The representation (28) generalizes an analogous expression [47] for a system of the
world-sheet vortices. In our case the smoothed out potential U(s) appears self-consistently
while an artificially regularized logarithmic potential is used in [47]. It is appropriate to
remind that the Coulomb gas of point-like charges is equivalent to the sine-Gordon field
theory [58–60].

3 The correlation functions

3.1 Field-theoretical derivation of the stress-stress correlation
function

Gaining the experience of the derivation of the partition function of the Coulomb-like
plasma (28), let us pass on to investigation of the corresponding correlation functions.
The partition function Z of the field theory presented in Section 2 is taken as a starting
point. Define the two-point stress-stress correlation functions 〈σ#

i (x1) σ#
j (x2)〉 (# is either

b or c) by means of the following functional averages [37–40]:

〈σ#
i (x1) σ#

j (x2)〉 ≡ 1

Z
∫

σ#
i (x1) σ#

j (x2) e−βWD(σb
i , σ

c
i , u, ei) , (29)
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where Z is expressed by Eqs. (1), (2), (4). The functional W is written as dependent on the
“external” source Pi (i = 1, 2) since the correlators (29) (as well as the partition function
itself) are defined with respect of a specific distribution of the dislocations. In other words,
specification of Pi by means of a choice of the plastic source eP

i is required. Approach of
the generating functional [45,46] provides a natural way to evaluate (29) by means of the
functional integration [37–39]. We introduce the generating functional G[Jb,Jc |P ] as the
functional integral dependent on two auxiliary (in principle, unphysical) sources Jb, Jc,
as well as on the source P :

G[Jb,Jc |P ] =

∫
e−βW+iL

∫
(Jb

i σb
i +Jc

j σc
j ) d2xD(σb

i , σ
c
i , u, ei) . (30)

Now the normalization factor is included into the integration measure, and each bold-
faced notation, J# (# is b or c) or P , implies two components, say, J#

1 and J#
2 . The

source P is standing separately in left-hand side of (30) since its meaning is different.
The correlators we are interested in, 〈σ#

i (x1) σ#
j (x2)〉, appear as follows:

〈σ#
i (x1) σ#

j (x2)〉 = lim
Jb,Jc→0

(
G−1

[Jb,Jc |Pph]
(−i)2 δ2

δJ#
i (x1)δJ

#
j (x2)

G[Jb,Jc |Pph]
)

. (31)

Equation (31) implies that the source P is replaced by the source Pph corresponding to
a specific choice of the dislocation distribution.

It has to be stressed that the contribution ∝ ∫
σb

i Pi d
2x in Eext (4) looks similar to the

source term ∝ ∫
σb

i J
b
i d2x in the exponent of (30). Therefore the variational differentiation

with respect of Jb
i (Jb

i → 0, afterwards) is equivalent to that with respect of Pi, being
considered, for an instant, as arbitrary function. Clearly, the source Pi must take its
physical value (as explained above) after the differentiation. Therefore it is appropriate
to put G[Jb,Jc |P ] (30) as dependent on three arguments: the field theory in question
is governed by the physical external source Pi (related to an actual distribution of the
dislocations), while two unphysical ones, Jb

i and Jc
i , enable to derive the correlator.

We shall calculate the stress-stress correlation function 〈σtot
i (x1) σtot

j (x2)〉 of the phys-
ical stress field σtot

i (x) ≡ β
i
(σb

i (x) + σc
i (x)). First, we calculate the generating functional

(30) shifting the integration variables so to cancel the terms linear in Jb, Jc in the exponent
(see Appendix). The result looks as follows:

G[J,J |Pph] = e−
µβ
2

Q , (32)

where

Q ≡
∫ (

∂iJi

( 1

∆
− 1

∆− κ2

)
∂kJk − Ji

κ2

∆− κ2
Ji + ∆Ji

1

∆− κ2
Ji

)
d2x ,

Ji ≡ Ji − 2eP
i

(33)

(the “inverses” ∆
−1 , (∆− κ2)

