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ABSTRACT:

We prove the solvability in the Sobolev—Slobodetskii spaces and obtain coercive estimates of the
solution of a basic linear problem arising in the study of evolution of an isolated mass of the capillary
viscous incomressible liquid. The results obtained in the paper can be used in the proof of local
solvability of the above-mentioned free boundary problem without any specific restrictions on the
shape of initial configuration of the liquid.
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1 Introduction

The paper is devoted to the linear problem

v, — vV20 + Vp = f(z,1),

V-v=f(z,t) =V -F(z,t), z€F, t>0,

T(v,p)N(z) + oN(z)Lp = d(z,1), (1.1)
pu(@t) + V(2) - Vop— v(w,1) - N(2) = g(,8), z€0,

v(z,0) =vo(z), ze€F, p(z,0)=p(z), z€g,

in a bounded domain F C R?® with a smooth boundary G. Unknown are the vector field
v(x,t) = (v1,v9,v3) and functions p(x,t), z € F, and p(x,t), z € G. By T'(v,p) = —pl+vS(v)
9vj | dug

Oz~ 9 ) k=123
N is the exterior normal to G, v and o are positive constants, and

we mean the stress tensor, S(v) = is the doubled rate-of-strain tensor,

Lp = —Agp + b(z)p,

where Ag is the Laplace-Beltrami operator on G and b(z) is a smooth function. Finally, V' (z)
is a vector field defined on G and V. is the tangential part of the gradient.

The problem (1.1) arises as a result of linearization of a free boundary problem for the
Navier-Stokes equations, governing the evolution of an isolated mass of a viscous incompress-
ible capillary liquid. The latter has been studied in the papers [1,2] and others, where the
method of the Lagrangian coordinates was used. It turned out to be especially fruitful in the
case when the surface tension is not taken into account [3]. The problem (1.1) is obtained
when so called Hanzawa coordinate transformation is applied to the free boundary problem
in order to write it a fixed domain (see formula (5.2)). This transformation gives some tech-
nical advantages in the case of a capillary liquid, when the coefficient of the surface tension
o is positive. It may be useful also in the analysis of some more complicated problems (e.g.,
problems of magnetohydrodynamics).

In [4] the problem (1.1) has been studied in the Holder spaces of functions.

The main result of the paper is the coercive estimate of the solution of the problem (1.1) in
anisotropic Sobolev-Slobodetskii spaces Wé’l/ 2(QT) in a cylindrical domain Q7 = F x (0,7).
We recall the definition of these spaces. Let  be a domain in R™. The (isotropic) Sobolev
space W(2) with [ > 0 is the space of functions u(z), = € Q, with the norm

gy = X 107ul 0= 3 [ Diule)d

0<ljl<t 0<ljl<t
if | = [l], i.e. [ is an integral number, and

; ; dxdy
2 _ 2 J — DI 2 g
Il o0 = Wl 2 [ [ 107t = Diu o
J =
if I =[I]+ A, XA € (0,1). As usual, D/u denotes a (generalized) partial derivative %
it 0xy)
where j = (j1,72,...Jn) and [j| = j1 + ... + jn. The anisotropic space WZZ’Z/Z(QT), Qr =
2 x (0,T), can be defined as

Ly ((0,T), W5(9)) N Wa/*((0,T), Ls(%2))



and supplied with the norm

gy = [ e g+ [ T (1.2

There exist many other equivalent norms in WQU 2(QT); some of them will be used below.
Sobolev spaces of functions given on smooth surfaces, in particular, on G and on Gy =
G x (0,T), are introduced in a standard way, with the help of local maps and partition of
unity. We also find it convenient to introduce the spaces Wé’O(QT) = Ly((0,T), Wl(9)) and

WQO’Z/Z(QT) = W2l/2((0, T), L2(2)); the squares of norms in these spaces coincide, respectively,
with the first and the second term in (1.2). Finally, by |ul, /5, o, and |ul; /5, , We mean the

norms of u in Wl/2(0,T; W3 (€)) and Wl/2(0,T; W3 (G)), respectively.

Theorem 1.1. Assume that | € [0,5/2), | #1/2,1,3/2 and that the data of the problem
(1.1) possess the following regularity properties: f € W2” 2(QT) fe W21+1 %Qr), f(z,t) =
V- F(z,t), F e Wo'"(Qy), d- N e We% Gy n w20, 7w, /?G)), d— N(d-N) €
Wy RPN Gr), g € WP (Gr) w2 (0,15 W5 %(9)), wo € WEFH(F), po € WET(9)
where T < 0o, Qp = F1 x(0,T), Gy = Gx(0,T). Assume also that V € W2l+3/2(g). Finally,
let the compatibility conditions

V-vo(z) = f(z,0), zeF, if [<1/2,

V-vo(z) = f(z,0), xzeF, vigS(vo)N =Igd(z,0), ze€gG, if [>1/2 (1.3)

be satisfied, where llgd = d — N(d - N) is the projection of d on the tangent plane to
G. Then the problem (1.1) has a unique solution v,p,p such that v € I/Vl+2 l/2+1(QT), Vp €
WEP(Qr), p € Wi G oW (0. T WSH@), p € WE G (0.7 W5 (@)

€ W2l+3/2’0(G )ﬂWl/2(0,T, W;/Q (@), p(-,t) € WIT(G), Vt € (0,T), and the solution sat-
isfies the inequality

Yir(w,9,0) =l sz g, + 190y, + IBllyts1720 ) + 1Plyss.n
+ HPHWé%/?,O(GT) + |P|z/2,5/2,GT + HPtHWéH/?,O(GT) + |Pt|z/2,3/2,GT

C(T)<Hf” Wiz T HfHWHl,O( + ”F”Wg,1+l/2(QT) (1.4)
+ ||Hgd|| LH/2021/4 -i- Ild - N|| /206 +|d- N|l/2,1/2,GT

+lallyssorsogy, + |g|l/2,3/2,GT ol sy + Ioolhygreg)) = Nr-
Moreover, if g € WH_?’/2 l/2+3/4(G ), then py € WH_?’/2 l/2+3/4(GT), and

”U” l+2ﬁl/2+1(QT) + ”vp”WZlal/2(QT) + ”pHWé+1/2’O(GT) + |p|l/2,1/2,GT

+ ol 45/20(qy T 1Pl /252,60 + ||Pt||Wl+3/2,l/2+3/4(GT)

< (T )(Ilfll gy 1T o1 gy + IFyoarirzg, (15)
+ HHgd”W2l+1/2J/2+1/4(GT) +a- NHWéH/?,O(GT) +1d-Nlys126,

Hlgllysrzirasars g, + llvollye gy + ”p‘]”W2’+2(9)>'
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The restriction | < 5/2 minimizes the order of compatility of the initial and boundary
data expressed by (1.3). The requirement [ # 1/2,1,3/2 is technical; it is made to avoid
the cases in which the compatibility conditions (1.3) should be strongly modified (in this
connection see [5,6]).

It follows from the imbedding theorems that in the case f = 0, F = 0 the estimate (1.4)
is coercive, i.e.,

Ny < cYr(v,p, p);

the same is true for (1.5). Hence Theorem 1.1 guarantees the existence of the solution of the

problem (1.1) with maximal regularity properties.

By the trace theorem for the space W2l+2’l/2+1(QT), v(-,t) € Wé“(]—"), i.e., v is as smooth
as vg. It follows from Proposition 4.1 that the same is true for p.

The proof of Theorem 1 is given in Sec. 2-4. Sec. 5 contains a short discussion (without
detailed proofs) of the application of Theorem 1.1 to the free boundary problem with the
initial domain of arbitrary shape and with the vector field vo(z) of the initial velocity that
needs not be small.

2 Parameter-dependent problem
Following [7], we consider the problem with a complex parameter s:

sv — vV + Vp = f(x),
V-v(z) =0, ze€F,
T(v,p)N + 0N Lyp = d(z),
sp+V -Vp—v(z) N(z)=9g(z), z€g.
The solution of (2.1) is also sought in the space of complex-valued functions.

