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Let Uy : Hy — Hy, Uy : Hy — Hj be two unitary operators, X : H; — Hs a bounded
linear operator. Set K = XU; — Uy X. Define

Ap=(1—=r)> r"UyXU",

n=0

i.e., A, are the Abel means of the sequence Uy XU;". The general conjecture is the
following.

Conjecture 0.1. Let Uy,Us be unitary operators, and assume that X is such that
K = XUy — U X is a finite rank operator (or from the trace class, etc.) Then the Abel
limit of the sequence Uy XU[ ™ exists in the weak operator topology, i.e., the operators
A, weakly converge as r /1.

It is shown in [1] that Conjecture 0.1 for the case of rank K = 2 reduces to the case,
where H; = Ho = L?(u) with singular probability measure p on the unit circle having
no atomic masses, U := U; = U, is the operator of multiplication by the independent
variable on L?(;1), and

(1) K = (7f)]- - ('7 l)f
for some f € L?(u).

In this article we discuss this case. It is connected with the problem of constructing
the Hilbert transform on a singular measure and with a certain boundary convergence
of functions from Ky, see Proposition 2.1. Our Theorem 3.1 is a reformulation of
the problem in terms of truncated Toeplitz operators. It immediately implies a result
(Theorem 4.1) about the boundary behaviour of functions from a wide subclass of Ky.

A sufficient condition for three equivalent properties from Proposition 2.1 is given in
Theorem 5.6.

1. THE HILBERT TRANSFORM AND CAUCHY TYPE INTEGRALS

A wave operator is an operator with prescribed commutator with a given unitary op-
erator. This construction turns out to be closely connected with the Hilbert transform.
For a singular measure p it is natural to define the Hilbert transform by the formula

(1O f@)
mf = [ .

However, this map (initially defined on smooth functions) is not continuous in L?(u).

Proposition 1.1. Let u be a singular probability measure on the unit circle without
atomic masses. The operator H defined on sufficiently smooth functions f cannot be
extended to a continuous map on L*(u).

A proof of this fact will be presented in the next section.
A natural question appears about the class of functions to which the Hilbert trans-
form can be applied and how it acts on them. One of possible ways consists in con-

structing a limit of [ Wd,u@) as 1 /1.

rz



If a function f on the unit circle is sufficiently smooth, define a [regular] integral

() ()

operator on L?(u) with kernel !

fm/f @ aute)

It is easily seen that its commutator with the operator of multiplication by the inde-
pendent variable coincides with (1).

If K = XU —UX, it is easy to check the relation

(2) X —yrtixy—(+h) Z UTPKU~™) o > 0.

m=0

Denote by B, the Abel means of the sequence (2):

o0

B, =(1-r)> (X -U"Hxu-"+)
n=0
=(1-r)Y " Y UmKuD = N pmym gD,
n=0 m=0 m=0

By construction, ||B,|| < 2]/ X]||, and convergence of B, is equivalent to that of the Abel
means of U”XU .
IfK = Zk(-,ﬂk)vk, for h € L?(i1) and for z with |z| = 1 we have

(B,h)(z) = (i rmUmKU_(m“)h) (2)

m=0

& 1 e—(m+1)p e\ onlz U Eh(¢ du(€)
=300 S [ €M) o) = Conta) [ HETEE.

Apply this formula to the operator K given by ( ):

) ae) = [HOLOBE . [POUE _ [ TEZTE) 614

Thus, the limit of the functions B,1 (whenever it exists) gives us a definition of the
Hilbert transform of f.

From now on, instead of (1), we work with K defined on L?(u) by

(4) K=(,2)f-(,2f)L
To write it in the form K = XU UX, take the operator —XU in place of X that
corresponds to K from formula (1). For the operators B, we then have
) o= [T g0,
1-— r{z

To obtain the Hilbert transform of f, one should take the limit of B.h with h(¢) = —£.



2. THE CLARK MEASURES

Fix an inner function § with 6(0) = 0, set Ky = H>©0H?, Py denotes the orthogonal
projection onto Kjy.

For a complex number « with |a| = 1 consider the singular probability measure o,
on the unit circle determined by

1+ab(z)  [1+¢&z
1—ab(z) _/1—5,2‘“"‘('5)'

It is well known [3] that the unitary operator Uy, Uyh = Pyzh + a(h, z0)1, is unitarily
equivalent to the operator of multiplication by z on L?(0,). The unitary identification
between Ky and LQ(UQ) takes a function from Ky to its boundary values o,-almost
everywhere [6], the inverse map sends a function s € L?(0,) to the function from Kj

whose value at a point z of the unit disk is (1 — 6(z)) [ %Ué(f).