−1 act as the integral operators). The generating functional
(32), (33) is expressed in terms of a single source Ji(x) = Jb

i (x) = Jc
i (x). Then the

physical correlation function appears as follows:

〈σtot
i (x1)σ

tot
j (x2)〉 =

(β

i

)2

lim
J→0

(
G−1

[J,J |Pph]
(−i)2 δ2

δJi(x1)δJj(x2)
G[J,J |Pph]

)
. (34)
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We calculate (34) using (32), (33), and obtain the following expression:

〈σtot
i (x1)σ

tot
j (x2)〉 =

µ2

4
e−βW × lim

J→0

[(
δJi(x1)Q

)(
δJj(x2)Q

) − 2

µβ
δJi(x1)δJj(x2)Q

]
, (35)

where δJi(x) ≡ δ/δJi(x), and W , Q are given by (27), (33). Equation (35) is re-expressed
after calculation of the variational derivatives:

〈σtot
i (x1)σ

tot
j (x2)〉 = e−βW ×

[
σtot

i (x1)σ
tot
j (x2)−

− µ

2πβ
∂(x1)i

∂(x2)j
U(κ|x1 − x2|)

]
,

(36)

where
σtot

i (x) =
µ

π
εik ∂(x)k

∫
U(κ|x− s|) ∂1e

P
2 (s)ds (37)

is the total elastic stress of the dislocational configuration. The first term inside the square
brackets is just due to the plastic strain considered as the physical external source. The
exponential factor in (36) is the Boltzmann weight containing in its exponent the energy
of the ensemble of the dislocations.

Consider, for a comparison, our theory without the influence of the core energy, i.e., at
` = 0. Derive, firstly, the stress-stress correlator 〈σb

i (x1)σ
b
j (x2)〉 using eP

i as the unphysical
source that becomes zero after the variation:

〈σb
i (x1)σ

b
j (x2)〉 =

−µ

2πβ
∂(x1)i

∂(x2)j
log |x1 − x2| . (38)

The plastic field, as the source of a specific distribution of the dislocations, is responsible
for the second term in the square brackets in (35). Let the plastic source be the physical
one respecting Eq. (25). Then we obtain:

〈σb
i (x1)σ

b
j (x2)〉 = e−βW ×

[ −µ

2πβ
∂(x1)i

∂(x2)j
log |x1 − x2|

+
µ2

4π2

∑
I,J

bIbJ

(
εik∂(x1)k

log |x1 − yI |
) (

εjl∂(x2)l
log |x2 − yJ |

)]
,

(39)

where W is given by (27) although with U replaced appropriately by the logarithm.
The representation (36) corresponds to a specific spatial distribution of collection of

the dislocations. In the sequel we shall average the correlator 〈σb
i (x1)σ

b
j (x2)〉 over possible

positions of the dislocations.

3.2 Mean square of the dipole momentum

We shall investigate the thermodynamical ensemble of the dislocations using so-called
dipole phase approximation which implies that pairs of the dislocations with opposite
signs (located in x±I , 1 ≤ I ≤ N ) are bound into “molecules”. The corresponding partition
function is specialized in the form different from (28):

Zdip =
∞∑
N=0

1

N !

N∏
I=1

∫
d2ξI

∫
d2ηI exp

[
−2βNΛ−

− β
( N∑

I=1

w(ηI) +
∑
I 6=J

wIJ

)]
,

(40)
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where w(ηI) is the energy of Ith dipole centered in ξI = (x+
I + x−I )/2 with the dipole

momentum ηI = x+
I − x−I , while wIJ is the energy of interaction between Ith and J th

dipoles [47].
First of all, let us calculate a mean square of the dipole momentum for a single

molecule:

〈η2〉 =

∫
exp(−βw(η)) η2dη

∫
exp(−βw(η)) dη

. (41)

The average 〈η2〉 (41) has been calculated in [3] for two-dimensional gas of particles with
charges ±q interacting through the potential looking as follows:

2Λ− 2qI qJU(|xI − xJ |) , |xI − xJ | > a ,
0 , |xI − xJ | < a ,

where U(|xI − xJ |) ≡ log |xI−xJ |
a

, xI is the Ith charge position, and a is an appropri-
ate cutoff (e.g., the particle diameter, or lattice spacing). Besides, 2Λ is the energy
necessary to create a pair of opposite charges at the distance a, while the number of
particles is constrained by overall electrical neutrality. The dipole energy is given by
βw(η) = KU(|η|), where K = 2βq2, and the average (41) takes the form [3]:

〈η2〉 = a2 K − 2

K − 4
= a2 βq2 − 1

βq2 − 2
, (42)

where it is assumed that βq2 > 2, and the lower integration boundary is a. Therefore,
〈η2〉 ≈ a2 in the limit of zero temperature. The average (42) infinitely grows at T near
the critical temperature Tc given by βcq

2 = 2.
The two-particle potential considered in [47] is expressed as βw(η) = 2πKU(|η|),

where β is an effective parameter viewed as inverse temperature, K = 2βq2, and U(|η|)
is regularized at small momenta, U(|η|) = 1

2
log a2+|η|2

a2 . Then, Eq. (41) gives the answer
at K > 2/π:

〈η2〉 = a2 1

πK − 2
, (43)

i.e., the dipole momentum of a single molecule is not too large provided the temperature
is decreased. It can be verified that 〈η2〉 (42) is strictly greater than 〈η2〉 (43) at K > 4,
i.e., in the second case the molecules are more compact at small enough temperatures.

The present paper deals with the dipole energy U(κ|η|) (23), and the average (41) is
specified as follows:

κ2〈η2〉 =

∫ ∞

0

exp(−K(log η + K0(η))) η3 dη
∫ ∞

0

exp(−K(log η + K0(η))) η dη

, (44)

where K = µb2β/2π. The integral in the nominator of (44) diverges at K < 4. Since
dissociation is most probable for pairs of the dislocations with |b| = 1, the dipolar phase
does not exist at the temperature T > Tc ≡ µ

8π
.

Remind that estimates for the radius of the dislocation core rc have been proposed
in [29, 31, 33] in the form rc ' ηb/κ, where ηb = 4.0 [29], ηb = 6.0 [33], or ηb = 10.0 [31].
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In turn, the estimates for κ
−1 in terms of interatomic spacing a have been obtained in

the form: κ
−1 ≈ 0.39 a [28], κ

−1 ≈ 0.399 a [33], κ
−1 ≈ 0.25 a [29]. For instance, rc ≈ 1.5a

according to [29], while rc ≈ 2.4a according to [33].
To estimate (44), it is appropriate to split each integration into two parts: from η = 0

to η = ηb and from η = ηb to infinity, so that K0(η) is neglected above ηb with enough
accuracy. Therefore, we estimate (44) at K close to its “critical” value, K ↘ 4:

〈η2〉 ' 2η2
b

κ2(1 + 2η2
bA

−1
)

1

K − 4
, A

−1 ≡
∫ ηb

0

exp(−4(log η + K0(η))) η dη . (45)

For instance, Eq. (45) looks approximately at ηb
>∼ 6.0 :

〈η2〉 ' A

κ2

1

K − 4
, A ≈ 2.5 , (46)

where κ−2 can be taken according either to [29] or [33]. In both cases, (46) corresponds
to more compact dipoles in comparison with (43).

Double-sided estimate can be obtained for the potential U(κ|η|) (23) by adjusting
appropriate trial functions thus resulting in a double-sided estimate for 〈η2〉 (44) valid at
K large enough:

1

K2
< κ2 〈η2〉 <

1

K , (47)

where κ
−1 can be chosen according to [28], [29], or [33]. Equation (47) implies that 〈η2〉

tends to zero faster in comparison with the rule (43). This is just due to the dipole energy
profile (23) used instead of the regularization adopted in [47]. Respectively, the density of
the molecules grows at vanishing temperature faster in framework of the present approach.