Theorem 2.2. Let Res > a > 1, f € Wi(F), d € W2l+1/2(g), g € W2l+3/2(g) with
| €[0,5/2). Then the problem (2.1) has a unique solution v € WiTH(F), p € WSTHF),

peW,"(G), and

1+1/2 /2 1+1/2

[0llyyz+i () + 1] Pllvl 7 +||p||Wé+1(]-')+|S|/ Pl oz + Is1* Y oty
[ [

+ ‘S‘Hpuwé+3/2(g) + |S| /2”p”W25/2(g) + HPHW5+5/2(Q) < c(”-f”Wé(}') + |S| /2Hf”L2(.7:)

+ |3|1/4+l/2||d —N(d- N)||L2(g) + HdHWéH/Q(Q) + |3|l/2||d . N||W21/2(g)
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with the constant independent of |s| (but it may depend on a).
Proof. We start with the proof of the estimate (2.2). Without loss of generality we may
assume that f is divergence free, because arbitrary f € Lo(F) can be decomposed in the

orthogonal sum
v=Ff +Vop,

where f’ is divergence free and ¢ is a solution of the Dirichlet problem

Vip=0, z€F, ¢|g=0.



Since
el fllwir < IVellwr + 1 lwir < c2ll fllwyr),

the problem (2.1) is equivalent to a similar problem with f and p replaced by f’ and p’ =
p — Vi, respectively.
STEP 1. We consider a model problem in the half-space R% = {z3 > 0}
(sv(z) + V' -V'v(z) — vV (z) + Vp(z) =0,
V-v(z)=0, z3>0,

8’03 8’[)]' o (ad -
V<8—£U]+8—I3) _b](x)v J = 1727 (23)

0
-p+ 21/8—;)2 —ol'p = b3(z'),

sp+ V' -Vp+u(z) =g(z), z3=0,

where V' is a constant vector of the form V' = (V1,V5), 2’ = (21,22) and V' = (8%1, 8%2).
Using the Fourier transform in z, 22, we reduce (2.3) to the boundary value problem on the

half-axis Ry = {z3 > 0}:
. N
I/(Tl—d—x%)vj‘*‘léjp:o ]:1,2,
2 dp 5
9 ~ e~ 3
V(ﬁ - d—xg)% + dzs 0, &1o1 + 18202 + dos 0, z3>0,
dv; o ~ .
V(d—:r; n zgjv3) b, j=12 (2.4)
~ dv: -~
— P+ 2w o2 =Ty,
dwg
81ﬁ+53:§7 $3:07
:6_>07 5_>07 ($3—>OO)7

where &€ = (£1,&), r1 =r1(s,8) = /s1iv L+ €2, —n <argr <m sy =s+iV' £

It is convenient to exclude the function p from (2.4) and write this problem in the form

( d2
2 ~ . ~ .
(i =g )i+t =0 =12

d*\. dp o dU
I/<T%—W)Uj+d—;)3:07 Z§IUI+Z£ZU2+d—a;,:0’ z3 > 0,

3
v; .\ o+ . (2.5)
V(d—x; +’L§j’03) = bj, ] = 1,2,
~ dv: O o O o~
—P+2Vd—3 — —[¢]*03 = bs — —|¢g, @3 =0,
I3 S1 S1

v—0, p—0, (r3— c0).

In the paper [2] the explicit formula for the solution of (2.5) is obtained, in particular, it



i1s shown that in the case Res; > 0

~ 1— 51'3 ~ eg(Ig) 3 ~ 61(.’173) 3 ~
== b; iibi b
v vry co(3)bi + v2ry(ry + |€]) Py Z Uigbi + ZVZ] J

2
S ol eo(z3) Ussg —
v 517”1(7”1 + ’5‘)P1

J
0\51261(133) ~ .
Visg, i=1,2,3,
Vsi(r + )P Y

2
ﬁ— 7;1;11 [(211 + %)(Zflbl + Z§2b2) — I/(Tl + 5 )(bg — —‘f’ A)} |§|1337 (27)
where - el
60(373) = e_rlxs, 61(373) = € :|€§| R (2.8)
P (0 + 16— am e+ el = 2 (2 e (1- B+ DY o
' 1+ (€] vsy /)’ '
and Ujj;, V;; are the elements of the matrices
E(Br — [€D)s1 + ZIE1%)  &i&a((Bri — [ED)sy + ZIEP7)  iurisa(r — [€])
U= | &&(Br —IE)st+ ZIEP)  &((Br — [€])s1 + ZIE[?)  i&armsi(r — [€]) ],
—i&1r181(r1 — |€]) —i&ory1s1(r1 — |€]) —|€&|r1s1(r1 + |€])
—&(2rs1+ ZIEP)  —&&@risi+ ZIE7)  —i&isi(r+ €)
V= —&&02rsi+ 2167 —6Q2risi+ 267 —ibasi(r] + [€]*)
—i&1[€](2r1s1 + ZIEP)  —i&al](2risy + ZIEIP)  [€lsi(r] + I€]P)
It is shown in [2] that in the case Res; >y >0
2
L5 lsallel + Isu” + olél < e(mIPLl (2.10)

d z3 < |2
/0 ‘ d$3 f

< | Ji 9 2j—1 2j—1
[T g, < Pl

0 d:v% N ’T1’2 7
/ / d]eg (23 +2) _ deo(zs) 2 dwl‘o*iz < clry JPIH-1
dx?) dl‘% ‘Z’ "

/ / dJel (x3 + 2) djel(:rg) 2 dxsdz < |rp |20 HR)I—1 g2 HR)—1
da), dad 1 [z T [ f? ’

where j > 0, k € (0,1). Moreover, if Res > v > 0, and v > (4v)~!|V’|?, then

clri(s1, &) < Vsl + (82 < Iri(s1, €.



Using the above inequalities and repeating the calculations in the proof of Theorem 3.1.in
[2] (carried out in the case V' = 0), we obtain

15020,y + 175 ) PHDUBIZ ) + 1By, + P2
< 8112z, + 171 (51, )P B2 sy + 1 s + I PERIBIE )

< cllra P (bal® + [bal?) + (€l 2 (bl + [P EP1G1)
< e([rH(ba]” + [b2]?) + €]l P [bs | + | 1€]*1g1),

where || - HW;(R") is the principal part of the norm in W}(R"):

dxdy
o0y = }:/}/JD” DIy = A=1=€ 0.1,

7=

Now we integrate this inequality with respect to & € R? and use the Parceval formula. This

leads to

HvHﬁVsz(Rg + s w7, re) T VPl R?) +|S|lHVpH%2(Ri)

l
< c<||b||W2,+1/2 r2) T |s| +1/2||b/||L2(R2) + s ||b3||12/v21/2 ) T ||9||?,V2l+3/2( +1s/'llgll? W3R ))-

( (R? (R?
(2.11)
We supplement (2.11) with the estimates of p|;,—0 = p(0) and p. By (2.7),
B(0)] < (bl + (1+ [¢])Ig]), (2.12)
which implies
20Oy 272 gy < €(18ll272 ) + 91372 gy ) -
120172 gy < (1Bl 172 gy + 90072 g )-
To estimate the norms of p, we use the equations
31;5: g_ 53(0)7
2
_ - v o o (2.14)
Ol P =bs+ (B —2v )| = bs+ ((0) +20 3 is75(0)
= =
Since , _
35(0) = > j=1 Usjb; _ 0&?Us3q
vir(r+[E)P visiri(r + [€) Py
and, as a consequence, B
183(0)] < e(|é]lr]7*1b] + |g]),
equations (2.14) imply N
3171 < cllelr 2151 + 3, -

ol¢*1p] < (bl + (1 + €)[g])-



Hence

, <c(|b | )
ol 372y < (1Bl 272 gay + N9y g ) o)
ol gy < (1Bl 2 + 19y e )

Now we pass to the estimate of sp. By (2.14),
[sl1p] < [V'lI€llp] + e(€]Ir]2[b] + [g]),
which implies

|S|”p”W2l+3/2(R2) < |V,‘HPHW5+5/2(R2) + C(”bHWéHN(Rz) + Hg|’W2l+3/2(R2))7 (2 17)
|8|1+l/2||ﬂ||W23/2(R2) < |V/||8|l/2||ﬂ||W25/2(R2) + C|3|l/2(||b||W21/2(R2) Hllgllyyerz gey)-

Estimates (2.16),(2.17) yield

51 2Oy gy + 10O gy + 1517

A .
+ Isllolly 02y + 15120l 32 (218)
< c(I57218] 72 gy + 1Bl 2y + 1512l 75 gy + 19y 572 g )

STEP 2. We counsider the problem

sv+ (V- V')v — vV 4+ Vp = f(z),
V-v(z) =0, z3>0,

8.
,,(%Jrﬂ):(), i=1.2,

drj | Ows (2.19)

0
—p+2u8—2—0A’p:0,

(sp+ V' -Vip+uv3=0, z3=0.