For o = 1 we usually write oy = pu, Uy = U.
Let f € L?(u), consider the function ¢ € Kj such that ¢ = f p-almost everywhere.
Define K by (4), construct the operators B, (5), denote by g, the function B,h with

h =1. We have ) © ) ()
_ [ f(z) = f(€ _p(z) —p(rz
)_/ 1—réz du(&) = 1—-0(rz) °

Proposition 2.1. Assume that the commutator K = XU — UX has the form (4) for
some f € L?(u). Construct the inner function 6 for which p = o1 and ¢ € Ky such
that ¢ = f p-almost everywhere, define the functions g,.. The following are equivalent:
1) the Abel means of U"XU™™ have a strong (resp., weak) limit;
2) the strong (resp., weak) limit of [ f )du(f) exists as r /' 1 (and thus the

Hilbert transform Hf can be defined);
3) the functions g, have a strong (resp., weak) limit as r /1.

Proof. Convergence of the Abel means of U" XU ™" is equivalent to that of B,. If
we apply B, to the vector h = 1, we obtain g,, for h(§) = —Zi we obtain (B,h)(z) =
f %du(f ). It remains to notice that the subset of L? (1) on which the convergence
holds is a closed subspace reducing U, and convergence for h = 1 or for h = Z implies
the same convergence on the whole of L?(p). O

The limit g of g, and H f satisfy the relation

©)
stepee (1)) =t ([ LO=LC i) 4o [LOIO i) - s [ an

Now we present a proof of the fact that the Hilbert transform H is not a continuous
operator on L?(u).

Proof of Proposition 1.1. Let @ denote the transplantation of the map f —
f — Hzf from L?(u) to Ky by the standard identification of Ky and L?(i). We have
H1=0,Hz=1;if [ fdu=0 then Hzf = zH f. Then, accordingly, Q possesses the
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following properties:
a) Q1 = 0; b) Q(z0) = z6; c) hyzh € Ky = Qzh = zQh.

Continuity of @ on L?(p) and properties a) and c¢) would imply @ = 0, cf. [4]. Indeed,
for h € Ky we have
h — h(0)

z

Qh = Q(h — h(0)) +h(0)Q1 = 2Q
Iterations of the operator A — h_Th(O) form a sequence in Ky with norms tending to 0,
hence Qh = 0. At the same time, ) # 0 by property b). O

3. TRUNCATED TOEPLITZ OPERATORS

Basic properties of truncated Toeplitz operators were studied in [2].
For ¢ € L? the truncated Toeplitz operator Ay is defined by

Awh = Pyiph, h € Ky;

we assume that the symbol 1) is such that A, is bounded.

Obviously, functions from § H? + @ H? determine zero operator, thus we may restrict
ourselves by the assumption that the symbol belongs to Ky + Ky. For a truncated
Toeplitz operator A take a symbol ) € Ky + Ky. We write

by =Pp=Ale Ky, =P ey o= (1) = (A1) = (A(26), 70).
We also have
(1) =0,  A(20) = (- + 1) 30.
For the symbol we then have
(7) Y =1y +1p_ = Al + 20 - A(z0) — (AL, 1)1.

The following theorem shows that Conjecture 0.1 with rank K = 2 reduces to a
problem about truncated Toeplitz operators.

Theorem 3.1. 1) An operator A on Ky is a truncated Toeplitz operator if and only
if
(8) K=AU-UA=(,20)p — (-, z20p)1

for some ¢ € K.
2) If A is a truncated Toeplitz operator with (Al,1) =0, then

9) p = Al — zA(z6)

up to an additive constant.
3) If A= Ay, then

(10) o =i — OO,

hence ¢ =1 o_1-almost everywhere. A truncated Toeplitz operator Ay commutes with
U if and only if ¢ = 1+ — 0p_ = const.
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For a constant function ¢ we obtain K = 0 in (8), therefore, the function ¢ is
determined up to a constant. The standard choice will be determined by the condition
¢(0) = 0.
Proof. 1) Theorem 8.1 from [2] may be rewritten as follows: X is a truncated Toeplitz
operator if and only if (f,z0) =0, (g,1) = 0 imply (K f,g) = 0. This is equivalent to a
representation of K in the form K = (-, 20)p + (-,y)1 for some ¢,y € Ky, and thus (8)
implies that A is a truncated Toeplitz operator. Conversely, by Theorem 6.1 of [1] we
obtain z¢ 4+ 4 = 0 p-almost everywhere, hence -y is the function from Ky whose values
equal Zp p-almost everywhere. This means that v = Z0@, which yields (8).

2) Apply relation (8) to the vector z0:

K(z0) =(AU —UA)(z0) = A1 — UA(z60) = Al — zA(z0);
=(20,2z0)p — (20, 200)1 = p — ¢(0).