3.3 The correlator of two stresses

We continue to consider the dipole phase in the approximation of non-interacting dipoles.
Let us turn to the stress-stress correlation function 〈σtot

i (x1) σtot
j (x2)〉 given by Eqs. (36),

(37) and average it over positions of the dislocation dipoles. To this end we shall fol-
low [47] where contributions due to the vortex dipoles into the asymptotical behavior of
appropriate correlation functions of the string models have been investigated. We shall
denote the new average as 〈〈σtot

i (x1) σtot
j (x2)〉〉, and its expression arises as follows:

〈〈σtot
i (x1) σtot

j (x2)〉〉 =
−µ

2πβ
∂(x1)i

∂(x2)j
U(κ|x1 − x2|)

+ Z
−1

dip

∑
number of dipoles,
dipoles positions

σtot
i (x1)σ

tot
j (x2) e−βW , (48)

where Zdip is the partition function (40).
According to (47), the dipoles are very compact since the dipole momenta are not too

large at small enough temperature: 〈η2〉 ¿ κ−2. Therefore summation over the dipole
positions can be replaced by integration [47]. We use the dipole’s center of mass and
momentum coordinates, respectively, ξL = (y+

L + y−L )/2 and ηL = y+
L − y−L for each pair
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of opposite dislocations at y±L forming Lth dipole (1 ≤ L ≤ N ). Therefore the sum in
right-hand side of (48) takes the form:

∑
numbers , positions

σtot
i (x1)σ

tot
j (x2) e−βW =

=
(µb

2π

)2

εikεjl ∂(x1)k
∂(x2)l

∞∑
N=1

1

N !

N∏
I=1

∫
d2ξI

∫
d2ηI exp

(−β(2Λ + w(ηI))
)

×
N∑

K,L=1

[U(κ|x1 − y+
K |) − U(κ|x1 − y−K |)

]

× [U(κ|x2 − y+
L |) − U(κ|x2 − y−L |)

]
,

(49)

where N is the number of dipoles, and the representation (37) is used for σtot
i (x). We

use the estimate |ηL| ¿ |x − ξL| (compactness of the dipoles) and adopt in leading
approximation [47]:

U(κ|x− y+
L |) − U(κ|x− y−L |) ≈ − (ηL, ∂x)U(κ|x− ξL|) , (50)

where the notation (·, ·) for the scalar product of 2-vectors is introduced. The relation
(50) allows to re-express (49) as follows:

(µb

2π

)2

εikεjl ∂(x1)k
∂(x2)l

∞∑
N=1

1

N !

N∏
I=1

∫
d2ξI

∫
d2ηI exp

(−β(2Λ + w(ηI))
)

×
N∑

L=1

(ηL, ∂x1)U(κ|x1 − ξL|) (ηL, ∂x2)U(κ|x2 − ξL|) .

(51)

To proceed with (51), essential technical task is to calculate the integral:
∫

d2ξ

∫
d2η exp

(−β(2Λ + w(η))
)

× (η, ∂x1)(η, ∂x2)U(κ|x1 − ξ|)U(κ|x2 − ξ|) .

(52)

First, we express the η-integration by means of the relation
∫

exp
(−2βΛ−K(log(

γ

2
κη) + K0(κη))

)
ηiηj d2η

∫
exp

(−2βΛ−K(log(
γ

2
κη) + K0(κη))

)
d2η

=
δij

2
〈η2〉 , (53)

where K = µb2β
2π

, η = |η|, and 〈η2〉 is given by (44). Then, after introducing the notation
N̄ for the dipole density [3, 47]:

N̄ ≡
∫

exp
(−2βΛ−K(log(

γ

2
κη) + K0(κη))

)
d2η , (54)

the relation (53) allows to re-express the integral (52) as follows:

N̄〈η2〉
2

∫ (
∂x1 U(κ|x1 − ξ|) , ∂x2 U(κ|x2 − ξ|)) d2ξ . (55)
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The Green theorem enables to carry out the ξ-integration in (55). Eventually, we use the
partition function Zdip (40) and obtain:

〈〈σtot
i (x1) σtot

j (x2)〉〉 =
−µ

2πβ
∂(x1)i

∂(x2)j
U(κ|∆x|)

− N̄〈η2〉 µ2b2

4π
εikεjl ∂(x1)k

∂(x2)l

(
log |∆x| + K0(κ|∆x|) +

κ|∆x|
2

K1(κ|∆x|)) ,

(56)

where (as well as below) ∆x ≡ x1 − x2.
At large separation of the arguments, |x1 − x2| À κ

−1 , the asymptotic of (56) is
governed by the logarithmic contribution since the modified Bessel functions decay expo-
nentially:

〈〈σtot
i (x1) σtot

j (x2)〉〉 ' −µ

2πβ
∂(x1)i

∂(x2)j
log |∆x|

− N̄〈η2〉 µ2b2

4π
εikεjl ∂(x1)k

∂(x2)l
log |∆x| =

=
( −µ

2πβ
+ N̄〈η2〉 µ2b2

4π

)
∂(x1)i

∂(x2)j
log |∆x| + N̄〈η2〉 µ2b2

2
δij

(2)

δ (x1 − x2) ,

(57)

where the relation εikεjl = δijδkl − δilδkj is taken into account. Besides, the δ-like term in
right-hand side of (57) is due to the following rule of differentiation of the logarithm:

∂(x1)k
∂(x2)l

log |x1 − x2| =

=
1

|x1 − x2|2
(
−δkl + 2

(x1 − x2)k (x1 − x2)l

|x1 − x2|2
)
− π δkl

(2)

δ (x1 − x2) .
(58)

The δ-term in right-hand side of (57) is irrelevant for the asymptotical behavior of the
correlation function. Therefore the stress-stress correlator (being considered with dislo-
cations as well as without them) decreases as |x1− x2|−2 at growing separation |x1− x2|.
However the δ-term is crucial for expression of the shear modulus by means of the stress-
stress correlation functions integrated over their spatial arguments (see the next Section).

The asymptotical law |x1 − x2|−2 is due to the analytical structure of the logarithm
differentiated. This law being extrapolated to small distances |x1 − x2| ¿ 1 would imply
a singular behavior of the stress-stress correlator in question. In the present approach,
the short-distance behavior of the correlation function is less singular due to the core
influence. First, we obtain the following asymptotics at |x1 − x2| ¿ κ

−1 :

−µ

2πβ
∂(x1)i

∂(x2)j
U(κ|x1 − x2|) '

' −µ

2πβ

κ2

2

[
δij

(
−1

2
+ log

(γ

2
κ|∆x|)

)
+

(x1 − x2)i (x1 − x2)j

|x1 − x2|2

+O(|∆x|2 log |∆x|)
]
.

(59)

Since purely logarithmic contribution is canceled in the potential U , the estimate (59)
demonstrates only the logarithmic divergency instead of the inverse square law. Further,
the remaining part of (56) gives the contribution:

N̄〈η2〉 µ2b2κ2

16π

(
δij + O(|∆x|2 log |∆x|)) , (60)
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and the final result looks as follows:

〈〈σtot
i (x1) σtot

j (x2)〉〉 ' −µ

2πβ

κ2

2

[
δij

(
−1

2
− N̄〈η2〉 µb2β

4
+ log

(γ

2
κ|∆x|)

)

+
(x1 − x2)i (x1 − x2)j

|x1 − x2|2 + O(|∆x|2 log |∆x|)
]
.

(61)

We considered the approximation of non-interacting dipoles. When dipoles are close
each other, the energy of dipole-dipole interaction becomes important. Interaction be-
tween different dipoles can also be taken into account in the present framework. Moreover,
for sufficiently dense gas of dipoles second order corrections to the stress fields inside the
core could become important [36]. However, this should be a subject of separate investi-
gation.