Our goal is to construct the solution of (2.19) and to obtain the estimate similar to
(2.11), (2.18). Without loss of generality we can assume that V - f = 0, otherwise we could
decompose f in the sum of a divergence free and a potential vector fields:

f=Ff+Ve¢,
where ¢ is a solution of the Dirichlet problem
Vip(2) =V - f(@), @3>0, ¢loy=o=0.

The problem (2.19) is equivalent to a similar problem with f’ instead of f and p’ = p — ¢
instead of p.

Thus, we assume that f is divergence free and we extend f in R® with preservation of
this property and of the regularity properties, namely, we require that V - f* =0,

Hf*HLz(R?’) < chHLg(Ri)a ”f*”wg(W) < ch”Wé(Ri)u



where f* is the extension of f.
We define u as the solution of the system

su+ (V' -Vu —vViu = f*(z), =R

Making the Fourier transform with respect to x1,z2, 3, we obtain the solution in the form

’E(f) = m:

where ¢ = (£1,&2,£3) is the dual variable and s1 = s +1V' - €. Tt is clear that V- u = 0. The
corresponding pressure p vanishes. The vector field u satisfies the inequalities

[slllwllp,@s) < cllf rams), Nl gs) < cllf lwigs),
and, as a consequence,
z z
|2 |, ey + lwll ez sy < c(ls] PN £ lloes) + 15 llwicee)-

The difference w = v — w is a solution of (2.8) with

B OJuz ~ Ou; . _
b](x)__y<%j+a—x3)7 3_172737 g = —us.

Hence w, p, p satisfy (2.11), (2.18). It follows that
0125125 ) + 1521012, ag) + 19012500, + 15T IVPI2 s
1T DOV 2172 g + 10OV iy + 150 g + Dol (2:20)
201 4112 240|112 2 Ly £12
1012 g7 gy + 5 1012 1 gy < (18 gagy + 15171 )
STEP 3. We consider the problem

sv — vV + Vp = f(z),
V-v(z) =0, z3>0,
8’03 (91)]' .
B L) =, j=1,2
”<8xj * &vg) AN (2.21)
-p+ 21/2—22 —oA'p = bs('),
(sp+ V' -V'p+wvs=g(z), z3=0.

The first equation can be written in the form
sv+ (V' -V)v — vV +Vp = f(z)+ (V' V),
and the term (V' - V)wv can be estimated by the interpolation inequality as follows:

‘1—1—1/2

H(V/ . v)”HWﬁ(Rﬁ_) < c‘s‘—l/Z(HU”W2I+2(Ri) + ‘S HU|’L2(R1))7

SV V)0llymy) < sl 20 lhygeng ) + 5120l g ),

10



hence
V" VYo lhyga, + 210 VYol < sl 2ol goaggy , + 120002 5
If |s| is large enough, then (2.11), (2.18), (2.20) yield
o1z s sl 101, ) + 1VPIya sy + 151 IVPILes )

+ ‘S‘al( )H2 1/2( + HP( )H2 l+1/2(R2 + |5| ”P”2 5/2(R2 + ”P”2 ’+5/2(R2)

Il

+ |3|2||ﬂ||2 l+3/2 R?2) + s

( Wy (R2) (2.22)

< C(HJ‘HW: sty + 15T 171 g + IBI, s gy + 151210
2 2 Ly 112
LT 8120 g + 1912 7 g + 15T 1912 s )
STEP 4. We counsider the problem

sv(x) — vV2v(z) + Vp(z) = 0,
V-v(z) =h(z), zeR3,
(81}3 0v;

By —0, j=12,

Jdx;  Oz3 (2.23)

—p+27/8— —oA'p=
8I3

sp+ (V' -V)p+uv3=0, z3=0,

under the assumption that h decays at infinity sufficiently rapidly, and
h =V -H(z)+ h'(x) (2.24)

with compactly supported h'. We reduce (2.23) to (2.21). To this end, we introduce w =
V®(z), where ® is a solution of the Dirichlet problem

V2®(z) = h(z), 7€R}, ®(x)|y-0=0. (2.25)
By the Green identity,

200 = — 2)V2®(z)dx = z) - H — b (2)®(z))dz
/Ri'w””)'d“" [, #evia /Ri(w)ﬂ W (2)8(x))d

+

< (I H Ny 1Y@l 1aez) + I Ly s supp 1) 19 22 ) (2.26)
< IV L) (I ez + 17 lagee) )
Moreover, coercive estimate for the problem (2.25) yields
IV@llyiztme )y < cllhllyitgs s

hence

”wHW§”(Ri) + |3|1+l/2

< cls| 2 (1 H Ly + 10 o) ) + el s -

lwll @)
o (2.27)

11



The functions v1 = v —w, p, p represent the solution of the problem (2.21) with the data
f =—sw+ vViw

ow ows . ows
bj = — J 772 =1,2, b3=-—20—2 - _
V(axg * 8:L‘j)7 J B 8.%‘3 J s

and they can be estimated by (2.22). This estimate, together with (2.27), yields

[ l
||v||12/Vé+2(R3 + st IIvIIL2 R3) T IIV;OIIWz r2) T 8] IIV;OII%2 B3)
l
+ ‘3‘ Hp( )H2 1/2(R2 + Hp( )H2 l“/Z(RZ + ’5’ ”P”2 5/2(R2 + ”P”2 l+5/2(]R2)

(2.28)
11012 1072y + 15 2

3/2(R2)

< s (IHIZ g + 101 ) ) + I, o0 s

STEP 5. We estimate the solution of (2.1) in the neighborhood of an arbitrary fixed
point zyp € G by Schauder’s localization method. Without loss of generality we may assume
that g = 0 and that the interior normal —IN(0) is parallel to es. Let ((z) be a smooth
cut-off function equal to 1 for |z| < 6/2 and to zero in the domain |z| > ¢. The functions
w = ((z)v(x), g = (p, r = (p satisfy the equations

V’UJ(%) ( ) xej:a
T (w, q)N—aNA r = ((x)d(
sr(z) + V' -Vr —w(z) - N(z)

2) + ma(o. p), (2.29)

=pV'-V(+g(z)(z), z€g,
where

mi(v,p) = —2vV({(z)Vv — vvV?( + pV¢,
ma(v, ) = v(w() 5 + VE@) (o N)) + No(c(e)Agp ~ AglCp) ~ a)(e)p(e)).

We assume that in the d-neighborhood of the origin (d > 20) the surface G is given by
the equation

z3=¢(z'), o' = (x1,22).

The function ¢ is smooth and ¢(0) = 0, V¢(0) = 0, which implies
IVe(a')] < cla’],  |b(a')] < clz'f? (2.30)

for |#/| < d. The components of N and the Laplace-Beltrami operator Ag are expressed in
terms of ¢ as follows:

NQZL7 a:1727 N3:_;7
V1+ [V V1+(Ve?

¢ya¢y5 >i
V14|V

1+ |Ve]* -

1 .9
Ng=—ou S (s,
g ,/1+|v¢|2a%;18ya< ’

dyp”
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We make the change of variables in (2.29):
y="F(): y =2, ys=uz3-¢)

If d is small enough, then the transformation F' is invertible, and it establishes one-to one
correspondence between the domain Kg4 = {|z| < d, # € F} and a certain subdomain
D of R3. The operators V, and S(v) are transformed into V = V, — %Vgﬁ(y’) and

§(v) =Vov+ (@v)T, respectively, and it holds
Vo f(@) =V fa(y) = Vy - F ),

We write the equations (2.29) in the variables {y}, keeping the old notation for all the
transformed functions. We have

sw — vV?w + Vg = M (w,q) +my(v,p) + Cf, (2.31)
Veow=(V-V) w+V(-v, '
where V =V,
M (w,q) =v(V? = V)w + (V - V)q. (2.32)
We note that the function V({ - v can be written in the form
1
V¢-v==-V( vV —Vp+ f)
s | (2.33)
=V- AS(UJP) + aS(UJP) + EVC : .f7
where )
As(’U,p) = _(VVCVU _pVC)a
§ (2.34)

as(v,p) = %( —vD?*¢: Vo —l—pVZQ),

D% = ( 0°¢ )l 123’ Vv = <g;;)i,j:1,2,3' Hence h = (V — V) - w + V( - v satisfies (2.24)