3) For a constant function v the fact is trivial. Now without loss of generality we
may think that 49 = 0. By the preceding formula, for A = A, we get

¢ —(0) = Ayl — 2Ay(20) = 3 — 2(1h— +9p0)20 = ;. — Oy
The claim now easily follows. ([l

A complex measure s on the unit circle will be called a quasisymbol of a truncated
Toeplitz operator A acting on Ky if (Af,g) = [ fgds« for all (continuous) f,g € Kp.

Proposition 3.2. Take o with |a| = 1 and q¢ € L>®(0,). Let w be the function from
Ky whose values coincide with q oq4-everywhere. Then q(Uy) is a truncated Toeplitz
operator with symbol (1 + af)w, and qo, is a quasisymbol of q(U,). For the function
@ that determines the commutator (8) we have ¢ = (1 — )w.

Proof. Sarason observed that all operators commuting with U, are truncated Toeplitz
operators, see [2], Section 12.

The fact is obvious if ¢ is constant. Therefore, we may assume that ¢y = [gdo, =
w(0) = 0. For the symbol of A = ¢(U,) use formula (7):

= Al + 20 - A(Z0) — (AL, 1)1 = w + (20) - Zaw = (1 + af)w.

By (10), from the formula for 3 for A = q(U,) we obtain ¢, = w, ¥ = abw, ¢ =
Py — 0P = (1 — a)w. O

4. BOUNDARY BEHAVIOUR OF FUNCTIONS FROM Kjy

Denote by R the class of functions ¢ € Ky, for which there exists a bounded truncated
Toeplitz operator A such that formula (8) is fulfilled. Conjecture 0.1 for the case
rank K = 2 is equivalent to the weak convergence of functions (5) as r 1 for all
pE R

It follows from Proposition 3.2 that for any unimodular ¢, o # 1, a function from Ky
belongs to R if its boundary values belong to L (o) for some unimodular o # 1. (A
natural question is whether or not the same is true for & = 1.) The example from [5]
implies that there exist functions from K whose boundary values o4-almost everywhere
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do not constitute a function from L°°(o,). There are other sufficient conditions for
p € Ky to belong to K. In particular, all bounded functions from Ky belong to K; also
all functions of the form Pyu with uw € H* are in K, they are realized by the truncated
Toeplitz operator with symbol .

Poltoratski [6] established convergence p(rz) — ¢(2), ¢ € Ky, as r /1 in L*(0,),
and, moreover, for o,-almost all z. We obtain another stronger version of the former
convergence for functions from K.

Theorem 4.1. Let ¢ € &. Then ¢(z) — ¢(rz) = (1 — 0(rz))g,(z), where the norms
grllL2(u) are bounded uniformly in r.

Proof. If ¢ € K, then formula (8) is fulfilled for some truncated Toeplitz operator A.
Hence g, have the form B,h with ||h| = 1 and this implies that their norms in L?(u)
are bounded by 2 - ||A]|. O

In Theorem 5.6 below we establish a sufficient condition for convergence of g, as
r /1. As a partial case of Theorems 4.1 and 5.6, we obtain the following result.

Theorem 4.2. Take ¢ € Ky, let g, be defined by o(z) —p(rz) = (1 —0(rz))gr(2). If
coincides with a bounded (resp., continuous) function o,-almost everywhere for some
unimodular o # 1, then the norms ||g.||p2(,) are bounded uniformly in r (resp., the

limit of g, exists in L*(u)).

5. CONVERGENCE FOR CONTINUOUS FUNCTIONS
For a sequence (xg, 1, x2, ... ) the Cesaro means are its arithmetical means n+_1 > ko Tk-

Theorem 5.1. Suppose that U is a unitary operator with singular spectrum having
no eigenvectors, X s a compact operator. Then the Cesaro means of the sequence
UMXU™™ tend to zero in the strong operator topology.

Proof. Since every compact operator can be approximated in norm by finite-rank
operators, it suffices to consider the case of a rank-one operator X. One may think
that X acts on L?(u), where, as usual, U is the operator of multiplication by the
independent variable. Let X = (-,@)v. Then U"XU "h = (2 "h,a)z"v, and for
the norms we have |[U"XU "h| < |v|| - | [ z7"h(z)u(z)dp(z)|. We obtain Fourier
coefficients for the complex measure hup on the unit circle, the Cesaro means of their
absolute values tend to zero by the classic Wiener theorem. g

Lemma 5.2. If q is a continuous function on the unit circle, oy, as are two distinct
numbers on the unit circle, then q(Uy,) — q(Uq,) s a compact operator.

Proof. Since any continuous function may be uniformly approximated by [trigono-
metrical] polynomials, it suffices to prove the lemma for the polynomials. We have
rank(U,, — Uy,) = 1, and this easily implies that rank(q(Uy,) — q(Uq,)) < 00 if ¢ is a
polynomial. U
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Corollary 5.3. For any continuous function q on the unit circle and for every uni-
modular constant o« the Cesaro means of the sequence U™q(Uy)U™™ strongly tend to

q(U).