4 The renormalization of the shear modulus
The present section is to investigate the renormalization of the shear modulus caused by
the presence of the modified screw dislocations. To this end we shall use the stress-stress
correlator obtained. One should refer to the original paper [9] for the definition of inverse
of the tensor of renormalized elastic constants in terms of appropriate correlation function
in presence of dislocations. Further details on the dislocation contribution to the elastic
constants can be found in [9] and [16] (devoted, respectively, to two- and three-dimen-
sional situations). Adopting the corresponding definitions [9, 16], we shall consider the
following expression for the renormalized shear modulus µren:

1

µren

≡ β

µ2S
∑

i,k=1,2

∫∫
〈〈σtot

i (x1) σtot
k (x2)〉〉 d2x1d

2x2 , (62)

where the correlator is defined by (48), S is the area of the sample’s cross-section, and the
values of µ, µren are taken in the re-scaled form (see (26), (27)). We use (56) and obtain:

∑

k=1,2

〈〈σtot
k (x1) σtot

k (x2)〉〉 =
µκ2

2πβ

(
K0(κ|∆x|) +

+ N̄〈η2〉 βb2µκ

4
|∆x|K1(κ|∆x|)

)
.

(63)

“Non-diagonal” correlators 〈〈σtot
k (x1) σtot

l (x2)〉〉, k 6= l, are negligible with respect of the
two integrations in (62). Therefore one obtains from (62), (63) the following answer:

1

µren

=
1

µ
C1(κR) + α C2(κR) , α ≡ N̄〈η2〉 βb2

2
, (64)

where the functions C1(κR) and C2(κR) are given by the modified Bessel functions:

C1(κR) ≡ κ2

2πS
∫∫

K0(κ|∆x|) d2x1d
2x2 = 1 − 2K1(κR)I1(κR) ,

C2(κR) ≡ κ3

4πS
∫∫

K1(κ|∆x|) |∆x| d2x1d
2x2

= 2 − 2I1(κR)
(
K1(κR) − κR K ′

1(κR)
)
,

(65)
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where K ′
1(z) = d

dz
K1(z). The parameter α (64) is proportional to mean area covered

by the dipoles, 2π〈η2〉N̄ . The renormalization rule (64) demonstrates the dependence
of the shear modulus µren on the dimensionless parameter κR. The coefficients C1(κR)
and C2(κR) both are positive and less than unity though tend to unity at κR →∞. We
obtain the estimates for C1(κR), C2(κR) at increasing κR:

C1(κR) ≈ 1 − 1

κR
+ . . . , C2(κR) ≈ 1 − 3

2κR
+ . . . , (66)

where the ellipsis imply the terms O((κR)−2).
On another hand, Eq. (57) can be used in (62) in order to obtain an analogue of (63)

valid for singular screw dislocations:

∑

k=1,2

〈〈σtot
k (x1) σtot

k (x2)〉〉 =
µ

β
(1 + αµ)

(2)

δ (x1 − x2) . (67)

Right-hand sides of (63) and (67) are weakly coinciding at κ
−1 → 0 (i.e., when the core’s

scale is shrunk). This can be demonstrated by means of integration with an appropriate
trial function. Inserting (67) into (62) one obtains:

1

µren

=
1

µ
+ α . (68)

The renormalization rule (68) is in agreement with that obtained in the original paper
[4] by means of the macroscopic stress function of collection of the dislocation dipoles.
Equation (68) agrees with the renormalization of the shear modulus derived as well in
[9, 16] provided low concentration of the defects is considered. As it is seen from (68),
increasing of α results in decreasing of µren. Clearly, Eq. (64) is reduced to (68) when κR
tends to infinity, and so the unit values of the coefficients C1, C2 correspond to the case of
singular dislocations. Roughly speaking, shrinking up the core regions one goes back to
singular dislocations. Notice that the rescaled values of the elastic parameters are used
in (64), (68) (i.e., after the replacement µL → µ). Under inverse replacement, µ → µL,
Eqs. (64), (68) keep their form except that α (64) is changed to αL. Remind that the
critical exponents of appropriate correlation functions are analogously renormalized due
to presence of the vortex pairs either in the two-dimensional Bose gas [6], or on the string
world-sheets [47].

