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Abstract

The goal of this paper is to analyze two measure preserving transformation of
combinatorial and number theoretical origin from the point of view of ergodic orbit
theory. We study the Morse transformation (in its adic realization in the group Z»
of integer dyadic numbers — [11, 12]) and prove that it has the same orbit partition
as the dyadic odometer. Then we give a precise description of time substitution of
odometer which produces the Morse transformation. It is convenient to describe
this time substitution in the form of random reordering of the group Z, or in
terms of random infinite permutations on the group Z. We introduce the notion
of locally finite permutations for the group Z (and for all amenable groups.) Two
automorphisms which have the same orbit partitions called relational if the time
substitution of one to another is locally finite for almost all orbit. Our result is that
Morse transformation and odometer are relational. The theory of random infinite
permutations on the group Z (and on more general groups) is equally strong to the
ergodic theory of action of the group. The main task in this area is the investigation
of infinite permutations and the measures on it as well studying of linear orderings
on Z. The class of locally finite permutations is a useful class for such analysis.
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1 Introduction

We consider in detail an example of time changing of a measure preserving
transformation, namely the Morse transformation as a time-substitution of
the odometer, which is the simplest ergodic transformation. The odometer is
the operation of adding unity, Tz = z+1, in the additive group Z, of integer
dyadic numbers. The main result is the calculation of a random re-ordering
on the orbits of the odometer which presents the Morse transformation. The
old observation of the author [11, 6] is that these two transformations have
the same orbit partition in their natural realization in the space Z»; see also
the recent paper [9]. Until now no explicit form of time substitution for a
non-trival pair of automorphisms with the same orbit partitions was known.
The odometer and the Morse transformation are perhaps the first useful
example. Notice that the Morse transformation is a two-point extension
of the odometer, and has non-discrete part in the spectrum, but a more
delicate relation between them will become clear from the description of the
corresponding time substitution. Namely, we prove that they are allied in
the sense defined below.

In Section 2 we recall the main facts of orbit theory (Dye’s theorem in
particular), and formulate the general problem about possible reduction of
ergodic theory to the theory of random permutations of the naturals num-
bers. Sections 3 and 4 are devoted to the Morse transformation and its
realization as an adic transformation. This presentation allows us to prove
that the orbit partitions of the odometer and of the Morse transformation
are the same. The main result, which we explain in Section 5, consists of a
description of the algorithmn for the time substitution or re-ordering of the
orbits of the odometer to the orbits of the Morse transformation. Finite sub-
stitutions of the set {27,2" +1,...,2""! —1} - so called Morse substitutions
— play the key role in this algorithm. We emphasize the opening up of the
possibility to study new models of measure preserving transformations, and
new related tools. By this we mean that studying the group of permutations
of the group Z and the space of linear orders on Z, as well as invariant mea-
sures on those spaces. For example, we define a new relationship between two
measure preserving transformations or between two actions of an amenable
group with the same orbit partitions as follows. We say that the actions
are allied if there is a time substitution of one action to another which is
locally finite with the fixed set of finite permutations, which is the same for
almost every orbit. In this case we called time substitution as uniformly lo-
cally finite time substitution. (ULFTS). We prove that the odometer and the
Morse transformation are allied. More precisely, the corresponding measure



on the group of permutation of Z is concentrated on the permutations which
almost preserve increasing sequences of intervals and finite permutations of
intervals depends on the length of interval only. A more convenient language
here is that of re-ordering of the group Z. In general, we can say that ergodic
theory (for actions of the group Z) can be considered as the theory of random
permutation of the naturals, or as the theory of random linear orderings on
the naturals. The group acts on this space, and this action is universal in the
sense that any action (up to isomorphism) can be realized in this way. The
re-ordering of the orbit show us how different are the two transformations,
or, how random is the re-ordering of their orbits. This point presumably
is useful for automorphisms with positive entropy (in order to measure the
difference between Bernoulli and non-Bernoulli automorphisms). The very
special and ingenious structure (of locally finite ordering) in the case of the
Morse transformation is also interesting as a new source of measures in the
group of infinite permutations.