O0z;0x;
with
2

R 1~
H=e;3) ¢ywatAs(v,p), h=as(v,p)+ V(- f. (2.35)
a=1
We write the boundary condition TIN —oIN Agr = (d+my for the tangential and normal
components separately, moreover, we can take only the first two components of the tangential
part. This gives the system of three equations

3
V(Z§ai(w)Ni — No(N - §(w)N)) = ((dp — Na(d - N)) + msa — No(N -m3), a=1,2,
1=1

+1/N'§(w)N+aAgr:Cd-N—i-mg-N,

Q

ie.,

{ vSas(w) = La(w) +la(v) + (do(y), =12, (2.36)

—q+ 1/533(10) — O'A,T = L3(’ll7) + B/’F + lg(’v) + Cd N,

13



where d, = dy — No(d - N),

La(w) = V(Sa3 - Zgaij +Na(N : g(w)N))a
j=1

Ls(w) = y(sg?,(w) ~N- §(w)N>,
B'r = —o(A" + Ag)r,
la(v) = m2q(v) — No(ma(v) - N),
I3(v) =my- N.
Finally, we have
sr+ V' - Vr+ws=(ws+w-N)+pV'-V'¢+(g. (2.37)

Now, we extend w, g, r by zero into R? and R? and consider (2.31), (2.36), (2.37) as the
problem of the type (2.21) in the half-space. We estimate w, ¢, by (2.22), (2.28). We note

7
~

that in view of (2.30) the leading coefficients of the operators M1, V — V, L;, B’ are small
in the case of a small §. By Lemma 4.1 in [2],

1M1 gz < e (lllyzis ) + IValwias)) + O Ul gs ) + Vel ),

|S|l/2Hlul”l,2(R3) < C‘S‘l/2 é(”u‘HWl R3 H ;9”1,2(R3)) ”w”wl(!{?’) )
+ 3(R3) + PACNE
where 6 € (0,1). By interpolation inequalities,

o0y < ellsl 2 ol g ) + IsI22 0] e )

1940y i-1gasy < ellsl ™21V allwgeas) + 151772 Vall s,

|—l/2—1/2

el es ) < ells e llysezgas ) + 151210 1y )

whence
HMl”Wg(Ri) + ‘S‘Z/ZuMl”Lz(Ri)
< (0 + e(@)ls ™) (lwllyeos ) + 1Valwyay) + 152wl Ly + 5121 Val o) )-

In a similar way we obtain

2

Z(IILj(W)IIW;H/Q(RQ) + s Ly (w) ] ze2y)
j=1

+ ||L3(w)||Wé+l/2(]R2) + |3|l/2||L3(w)||W21/2(R2)

+ |lws + w - NHW2t+3/2 2+ [s['7243/4 Jws + w - N[, ey

®
R 2

HIV = V) wlly gy + 51" le3 Y by wall L, (rs)

a=1

< (6% + ¢(8)]s| 712 (HwHWéJFZ(Ri) + ‘S\l/2+1|]wHL2(R1))7
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/ /2 p!
1By 2 gy + 1512 IB e

(
< |l yavor2
2

R2)
(R2) + C(H)HTHW;L?’/2 R2) + |S|l/2(060HT”W25/2

< (0" + 0(5)|8|_1/2)(||7“||W2l+5/2

+ Oy

( (R?) (R?) )

&) T |3|l/2||7"||w25/2(R2) 2| 3/2(R2))

Now we pass to the estimate of @C -v, m; and my. We have

2
IVC- vl ey + Imallwyes ) + |3|l/2||m1||L2(R1) +y <||m2a = Na(mz - N)l 112 go,
a=1

+ |5|l/2+1/4”m2a — Ny(my - N)”LZ(RZ ) + ng N” l+1/2 + ‘ ‘l/ZHmQ NH 1/2 R?)
< ) (Il g1y + 117210 gy + [0lssigs,, + |s|‘/2+1/4uvuL2<525)
+ |8|l/2 /2

10lly 1725,y + 1Pl rara g, o 182 lol o g,

1Pl ey + 151721 o) )

moreover,

51472 (1A o) + laslaqe) ) < els? (I0llwg g + IPzacrc) )-

The coefficient 67 + ¢(8)|s|~1/? can be made arbitrarily small by the choice of a small
d and large |s|. In this case, it is not hard to verify that the application of (2.22), to our
problem leads to

||W||3V5+2(R3 + s lwll7, R3) +11Valliy R2) +1sl'Vall?, R?)
l
+ s/ 1a(0)]I2 w2 gz 11200 0|2 Wit/ ey T sl 717 Wi mey T (el

+ 1Pl 472

l+5/2(R2)

[
( 2) + |S|2+ |’rHI2/V§/2(RZ)
< c(ucmwl R (51 P TI [ Am,

+ ||Cd . J\TH2 l+1/2(R2 + |3|l||Cd ’ N||2 1/2 (R2) + ||Cg||2 l+3/Z(R2 T |S|l||<g||2 3/2(R2))

!
+ s 2|17, 2y (2.38)
+C<||P||Wz o) T IS IPIE (1) + ||v||Wl+1 110l ) + 017 W (550)

+1/2 2 2
a7 R T T A \\p\\wé+3/2(525) 15Tl g g, )
Inequalities of this type can be obtained in a neighborhood of any point of G and of any

interior point of F as well, if the distance of this point to G is larger that ¢; > 0 (in this case
the norms of g and d do not occur in the estimate). If we cover F by a finite number of such
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neighborhoods and add estimates (2.38) together, we obtain

! !
01 g1 + 5101y + 190y + 150
2 L2 2 L2
+ ”PHW5+1/2(g) + |5 ”PHW21/2(Q) + ”P”W2l+5/2(g) + |5 ”P”W25/2(g)

20 1112 2410 112
+1s 2, T8 :
|s| H'OHW;“’/Z || ||ﬂ||W23/2

9 9 (2.39)
< (181 + 11 iy + TG, 115 + 152 Mg |
+ld- N Witz (g) +s'|ld - N Wil (g) + |’9H12,Vé+3/2(g) + |5|l”9H12,V§/2(g)>
(Pl ) + 15T 212 ) + NEW) + N3(p) )

where
200N o112 a2 2 1+1/2(1,.112 a2
NE@) = ol py + Il 00y )+ B0, + 2ol + 1501,

2 _ 2 l 2
N3 () = ol s gy + 15T ol 1

The next step is the estimate of p.

STEP 6. We have assumed that f is divergence free. Hence p can be regarded as a solution
of the problem

Vp=0, z€F, p=vN -S@w)N+oLp—d-N, zcg.
It is well known that
IPll1.r) < clvN - S@)N +oLp—d- Nl
< c(||Vv||L2(g> + lellwzig) + 14 Nlryg) )-

In view of the interpolation inequality

1912, < eIVPIg s+ @)l

we have )
1Pl ) + I3 Mlpll,z) < EHVPH

) (2.40)
+ c(e>|s| (1921 i) + 191 2q) + ||d N2,

moreover,
1y ,12 ! 12 112 /2] 112
Uy < elst (1810 g, + I 0l )-
! -
1701 < clsf'(1s 1/2||v||wl+2 £ 2012, )
We estimate the expressions NZ(v) and NZ(p) in a similar way and show that (2.39) and

(2.40) imply (2.2) in the case of large |s].
The solvability of the problem (2.1) is established in Sec. 3.
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3 End of the proof of Theorem 2.1.

We continue the proof of Theorem 2.1 and establish the solvability of the problem (2.1). We
use the method applied in [7] for the analysis of parabolic initial-boundary value problems
and in [2] to the evolution Stokes problem similar to (1.1).

We need the following auxiliary proposition.

Proposition 3.1. For arbitrary f € Wi(F), d € WZZH/Z(Q) the problem

sv — vV + Vp = f(x),

V-v(z) =0, z€F,
VIIS(v)N = Ild(z),
—p+vN-Sw)N=d-N, z€g,

(3.1)

with Res > 1 has a unique solution v € W;H(}"), pE Wé“(]—"), and the solution satisfies
the inequality

Folygsey + 152 o lar) + 190l + 1521Vl
vz gy + 1512l gy < e(1F iy + 15121 F Loy (3.2)

l l
g sz gy + 5172 Mgy @) + 1 Nt gy + 1512 d - Nllyars ).

The theorem is proved in [8], see also [9].