Proof. Apply Theorem 5.1 to the operator X = q(U,) — q(U), which is compact by
the Lemma. O

Theorem 5.4. Let A be a truncated Toeplitz operator such that formula (8) is fulfilled
for v € Ky. If p coincides with a continuous function q o4-almost everywhere for some
a # 1, then the strong limit of the sequence of Cesaro means of UMAU™™ exists and

equals A — 2 (q(Uy) — q(U)).

-«

Proof. From Proposition 3.2 it follows that the operator A — ﬁq(Ua) commutes with
U. Therefore,

1
UrAU ™™ =" <A _ ﬁQ(Ua)> " + u". mq(Ua)U—n

1 1
= A - [e% " [e% —TL7
(4 T20(0)) + U a0
it remains to apply Corollary 5.3. g

Corollary 5.5. The Cesaro means of the sequence U"Ay,U™" tend to a limit for a
truncated Toeplitz operator Ay with symbol 1 € Ky+Ky if 1 coincides with a continuous
function o_1-almost everywhere.

Theorem 5.6. In the conditions of Proposition 2.1 assume that for some unimodular
complex number o # 1 the function ¢ € Ky coincides oq-almost everywhere with a
continuous function q. Then the equivalent properties 1), 2), 3) of the Proposition are
fulfilled. Moreover, if [ fdu =0, then

q—af

Hf==%
f=2g—_

for a constant function f we have Hf = 0.

This formula may be compared with formula (2.1) in [7]. The latter also connects
the Hilbert transform, the “Clark transform” (f — ¢), and extension by continuity,
but on the real line and under stronger smoothness assumptions.

In the particular case « = —1 we have

P RIRCELC)

A simpler formula is true for the limit g of g,, even without the assumption [ fdu = 0.
From (6) we obtain
_f—q

Cl-a’
(This relation is obvious if f is constant.)
Once again, it is interesting to know if the theorem holds true under the same
assumptions for o = 1.
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Proof. The convergence of B, follows from Theorem 5.4.

To obtain a formula for the Hilbert transform, we use formula (5) with h(¢) = £, in
which we need to pass to the limit as » 1. Also recall that the operators B, were
defined as the Abel means of the sequence (2). To fulfill formula (4) in L?(u), take
the truncated Toeplitz operator A = ﬁq(Ua) on Ky. The operators B, are the Abel

means of the sequence A — U™ AU ", by Corollary 5.3 they tend to ﬁ(q(Ua) —q(0)).
As was shown above, to find the Hilbert transform H f, we must apply this formula to
the function from Ky corresponding to the vector h € L?(u), h(§) = —£, that is, to
—26, and consider the values of the resulting function L (¢(Uy) — q(U))(26) p-almost
everywhere. If g is a constant, we trivially obtain 0. Now take g with f qdo, = 0;
equivalently, [ fdp = 0; this also yields zw € Ky. We have ¢(Uy)z0 = qza = azZw 04-
almost everywhere, hence ¢q(U,)(20) = azw = azf p-almost everywhere. Furthermore,

q(U)(20) = zq p-almost everywhere. We obtain H f = L (azf — zq) = 242 O

The expressions obtained essentially depend on a possibility to extend functions
defined o,-almost everywhere to p-almost all points by continuity. It is natural to
ask if the continuity property may be weakened. A natural generalization may hold if
p-almost all points are Lebesgue points for o_;. It would also be important to describe
the class of f € L?(u) to which these arguments may be applied.

Conjecture 5.7. Set yu =0y, v =0_1, take q € L?>(v) that coincides with a symbol of
a bounded truncated Toeplitz operator A v-almost everywhere. Denote by I, . the arc
of length € centered at z. If the limit

[, a(©yin(e)
f[z,e dv(§)

exists for p-almost all z, then the Abel means of the sequence U AU ™™ tend to a limit

asr 1.

1m

We considered the sequence Uy XU; ™ as n — +o00, the same arguments work for
this sequence as n — +oo. It is an interesting question if the limits as n — 400 and as
n — —oo must coincide (if they exist) in the case of rank-two commutator for singular
spectral measures. In general, one may consider their half-sum, which would also give
us a natural definition of the Hilbert transform as soon as existence of a limit will be
established.

Now suppose that Conjecture 0.1 is true, hence a wave operator and the Hilbert
transform are constructed. One can see from our results that this means the existence
of “natural” maps L*>(o,) — L°°(u) sending continuous functions to “themselves”,
but these maps cannot be extended to continuous maps L?(o,) — L?(u). This gives a
reason to think that Conjecture 0.1 must be disproved.
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