The similar definitions of locally finite bijection and allied actions can
be done for an arbitrary amenable group.

2 Ergodic theory as analysis of infinite permuta-
tions

2.1 Dye’s theorem and orbit theory

The simplest ergodic transformation is undoubtedly the 2-adic odometer (or
“adding machine”):
T:z—z+1, x¢€Zs,

where Z5 is the additive group of 2-adic integers equipped with Haar mea-
sure m. Indeed, T' has discrete spectrum, comprising the group of all roots
of unity of order 2", n = 0,1.... Although the structure of this automor-
phism is very simple, its orbit partition is universal in the class of ergodic
measure-preserving transformations, as mentioned above.

Theorem 1 (H. Dye [3]). For each ergodic measure preserving transforma-
tion M of the space (X, m), there exists a transformation S of the same
space which is metrically isomorphic to the 2-odometer I' and which has the
same orbit partition as M, so that M is o time change of S:

Mz = SH®) g,

where t(-) is a Z-valued measurable function on X, and vice versa, there
exists a measurable function n(-) such that Sz = M™@)g.



Isomorphism between 7" and S means the existence of an invertible
measure-preserving map V such that VIV =8,V : X — X,and V= p.
So, by Dye’s theorem, each ergodic automorphism is isomorphic to an auto-
morphism of Zo, preserving Haar measure, and with the same orbit partition
as the odometer.

The functions t(-),n(-) are called time-substitutions or jump-functions.

So, the odometer has a universal orbit partition: the orbit partition of
any ergodic transformation M is metrically isomorphic to the orbit parti-
tion of the odometer T'. This partition is a standard hyper-finite countable
homogeneous ergodic partition, that is the union of the decreasing ergodic
sequence of the finite 2”,n = 1,... homogeneous partitions!.

By definition, the orbit partition of the odometer T is the partition into
the cosets of the subgroup Z in the group Zy. We will prove that it coincides
(mod 0) with the tail partition — that is, the partition into the cosets of
the group > 7°(Z/2) in the group [[7°(Z/2). There is a difference between
these two partition on the countable set Z due to the fact that positive and
negative integers belong to different tail classes, namely the classes of {0}*°
and {1}°° in the group Zy. Both the groups Zy and [[{°(Z/2) may be
equipped with Haar measures, and become metrically isomorphic as measure
spaces with those partitions. We will prove that the orbit partition of the
Morse automorphism in its adic realization also coincides (mod 0) with the
tail partition, and consequently there is a reversible time substitution which
brings the Morse automorphism to the odometer. The goal of the paper is to
study the arithmetic properties of that time substitution, and the so-called
Morse arithmetic.

2.2 General theory of time substitutions

Suppose a countable group G acts as measure-preserving transformations on
the measure space (X, u). The orbit of the point x € X is the set {gz;g €
G}. The partition of the space (X,p) into the orbits of the group G is

'We will not dwell on the interesting history of this theorem, which goes back to J. von
Neumann and Murray [7] (where it is phrased in terms of the uniqueness of type-I1I; hyper-
finite factors), and to several papers of H.Dye [3]. In [10] the author proved a lacunary
theorem for homogeneous sequences of measurable partitions, and R. Belinskaya [1] used
these as the main ingredient for a new proof of Dye’s theorem (not known to us at that
time), see also the later paper [4]. The final result in this direction was proved by Ornstein
and Weiss [8] and Connes, Feldman, and Weiss [2]: all ergodic measure preserving actions
of countable amenable groups have hyper-finite (or “tame”) orbit partitions, isomorphic
to the orbit partition defined by the odometer. Together with the previous results, this
gives a characteristic property of measure-preserving actions of amenable groups.



called the orbit (or trajectory) partition, and denoted by £(G; X) or &(G)
if the action and space are fixed. In the case of the group G = Z, we can
write £(T"), where T is the generator of the action of the group Z.