We consider the problem (2.1) with f =0 and d = 0. Let {¢x}, k = 1,2, ... be sufficiently
"fine” smooth partition of unity: >, ¢r(x) = 1 defined on G and in a certain neighborhood
of G. We may assume that suppp; C K(gl), where ng) is a ball |z — z;| <4, z; € G. We also
assume that there exist smooth functions ;(x) with suppy; C Kj such that ¢;(z)p;(z) =
wi(z). We suppose that

| DYy ()| + | Do ()] < co V]

and that each point x can belong no more than Mj balls K(gz) with My independent of §.

Let y3 = ¢i(y'), ¥ = (y1,92) be the equation of G in a neighborhood of the point x; in
a local Cartesian coordinate system y = (y1,y2,y3) with the center at x; and with ys-axis
directed along the vector —IN(x;). It is clear that y = Cj(z — z;) where C; is an orthogonal
matrix. Without restriction of generality it may be assumed that ¢; is defined on the entire
plane y3 = 0 (i.e., on the tangent plane to G at the point z;) and satisfying (2.30) near the
origin. The transformation 21 = y1, 20 = y2, 23 = y3 — ¢i(y’) "rectifies” G near ;. We denote
by Z;(x) the composition of this transformation with y = Cj(x — x;).

Now we describe briefly the scheme of the proof of the solvability of the problem

sv — V20 4+ Vp =0,

V-v(z) =0, zeF,

T(v,p)N +0NLp =0,

sp+V -Vp—v(z) N(z)=9g(z), z€g.

(3.3)

We construct a linear operator R that makes correspond to every function g € W2l+3/ 2(Q)
the element U = (v,p,p), where v is a divergence free vector field belonging to WQHQ(]: ),
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p € WHY(F) and p € WET3(G) such that

sv — vViv 4+ Vp =0,

V-v(z) =0, ze€F,

T(v,p)N +cNLp =0,

sp+V - -V,p—ov(z) N(z)=g(z)+ Ag(z), z€g,

(3.4)

where A is a linear continuous operator in W2l+3/ 2(g), and the operator I + A is invertible.
Then U = R(I + A)~ g is a solution of (3.4), which is required to prove.
We define Rg as the sum of three terms:
Rg=Rig+ Rog+ Rsg =U1 + U+ Us, U;j = (v, p0), pl9)).

We set

Rig =Y k(@) (wk(@), pi(x), pr(x)),
k

where
vi(z) = Ck_luk(Zkiv)a p(z) = qe(Zkz),  pr(z) = r6(Zk ),

and (ug, gk, %) is a solution of the half-space problem

sup(2) — vViug(z) + Vagi(z) =0,
Ve ug(z) =0, z€eR} ={z>0},

8uk3 Bukj .
=0 =1,2
0z; 0z 0 1T O (3.5)
Ougs
—qr +2v 02 oAl =0,

L srk(2) + Vi - Virg(z) + ugs = g(2)pr(2), 23 =0,

with Vi, = CyV(2x), z = Zj(x). It is clear that v € Wit?(F), p() € WiTH(F), plV) €
W2l+5/2(g). We set

svt) — V2o 4 vph) = £ (),

V-vW(z) = fi(z), zeF,

T(wM, pMN + o NLpM (2) = dy (),

spV + V(z)- V) — o (2) - N(2) = g(x) + g1(2), z€G,

(3.6)

and we define Ryg as Rag = (v(?,0,0), v(? = V®(x), where ® is a solution of the Dirichlet
problem

V20(z) = —fi(z), z€F, ®|g=0.
Finally, R3g = (v®,p®),0) is a solution of

sv® — V2B 4 vp®) = £, (2),
V-v®(z)=0, zeF,
T3, p®)N = dy(),

18



where

Fo=—F1 — (50 -2V,

d2 == —d1 — 5(0(2))N
Then Ag = g1 +v@ . N +v®) . N. We have v? € W22+l(~7:)a T2 € W2l(~7:)a dy € W2l+1/2(g)v
v®) € WEA(F), p® e WitH(F), Ag e W,%(G).

It remains to prove the invertibility of I + A.
We compute the functions f;, f1, d1, g1 in (3.6). Since

=Y dr@vrx), V(@)= vi(@)p(x), z€F,
p p

= r@)pr(z), zeg,
P

we have

:U) = Z z/)k(x)(svk — Z/VQ’Uk + Vpk) -V Z(VQ(Q,bk’Uk) — ¢kv2’l)k)
k k

+ ) (V(rpr) — ¥ Vr),

k

fi(z) = Z(VT/% ‘v + Yk V - k()
llgd, = Z%HQS (vk) N+ZHQ (rve) — ¢S (vk)) N

di-N = ZU% (—pr +vN - S(”k)N+ULPk )+ N - (S(prvr) — YrS(vr)) N
K

+UZ (Yrpr) — YuLpr)-

We consider the main terms in the above formulas. In view of (3.5),

svp — VVavg + Vapr = Cp ' (v(V2 = V2)ug + (Vy — Vo)), 57)
Vv =(Vy— V) ug '

Moreover, we have IIgS,;(vy)N = Ck_ll'[kSy(uk)Nk, where IIyf = f — Ni(Ng - f) and
Ny = CiN is the vector whose components are given by

¢kyj . 1

Neily) = —0 19 Nyt
5 = e B T IVl

in a neighborhood of the origin. Hence

2
Mg S (vr)N = Tlg (TlgC ! (Sy (we) Nk = €;S-j3(ws)) )
=1 (3.8)
0
— pr+ N - So(vi)N + oLpp = (N - Sy(ug) N — 2%) o(L + AL)ry,
23
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where Sy(u) = (Vyu) + (V,u)!. Finally, from

sp) + V(@) Vip) =0 N =3 " ghp(spp + V() Vepr — vk - N)+ > _(V(@) - Viihy)pr
k k

it follows that

Z¢k (Vi(y) - Vyr — Vi(0) - Vo)1 — (ug - N 4 ug3)) + Z(V(fﬁ) -V r) px

k

with Vi = C,V.
A simple calculation shows that

0 0 0 15)
= — —br (), drj=(1- 53j)ﬂ

8—2]' ayj 8y3 Byj
and, as a consequence,
2
Ouy;
Vy -up—V, up = 7
Y k z k jz:lﬁbk,] 8y3
Hence
filz) = (Vb - vk + 9e(Vy — V2) va v

k
3

+) Z Yk Csm 5 — ¢>k JUk =Y %Z}?d’ko?)mﬁbk,jukj +Zk:Xk C Uk,

k m,j=1 m,j=1
where x,. is a vector field with the components

3 3

8 0
Xej= ) ija—k =2 5= kCamdr)-
Tm, el Tm &

m=1
Since
3
1 1 0 ou
up(z,t) = =(VViug — Vagx) = Z 8—(ij = C3mk,5) (Va—k - eij),

S s 2 2;

we have
fi=V-F+F

with

0
Zxk Z C3m¢k,])< %z]k - eij)
+ Z (7 (x)o?)m Z Z ¢k,o¢ukom
k

j*l a=1

Sy Zul

k m=1 j=1

1
s

8uk
< (Cim = Canhi) (vt — ejan).

Mw

20
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Now we pass to the estimates. Since every point of 7 N G belongs to no more that
My domains Kéz), the functions of the form f(z) = >, f;(z), suppf; C ng), satisfy the
inequality

11y ) < co D il )
J

with ¢y independent of §. By (2.16) and (2.28),

l
el + 1 il a) + 190k gy, + sl 1Vl
l
+ qu”?,vyl/z(Rg) + ‘3‘ qu”?/[/;/?(Rg) + HrkH?/Vé%n( + | | ”TkH
+ |5|2|’Tk“12,‘,é+3/2

5/2 ]RZ)
2+1 2
S L

2
(R2 (R2) S c|’g(pkHWé+3/2(R2) + |S| ”g(pk”W23/2(R2)
We note that (3.7)-(3.10) are linear differential expressions with respect to wg, g, 7%, whose
leading coefficients are small in Kék)

. Hence we may use Lemma 4.1 in [2] and obtain the
inequality

1212, + 0510 ) + D0

+IsPHURIZ o + I, ) + ||Hgd1||3v,+uz(g)
I+1/2 2 2 ! 2
+ |s] / HﬂgleL2(g) +lldy - N”Wé+1/z +Islld - N”W21/2

’(9) (9)

+ Hgluivém(g) + 152 lg1 13,6
c(8 + c(O)sI72)2 Y (Ngerll? sz, oy, + 1P gkll? a2y, )
p W, R (R?) Wy * (R?)