Equation (64) can be re-expressed as follows:

µ → µren =
µ

C1(κR)

(
1 + µα

C2(κR)

C1(κR)

)−1

. (69)

At large but finite κR (the scale 1/κ is small but comparable with the sample’s scale R),
the non-triviality of the dislocation cores finds its implementation in the renormalization
of the shear modulus. According to (66), (69), the character of the decreasing of µren

is changed in comparison with the case of the singular dislocations: it is slower since
C2(κR)/C1(κR) < 1 at large κR. It has to be noticed that Eqs. (64) and (69) are valid
for non-interacting dipoles (low concentration of the dipoles). Interaction of the dipoles
can also be taken into account by means of the formalism developed but should be done
elsewhere.
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5 Discussion
Array of parallel singular screw dislocations is equivalent (as a planar system with respect
of the sample’s cross-section) to the two-dimensional Coulomb gas of charged point par-
ticles. The latter is a subject covered by the theory [1–10,12–14] of the phase transitions
in the low-dimensional systems of condensed matter physics. Dislocations influence re-
normalization of the elastic constants of the corresponding material sample. The present
paper is to investigate the re-normalization of the shear modulus in the case of the screw
dislocations possessing finite-size core regions. The transformation to the Coulomb-like
system is used.

The approach [32,36] admits of finiteness of the dislocation core region, and it is elab-
orated in the given paper further in order to study collection of the modified screw dis-
locations as a thermodynamic ensemble. Specifically, a long enough cylindric rod pierced
by co-axial non-singular screw dislocations is considered. A field-theoretical formalism is
developed to investigate the corresponding partition function in the form of the functional
integral. The modified dislocations appear as its stationarity points due to the choice of
the energy functional. The plastic external source is involved which governs the back-
ground stress distribution. This is a distinct from Refs. [31–34] where the background
stress field is pre-imposed by means of, so-called, “null-Lagrangian” postulated.

Calculation of the partition function relates the system of the dislocation dipoles
to equivalent description of electrically-neutral Coulomb-like gas of charges interacting
via potential which is logarithmic at large separation but tends to zero for the charges
sufficiently close each to other. The smoothing of the Coulomb potential at short mutual
separations between the charges/the dislocations occurs since the self-energy of the cores is
accounted for. The stress-stress correlation function of collection of the dislocation dipoles
is obtained and used to study the renormalization of the shear modulus. The latter is
considered in the approximation of dilute gas of the dislocation dipoles. It is demonstrated
that the renormalized shear modulus acquires a non-conventional additional dependence
on the characteristic parameter κR = R/κ

−1 . Notice that applicability of the effects of
renormalization of the elastic constants to experimental observations is discussed in [16].

Since the contributions due to the core demonstrated above are sensible at moderate
κR, it is hopeful that the formalism developed could be efficient for nanotubes with
comparable R and κ

−1 . Here importance of the second order stresses within the core
region can arise [36]. It is hopeful, [30, 32, 34], that the formalism can be extended to
hollow cylinder, as well as developed further for the modified edge dislocations. The
latter could be interesting as far as the physics of multi-layer nanotubes and wrapped
crystals is concerned [22].
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Appendix
Let us consider the generating functional G[Jb,Jc |P ] (30) dependent on three 2-compo-
nent sources, Jb, Jc, and P :

G[Jb,Jc |P ] =

∫
e−βW+iL

∫
(Jb

i σb
i +Jc

j σc
j ) d2xD(σb

i , σ
c
i , u, ei) . (A1)

The exponent in (A1) is specified, after fixing the “Coulomb gauge”, as follows:

−βW + iL

∫
(Jb

i σb
i + Jc

j σ
c
j) d2x =

=
−βL

2µ

∫ (
σb

i + σc
i

)2
d2x − 2Lβ`

∫
ei∆ ei d

2x

+ iL

∫
σb

i

(
∂iu− 2Pi + Jb

i

)
d2x + 2Lβ

∫
σc

i

(
ei +

i

2β
Jc

i

)
d2x .