Assume that two measure preserving ergodic automorphisms 7" and M
of the Lebesgue space (X, m) have the same orbit partitions,

Consider the time-change function ¢(-) from above, defined by the formula:
Mz =Ty,

which exists because of the coincidence of orbit partitions. The function ¢ :
X — Z is called a time substitution function from the automorphism 7" to
the automorphism M or the “function of jumps from 7" to M”.
Consider also the complete time change function (z, k) — t(x, k), defined
by
MFg = THk2) g,

It is easy to express the function ¢(k, z) using values of the function #(z) on
the same orbit as follows. We record the following formulas for ¢(x, k):

t(0,z) = 0,
o) = t),
k—1
t(k,x) = Zt(sz) for k > 0, and
i=0
k|1
t(k,x) = —Zt(Mim) for k < 0.
i=0

For example,
M iy =M e),

and
t(—1,2) = —t(M'2).

It is clear from the definition that M and T have the same orbit partition
if the set of values of function ¢(z,-) when k run over Z coincides with Z for
almost every z, or in other words {t(M*z) | k € Z} = Z for a.a. =.

It is natural to look at the function #(-,-) as a map from X to the group
of all permutations of the integers — G%. We denote this map by ©,/, so

On : & — {k— t(z,k)} € L.



Evidently for almost all « the bijection ©(z) of Z is an element of &Z.

We will call the permutation {k — t(k,z)} = O(x) € &% the time
substitution from T to M at the point x, or for brevity (if it is clear from the
context what the maps 7" and M are) — the substitution at the point . It is
important not to confuse this permutation with the time substitution ¢(z),
which was defined above. The formulas above give the links between these
two objects.

Define a subgroup & of the group &% by

6L ce?:6h ={ge&?|g0)=0}.

Since t(0, ) = 0, the image of X under the map ©; lies in the subgroup &.
Thus each point € X is sent to an infinite permutation O(z) : k — t(z, k) €
Z, an element of the group &% of all infinite permutations of Z.

Define an action of the group Z on &% by letting the generator D of Z
act according to the formula

D(g)(k) = g(k +1) —g(1),

(D is the “modified shift”). The map D is a bijection of the subgroup &%
onto itself (but is not a group isomorphism). The identity permutation Id
and the reflection —Id are both fixed points of the map D. We have defined
an action of Z, that is a dynamical system, on a subset of

&% c &% | & = {g € & | g(0) = 0}.

We have defined a map from our system (X, m, M) to the group &% of
all permutations of the integers with zero as a fixed point,

Oy : X — &2,
defined by
Xz~ 0Oy(z)={k—tkz)|keclZ}
The image of the measure m on X under ©); is a measure ©yym = pyr on

the group &p. We define a new dynamical system using this as follows.

Theorem 2. The map Op; is a homomorphism of the ergodic transfor-
mation M of the space (X,m) to the ergodic transformation D on the
space (&2, ).

If for almost all pairs (z,y) with z,y € X we have t(-,x) # t(-,y),
then ©pr is an isomorphism onto the image of the triple (X, m, M) and

(6%7;U*M7D)



Thus we obtain (in the non-degenerate cases) a new model for the study
of the automorphism M (relative to the automorphism 7°). The measure jps
is interesting itself as a natural example of a measure on the group of all
permutations of the integers (more generally, for a G-action, a measure on
the group of permutations of G).

2.3 The space of linear orderings of Z

In what follows it is more convenient to think of the time-substitution in
terms of linear orders on Z; more precisely re-orderings of the integers Z.
The image of the usual order on the group Z under the time substitu-
tion O, (x) can be represented as follows:

—=t(=2,z)—t(—1,2) = t(0,2) =0—t(1,z)=t(x) = t(2,x) —--- .

This is a linear order of type Z on the group 7Z, depending on z. We will
use the following notation from combinatorics: ¢ < b means that b is the
immediate successor of a, or b immediately follows a¢ with no intermediate
elements. Using this, we can write

o t(=2,x) <t(—1,z) <t(0,2) =0 < t(z) =t(l,z) <t(2,z)--- .

Consider the space 7 of all linear orders on Z of type Z, and equip that
space with the natural weak topology and corresponding Borel structure.
The group of shifts {S™ | n € Z} acts on 7, and we can consider the shift-
invariant Borel measures on the space 7. The set of triples (7,5, p) is once
again a universal model in ergodic theory, as was the previous model of the
group of all permutations. The formulas of the following lemma and its
corollary show how to express this action.