In addition, we have

P e Rl e
(Hfluww + 5P ) + 11y )

0 _
< o0+ e(O)lsl 22 Y (o2 vors g + 5l 0 12,72 )
k

and, by Proposition 3.1,

011241y + [P 0PN ) + VPP

HWI
+ |s['|Vp® II%Q(f)JrIIp 2, 2 +|s|l||p ||2

I/Z(Q)
< c(I1F 25 m + Isl' 1 £2ll3, ) + ||Hgd2||

152 gdi I g) + d- N e gy (@

(0" + )15l 22 Y (g0 2 1572 gy + 151 190815 )-

k

l+1/2(g)
+lsl'dz - N2
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Hence
2 l 2
VA1, 173 g, + oI 14912 3,

< c(||g1 +0@ N +0®. N||3Vl+3/2 ) + Is" g1 + v N +0®. N||3Vs/2(g))
2 2

(

< o0’ + )52 D (Ilawrll rvare oy + 151 gk, 72 g )
k

It can be verified that the expression on the right does not exceed

e (6" + 01(5)|8|_1/2)2(||9||‘24,é+3/2(g) + Il llg112, 572 )

2 (9)

which shows that A is a contraction operator in the case of small § and large |s|. This
completes the proof of the solvability of the problem (3.3).
The solution of (2.1) can be constructed as the sum

v=wi twy, p=m1+7m9, p=711-+7T9,

where (wy,m,71) is a solution of (3.1) and (wa, m2,72) is a solution of (3.3) with g replaced
by g + w1 - N + w2 - N. Theorem 2.1 is proved.

Remark. We have assumed that Res is sufficiently large positive number. In fact, the
statement of Theorem 2.2 is true for Res > a, where « is determined by the spectrum of the
problem (2.6). It is well known (see [10,4]) that in the case d = 0 this problem can be written
in the form

(sI — A)U =G, (3.11)
where U = (v,p)!, G = (f,9)", I is 2 x 2 unit matrix and A is the 2 x 2 matrix operator

An A >
A=
< Ay A
with the elements defined by

Apv = vV —p(v), Ar2p = —p2(p),
A21’U =P -N|ga AQQ,OZ —V'VT,O|g.

By p1(v) and p2(p) we mean harmonic functions in F satisfying the boundary conditions
p1(v) =vN -S()N, ps(p) =—Lp

on G (hence the pressure as an independent function is excluded). The domain of A is
a subspace of W2(F) x W25/2(Q) defined by the conditions V - v = 0, lIgS(v)N|g = 0.
According to Theorem 2.2, for large positive Res the equation (3.11) is solvable, and the

inequality (3.7) with [ = 0 yields
I(sT = A)~'Gllp < €|l x,

where D = W2(F) x W25/2(Q), X = La(F) x W;’/Q(g). Hence (sI — A)~! is completely
continuous and the spectrum of A consists of eigenvalues with the only accumulation point
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at infinity (in the left complex half-plane). There can exist no more than a finite number of
points of the spectrum in the right half-plane. Let ag is the upper bound of the real parts of
these points. Proposition 3.1 holds for Res > 0, hence we can require in Theorem 2.1 that
Res > max(0,ap) = a.

Remark. From the interpolation inequality

ST pl) < Bllollgasors gy + sl 2l D <L
and the equation sp +V - V,p —v - N = g it follows that the solution of the problem (2.1)

satisfies, along with (2.2), the inequality

/2 ) + ‘S‘1+l/2+3/4

lollyasi g + 151210l 2 + Bellwies ) + 15120l o))
+lsllloly vz ) + 151200l 226y + Il 2y < U8 Tgem + 151721 F o)

(3.12)
[V d — N (d - N |y + 1l ivsrs ) + 15120 N yors g

)
+ |5|l/2+3/4Hg”L2(g) + Hg”W2l+3/2(g)).

4 Proof of Theorem 1.1.

We start with the following auxiliary proposition.
Proposition 4.1 Let [ be as in Theorem 1.1. If p € W2l+5/2’0(GT) ﬂWQW(O,T; W;/Z(g)),
pr € W0 (G n Wi 0, 7, W3 (G)), then
I Dlyse2(gy < ellollyzsoroggy + loelysismog,,) (4.)
and in the case l > 1
o yssireigy < elotlyrsorsogy + 10lynsyncn)- (1.2
If pr € WA G 1> 1)2, then
loeCs )iz gy < Mlpellyy esroartars g - (4.3)
For arbitrary py € WiT2(G), p1 € W2l+1/2(g) there exists p € W2l+5/2’0(GT)ﬂW2l/2(O,T; VV25/2 (9))
with py € W2l+3/2’0l/2+3/4(GT) such that

p(x,0) = po(z), pi(x,0) = pi(z)

and
ollyyiesr20 Gy + 1ol yivarzarers o+ 1Ply2,572,60 )

< e(llpollwzr2g) + lerllygesg))

Proof. Inequalities (4.1)-(4.3) are consequences of the trace theorems for isotropic and

anisotropic Sobolev-Slobodetskii spaces. Let us turn to the second statement of the proposi-

tion. By the inverse trace theorem of L.N.Slobodetskii [11], we can construct r; € W2l+5/2(GT)
such that r1(x,0) = po(z), r1¢(x,0) = 0 and

Iy 4572 gy < €llpollypie gy
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By a similar theorem in the anisotropic case, there exist ro € W; /24T 2(ET) such that
ro(x,0) =0, roi(z,0) = p1(z) and

Ir2llyyierrzarsnsa gy < cllpilly ez g

It is easily verified that p = r; + ro possesses all the necessary properties. The proposition is
proved.

Proof of Theorem 1.1. We reduce (2.1) to a similar problem with zero divergence by
construction of an auxiliary vector field wi(z,t) = V®(x,t), where ® is a solution of the
Dirichlet problem

V20 (z,t) = f(x,t), z€F, ®(x,t)zeg=0.

This function satisfies the inequality

1@llyyi+20g, < €llf it gy (4.5)
in addition, since
V20 (x,t) = fi(z,t) =V - Fy(z,t), z€F, ®z,t)=0, z€g,
we have
qu)t”W20’1/2(QT) < CHFtHWgJN(QT)a (4.6)

hence
ety g2r01 gy < (1 Dty + 1P ellyoirzg ) (4.7)

The functions v1 = v — uy, p, p satisfy the relations

vy, — vV + Vp = £ (g, ),

V-vi(z,t) =0, r€eF, t>0,

T(vi,p)N + NLp = d(z,1), (4.8)
pt +V -Vep—vi(z,t)  N(z)=g1(z,t), z€g,

v1(z,0) =vg —ui(z,0) =wo(z) ze€F, p(z,0)=p(z), z€g,

where

{ Fi=F—uy+vVu, (4.9)

dlzd—uS(ul)N, gi=g+wu; - N.

In particular,
d1 -N = d’N—l/N'S(’ul)N’weg.

Now we reduce (4.8) to a similar problem with zero initial data. If [ < 1, we introduce a
solenoidal vector field us(x,t) such that us(z,0) = wo(z) and

leallyy pezirzen g ) < elwollyy ez
In the case [ > 1 we also compute

wy(z,0) =0 = vV2w, — Vpo(z) + f1(z,0) = wi(z),
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where pg is a solution of the problem
Vip(a) = V- (£,(2,0)), weF,
po(z) =vN - S(wo)N + Lpg —di - N, z€G.