(A2)

It is appropriate to calculate (A1) by shifts of the functional integration variables (this
technique is standard, see [14, 37–40]). Interpretation of the stress fields σb

i and σc
i in

terms of the background and the gauge contributions is still valuable in the presence of
the sources Jb

i and Jc
i . As a first step, the strain field ei should be integrated out by the

shift
ei −→ ei − 1

2`∆
σc

i .

After re-arrangements we obtain for G[Jb,Jc |P ]:

G[Jb,Jc |P ] ∝
∫

exp

[ −βL

2µ

∫
σc

i D−1σc
i d2x + iL

∫
σc

i Jc
i d2x

− βL

2µ

∫ (
σb

i σ
b
i − i

2µ

β
σb

i

(
∂iu− 2Pi + Jb

i −
β

iµ
σc

i

))
d2x

]
D(σb

i , σ
c
i , u) .

(A3)

Here ‘ ∝ ′ implies that the decoupled integrations, being constant factors which are not
of interest now, are included into re-scaling of the integration measure. The kernel D−1

is defined in (A3) as follows:

D−1 ≡ δ − κ2

∆
, (A4)

where ∆
−1 is the Green function of two-dimensional Laplacian, and δ is the delta-function.

Next step is to shift subsequently the variables σb
i and σc

i . To carry out the calculations
remaining it is suffice to assume that Jb

i = Jc
i = Ji. Besides, we recall that Pi = eP

i + Ci.
Then, after the shifts

σb
i −→ σb

i +
iµ

β
(∂iu− 2eP

i + Ji) ,

σc
i −→ σc

i −
iµ

β
D(∂iu− 2eP

i ) ,
(A5)
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the generating functional takes the form:

G[J,J |P ] ∝
∫

exp

[−µL

2β

∫ (
(∂iu + Ji)(δ + D)(∂iu + Ji) + JiDJi

−2(∂iu + Ji)(DJi + 2Ci)
)
d2x − iL

∫
σb

i

(
2Ci − D(∂iu− 2eP

i )
)
d2x

− βL

2µ

∫
(σc

i D−1σc
i + σb

i σ
b
i + 2σb

i σ
c
i ) d2x

]
D(σb

i , σ
c
i , u) ,

(A6)

where the operator D is inverse to D−1 (A4), and Ji ≡ Ji − 2eP
i .

The experience of the stationary phase estimate in Section 2 demonstrates a necessity
of self-consistent choice of the functions Ci. The corresponding substitute

Ci =
1

2
D (∂iu− 2eP

i ) (A7)

allows to fix the background contribution and decouples the functional integration over
u. The latter, in turn, is just responsible for the dependence of the partition function on
the plastic strain eP

i and thus on the defect distribution. The same choice (A7) is suitable
for the generating function dependent on the source J. Thus the following representation
arises:

G[J,J |Pph] ∝
∫

exp

[−µL

2β

∫ (
(∂iu + Ji)(δ − D)(∂iu + Ji) + JiDJi

)
d2x

]
D(u) ,

(A8)
where the superscribed notation Pph implies that the background distribution of the
dislocations is fixed. As a final step, the shift

u −→ u − 1

∆
∂iJi ,

allows to get rid of the contribution of the first order in ∂iu. Eventually, the generating
functional is given by the following exponential (after β ↔ 1/β):

G[J,J |Pph] = const× exp

[−µβL

2

∫ (
∂iJi

( 1

∆
− 1

∆− κ2

)
∂kJk

−Ji
κ2

∆− κ2
Ji + ∆Ji

1

∆− κ2
Ji

)
d2x

]
,

(A9)

where Ji ≡ Ji−2eP
i . The constant factor denotes all the decoupled integrations. Equation

(A9) is just the answer expressed by (32), (33).
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