It satisfies the inequality

Iolwiery < e(1F1 GOyt 1)+ In00llgse i + Doollyssoraggy + 1100 - Nl vz )-
whence
||w1||Wé*1(j:) < C(HleWé*l(}-) + ||w0||Wé+1(}-) + ||P0||Wé+3/2(g) + ||dy - NHWé—l/?(g))- (4.10)
We find a solenoidal vector field us(x,t) such that
’U,Q(.’E,O) = ’lDO(I), ’U,Qt(.’E,O) = wl(:v)

and
el sz g,y < e lwollyes e + oty iz ). (4.11)

Moreover, we construct p;(z,t) and p;(x,t) such that pi(z,0) = po(z),
p1(2,0) = pole), puu(,0) = —~V(2) - Vopo —wole) - N +g1(2,0) = i) (412)
and
P llyyerrze1r2 g,y < ellpollwg )

ol iesro gy + lorelyyiesrirzeis gy +1Plyas m6r < C(||ﬂ0||W5+2(g) + ||P/1||Wé+1/2(g))-

(4.13)

The construction of p; is described in Proposition 4.1. The construction of ug is carried out

in the following way. We find wy(z,0) and w1 (z,0), € R?, in the form w;(z,0) = §; + n;,

where &, is the extension of w;(x) into R? with preservation of class; we assume that €, has

a compact support. Then, using the result of Bogovskii [12], we can find n;, also with a

compact support, satisfying the equation V - n; = —V - £, and the inequalities

Hnl”Wﬁ“(H@) < CH&IHW%“(]I@) < c||w0||Wé+1(Q)7

||’r’2||Wé*1(R3) < C||§2||wé*1(R3) < CleHWé*l(Q)'

Finally, we define the vector field us(z,t) satisfying

||U2||W2l+2,l/2+1(R§er+) < C(”“’OHWé“(W) + le”Wﬁ*l(R?)))
S C(||wo||wé+1(]_—) + ||'LU1||W2lfl(]_-))

Usually us is expressed in terms of wg and w; as a sum of convolution integrals (with respect
to z;); then it is divergence free.
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For vy = v1 — u2,, p2 =p — p1, p2 = p — p1 we have

vy, — V205 + Vpy = folz, t),

V- vy(z,t) =0, zeF, t>0,

T (v2,p2) N + N Lp, = da(x,t), (4.14)
pat +V - Vipy =va(x,t) - N(x) + g2(x,t), z€G,

vy(z,0) =0, ze€F, roz,0)=0, z€g,

where
fo=F1— <w2t —vVw, +Vp1)a
dy = dy — (T'(w2,p1)N + By(p1)IN),
g2=0 -V -Vpr+wi-N —py.

Since d2, g2 and in the case [ > 1 also f, vanish for ¢t = 0 and [ < 5/2, we can extend
these functions by zero to the domain ¢ < 0 with preservation of class, after which we extend
them, also with preservation of class, into the domain ¢t > 7. Then we apply the Laplace
transform, as in [7], assuming that Res = a is sufficiently large (s is the dual variable). The
problem (4.15) is then converted in (3.1), whose solvability is proved in Theorem 2.1. The
inverse Laplace transform yields the solution of (4.15) defined in an infinite time interval
(—o00,4+00). Using the estimate (2.7) and the Parceval equality, we obtain the estimate of

this solution in weighted Sobolev spaces with the weight e~. From this estimate it follows
that

HvHWé+2’l/2+l(Q—oo,T) + HVPHW;!/%Q—OO,T) + Hp”WéH/ZO(G_OO,T) + |p|l/2,1/2,G,oo,T
+ ||P||Wé+5/2,0(g_oo,T) + |P|z/2,5/2,G_oo,T + ||pt||wé+3/2’0(g_oo,T) + |pt|l/2,3/2,G_oo,T

< C(Hf?HW;’”Z(Q,OO,T) +||d2 — N(d2 - N)||Wé+l/2’l/2+l/4(G (4.15)

7oo,T)

+ ||ds - NHW5+1/2,0(G700,T) +1d2- Nlygi/o6 o

+ ”92”W5+3/210(G_00,T) + |92|z/2,3/2,G,00,T>7

where Qo7 = F X (—00,T), G_oo7 = G x (—00,T). All the functions in (4.15) vanish
for t < 0, and the constant c¢ is bounded for finite 7. From (4.15) it is easy to deduce the
estimate

Yr(vs, g2, p2) < ¢(T) (HszWzg,t/z’(QT) +llde = N(dy - N)lypiir20201/8 6, 4.16)

+||d2 - N”W2l+1/210(GT) +|dy - N|l/2,1/2,GT + H92HW5+3/2,0(GT) + |92|l/2,3/2,GT)7

and from (4.16), (4.3), (4.7) inequality (2.4) follows. This completes the proof of Theorem
1.1.

For the application of this theorem to the proof of the local solvability of a nonlinear

problem (see Sec. 5) it is important to be sure that the constant in the basic inequality (2.4)
remains bounded for small 7. In fact it is not always the case, because the norm ||u||Wé(_ 00,

I=[I]+ X, 0<X<1of the function u(t) vanishing for ¢ < 0 is equivalent to

T 1 pll] 2
2 | Dy u(t)] 1/2
(HU”Wg(o,T) + /0 O3 dt)

26



(in this connection see [13] and [6], Ch.4). If A > 1/2 and D[l]u\tfo =0, then

T |D[l]u(t)|2 T dh T
t 2

with the constant independent of 7. In the case A < 1/2 we have

Dy Y
cl(HuH?,V%(O,T)—I—/O %dt) < HuHWl 01 +—/0 |D£}u(t)‘2dt

T2X
T D u(t)
< CQ(HUH%/V%([),T) +/0 ttg)\ dt)a

where the constants are also independent of 7". Hence the constant ¢(T") in (4.16) becomes

i
uniformly bounded for finite T, if all the Wl/ 2(O,T)—norms in this inequality are replaced
with the Wl/2(0,T)—n0rms defined by

llullg Wi 0r) = = [ull W2 (0,1) if A>1/2,
Y 12 (4.17)
HU”VA@N(U,T) = (Hu”?/véﬂ(o,T) + ™ J, \D,E/ ]u(t)|2dt) , if A>1/2

(here X is a fractional part of [/2). As a consequence of (4.15), we have

||U||Wé+2,l/2+1(Q + ||VP|| Whi/2(q + ||10|| LHL/20(G + P)iy2,1 /2,61

(p >l/2,5/2,GT + HPtHW;%/w(GT) +Phi/2,3/2,60 t (P)y25/2,60
< c(”fQHWé*W(QT) +||d2 — N (ds - N)|’/V[7£+1/2,l/2+1/4

+ [|dz - NH@;H/&O(GT) + (dz -

+ ”p”W;JrW?’O(GT)

(4.18)
(Gr)

N)ijapjo,6r + 1920000720 0 + (92)1/2,3/2 GT)

where ();/2, ¢, is the norm in /WZ/Z(O,T; W3(G)). By Wl l/2(QT) we mean the space with
the modified norm (1.2):

T
sy = [ Tl ygaydt + [ e g (1.19)

It is clear that the norms (1.2) and (4.19) are equivalent

Now we turn to the inequality (4.11).

We can set there T' = oo; it is possible also to
assume that ug vanishes for ¢ > ¢9. We use the inequality (see [13], Lemma 2)

* Ju(t)|? R 2
/0 o dt < /0 RE /h |v(t — h) —v(y)|°dt

valid for A € (0,1/2) and for A € (1/2,1), v(0) = 0. It follows that the norm [luz||,,
in (4.11) can be replaced with [[ws||;5r21/2+1

(4.20)

l+2 l/2+1(QT)
@) The same is true for the 1nequaht1es (4.6)
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(4.7). Hence we have, along with (1.4), (1.5):
?T(vapap) E||U||Wé+2,l/2+1(Q + ||VP|| ”/2 + ||p|| l+1/2 O(GT) + <p>l/2,1/2,GT
+ HP”W5+5/2,0(GT) (p >l/2,5/2,GT + HPtHWé%/w(GT) +Pe)iy2,3/2,G1 + (P)ij2,5/2,G0

< o(IF Iz gy + I hwiro(gpy + I Fligorsir g,
+ ||Hgd||Al+1/2 v2/agy +lld- N, 1/20(y T (d-N)i21/2,6;

+llgllyisr20 6,y + <9>l/2,3/2,GT +llvollyier gy + ||ﬂo||W5+2(g)),

(4.21)
[ligzr2 0 F VP12 o+ IPlyp1r20( )+ P21 /2,61
(Qr (Gr)
+llollysr206,, + (0 >l/2,5/2,GT Hlloellgearzirsi g, + Phiyjas/a.ar
< C(Hwa;J/z‘(QT) o + IF Igp00e2g ) (4.22)

+ HHgd|’/W£+l/2’l/2+l/4(GT) + Hd . N”WéJrl/ZO(GT) + (d . N>l/2,1/2,GT
+ Hg|’/Wé+3/2,l/2+3/4(GT) + ”Uo”W2l+l(f1) + ”po”W2l+2(g))

with the constants independent of T'.

5 On the free boundary problem

Theorem 2.1 provides an analytical basis for the proof of the solvability of the free boundary
problem governing the motion of an isolated liquid mass:

v+ (v-V)v—vV2v+Vp=0,

V-v=0, €, t>0,

T(v,p)n(z) =ocH, (5.1)
Veo=v-n, zecly,

L v(y,0) =vo(y), vy € Q.

Unknown are the domain €; with the boundary T'; for ¢t > 0, v(xz,t) and p(z,t), x € ;. The
domain €2 is given. By n we mean the exterior normal to I';, and V;, is the velocity of the
evolution of I'; in the normal direction.

We assume that I'g is close to a smooth closed surface G, so that I'y can be regarded as
a normal perturbation of G:

r=y+N(poly), yeG,

where N (y) is the unit exterior normal to G and pg is a given small function. We denote by
F the domain bounded by G. And we assume that at least for small ¢ I'; is also close to G
and can be given by the equation

r=y+ N(ypyt), yeg
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with an unknown function p(y, t).
As usual, the free boundary problem (5.1) is written as a nonlinear problem in a given
domain, which is achieved by the mapping of €2; onto this domain. We use the transformation

z=y+N(y)p"(y) =eply) : F — U, (5.2)

where p* and IN™* are extensions of p and N from G in F such that N* is a sufficiently regular
vector field and p* is a function with a small C''- norm. This guarantees the invertibility of
€p-

We denote by £ = L(y, p*) the Jacobi matrix of the transformation z = e,(y) and we set
L = detl, L = LL™L. By Lij(y, p*), 1 (y,p*) Lij(y,p*) we denote the elements of £, L1,

~

L. The transformation (5.2) converts the operator of the gradient with respect to z, V, in
V =L£"TvV,V =V,. Equations (5.1) take the form

w(y,t) —vV?u + Vg = Li(u,q,p),

V-u=l(u,p), yeF,t>0,

lgS(u)N =12(u,p),

—q+vN-S(u)N(y) +oN(y)L(p) = ls(w,p) +15(p) + oH(y),
pe+V(y) Vip—u-N(y) =ls(u,p), yeg, yeg,

u(y,0) =wuo(y), yeF, p(y.0)=ply), yeq,

(5.3)

where u(y,t) = v(e,(y),t), q(y,t) = ple,p(y), 1),
Li(u,q,p) = v(V? = VHu + (V= V)g+p; (LN (y) - V)u — (L7 u- V)u,
l(u,p) =T — LYW -u=V-(I - L)u,
I3(u, p) = Tg(IgS(u)N)(y) — IS (u)n(e,(y)),
li(u,p) = v(N - S(u)N — n- S(u)n), (5.4)
B . & LTy, sp N
o) = [, 0 ey ™
LTN

| lo(u,p) = (m ~N+Vp)-u+t (V(y) —u(y,t) - Vip, yeg.

By S we mean the transformed rate-of-strain tensor: S = (Vu) + (Vu)?; the normals n(e,)
and N (y) are connected by

LTN
nie = =
(o) = Zin
IIf = f—n(n-f). The expression Lp = —Agp+(H2—2K)p is computed as the first variation
of

H-H= _vaz ' ’I’L(iU)‘a::ep + Vy ) N(y)

with respect to p.
Theorem 5.1. If ug € WiTY(F), po € WiT2(G) and the compatibility and the smallness
conditions

V-ug =0, Hg(uo)n =0, t=0,
HPOHW2’+3/2(g) <exl1
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are satisfied, then the problem (5.1) has a unique solution with finite norm ?T(u,q,p) (see
(4.21)) defined on a certain (small) time interval (0,T).

The solvability of the problem (5.3) can be established by the method of successive ap-
proximations, according to a usual scheme:

um+1,t(y,t) - VVQ'Ufm—l—l = V@my1 = ll(uma Qmapm)a
v'um-l-l:lZ(umapm)v y€f7t>07
HgS(wmt1)N = la(wm, pm),

(5.5)
— gm+1 + VIN - S(Um+1) N (y) + 0N (y) Lo(pm+1) = la(Wm, pm) + 5(pm) + o H(y),
Pm+1t + V(Y) Vipmit — Umi1 - N(y) = ls(um,p), y€G, yeG,
Unt1(y,0) =wo(y), YEF, pm1(y,0) =poly), ye€G,
m =1,2,.... As the first approximation, we take the functions (w1, p1) satisfying the condi-
tions
V-ou = 0, ul(ya 0) = U’U(y)a pl(yao) = IOO(y)a
and we set qg; = 0. We require that
9.1/ <
lrllyyiezireen gy < cllwollyi iz, 56)

||ﬂ1||W2l+5/2,0(GT) + ||p1,t||Wé+3/2,l/2+3/4(GT) < C||ﬂ0||W5+1(g)

Then the compatibility conditions (1.3) in the linear problems (5.5) are satisfied for all m > 1.
Moreover, the estimates of nonlinear terms (that are omitted) enable us to show, using
Theorem 2.1, that

}/}T(uerla Gm+1, Pmr1) < 63?T(uma qm, Pm) + 54}/}12(um7 Y Pm) (5.7)
+ C(Hu0”w2l+1(]:) + H%ng(f) + ”POHW21+2(]:) + ”HHWg(g)>v

where d3 and d4 are numbers depending on 7" and ||po ||, 1+3/2 -, and going to zero as T' and
2

(%)
the W2l+3/ 2(.7-" )- norm of py tend to zero. When these numbers are sufficiently small, then
inequalities (5.7) guarantee a uniform estimate for Y, (wm+1, ¢m+1, Pm+1)- The convergence
of (W, ¢m, pm) to the solution of (2.2) is proved by similar arguments.

Estimates (5.7) hold, when the vector field V' (z) is chosen properly. According to our

calculations, it should belong to W2l+3/ 2(g) and satisfy the condition

Slép [V (z) —uo| + ||V — u0|]W21(g) <5 < 1. (5.8)

Detailed proof of Theorem 5.1 will be given in subsequent publications.
References.

1. V.A.Solonnikov, Solvability of the problem on the evolution of an isolated volume of
viscous incompresible capillary fluid, Zapiski nauchn. semin. LOMI, 140 (1984), 179-186.

2. V.A.Solonnikov, On initial-boundary value problem for the Stokes system arising in
the study of a free boundary problem, Trudy Mat. Inst. Steklov, 188 (1990), 150-188.

3. V.A.Solonnikov, On the stability of uniformly rotating viscous incompressible self-
gravitating liquid. J.Math.Sci. 152, No 5 (2008), 4343-4370.

30



4. V.A.Solonnikov, On the problem of stability of equilibrium figures of uniformly rotating
viscous incompressible liguid, in: Instability in models connected with fluid flows 11, 189-254,
Int. Math. Ser. (N.Y.) 7, Springer, New York, 2008.

5. V.A.Solonnikov, On the linear problem related to the stability of uniformly rotating
liquid, J.Math.Sci., 144, No 6 (2007), 4671-4695.

6. O.A. Ladyzhenskaya, V.A.Solonnikov, N.N.Uraltseva, Linear and quasilinear equations
of parabolic type, AMS, Providence, Rhode Island, 1968.

7. M.S.Agranovich, M.I.Vishik, Elliptic problems with a parameter and parabolic prob-
lems of general type, Uspehi Mat. Nauk, 19 No 3 (1964), 53-161.

8. G.Grubb, V.A.Solonnikov, Boundary value problems for the nonstationary Navier-
Stokes equations treated by pseudo-differential methods, Math. Scandinavica, 69 (1991), 217-
290.

9. V.A.Solonnikov, On the stability of uniformly rotating viscous incompressible self-
gravitating liquid, PDMI Preprint 03/2010, 1-101.

10. J.T.Beale, T.Nishida, Large-time behavior of viscous surface waves, Lect. Notes in
Num. Appl. Anal. 8 (1985), 1-14.

11. L.N.Slobodetskii, Generalized S.L.Sobolev spaces and their applications to the bound-
ary value problems for partial differential equations. Uchen. Zap. Leningr. Herzen Ped. Inst.
197 (1958), 54-112.

12. ML.E.Bogovskii, Solution of some problems of vector analysis connected with operators
div and grad. Trudy Semin. S.L.Soboleva, No 1 (1980), Acad. Nauk SSSR, Sib. Otdel, Inst.
Math., Novosibirsk (1980), 5-40.

13. V.A.Solonnikov, A-priori estimates for second order parabolic equations, Trudy Mat.
Inst. Steklov 70, (1964), 133-212.

31