Lemma 1. For k > 0,

k
t(k, Mz) = t(k+ 1,2) —t(z) (=D _HM')),
=1
for k <0, and
k] .
t(k, Ma) = t(k — 1,z) — t(x) (=Y _ (M 'z)).
=1

Corollary 1. t(MFz) = t(k +1,z) — t(k, z).



Lemma 1 shows that the order
t(k,z)<tk+1,2),keZ,
is sent to the order
t(k,Mz) <t(k+1,Mz)(=t(k+1,z) —t(z)),k € Z,

or simply
t(k,z) —t(z) <t(k+1,z) —t(z)),k € Z.

This means that the new linear order induced by the automorphism M is
simply the shift (translation) of the previous order. So the induced action of
the group Z on the space 7 is defined independently of the automorphism M
(recall that the function ¢(-) takes on all integer values). Thus the action
of Z on the space of linear orders T is simply the action by the shifts. The
usual order k <k+ 1,k € Z and the opposite order k <k — 1,k € Z are fixed
points of this action.

We are interested in the shift-invariant measures on 7. For a given
automorphism 7" we can identify each automorphism M which has the same
orbit partition as T with the shift invariant measure on the space 7. This
measure is concentrated on the set of re-orderings of the orbits of T'.

Thus all ergodic triples (X, M,m) up to isomorphism can be realized
as the triple (7,5, 1), where S is the shift on the space 7 and p is a shift
invariant measure on the 7. Remember that this isomorphism depends on
the automorphism 7', so this model as before can only give relative invariants
of M with respect to T'.

PROBLEM 1. How does the class of invariant measures depend on the
automorphism T %

2.4 The notion of locally finite permutation and locally finite
ordering

Now we define a special class of permutations (or bijections) of the group Z
(and, more generally, of countable amenable groups) and in parallel the
corresponding special class of linear orders on the group Z.

Definition 1. Locally finite bijections are defined as follows.
1. A bijection L : 7Z — Z is called locally finite (LFB) if there exists an

increasing sequence of intervals Iy C Is C -+, with
U In = Za
n>1

9



with the property that for each € > 0 there exists N = N(€) such that
the intervals I,,n > N are L-invariant up to € > 0°.

2. More generally, let G be an arbitrary countable amenable group, and L :
G — G be a bijection of G onto itself. Then L is called locally finite if
there is an increasing exhaustive sequence of finite sets {I,,},\J,, In =
G, where each I, is a %—Fﬂlner set, (for some fized choice of generators
of G), with the property that for each € > 0 there exists some N = N (€)
such that for all n > N the sets I, are L-invariant up to e.

The property of being a locally finite bijection does not depend on the
choice of generators for the group, and the class of locally finite bijections
generates a subgroup of the group of all bijections on the group. To my
knowledge nothing is known about this subgroup, and it would be interesting
to investigate the algebraic structure of this subgroup.

It is easy to give examples of orderings which are not locally finite, but
the locally finite class is most natural in analysis. We use this notion in
the following paragraphs. The parallel definition for linear orderings on the
group Z is the following.

Definition 2. A linear ordering < on the group Z (of type Z) is called
locally finite(LFO) if there exists an increasing sequence of finite inter-
vals I, = (ap, by), U I, = Z, with a linear order <,, on each I, such that the
following holds.

1. The linear order (Z,<) is a limit (stabilization in the natural sense)
of (I, <) when n tends to infinity.

2. For each € > 0 there exists N = N(€) with the property that for n > N
the restriction of <, to the interval I,,m < n coincides with <, for
all elements of 1., except € - |L,|>.

For the group Z the notion of locally finite ordering is consistent with
the definition of locally finite bijection above. Namely, it is easy to check
from the definition that if L is a locally finite bijection then the L-image
of > (that is, the order defined by n < m <= L~ 'n > L~ 'm) is locally
finite, and wvice versa.

It is not difficult to prove (see [13]) the following fact:

>This means that |I,AL(I,,)| < €|L.|.
3In the sequel we will have a stronger condition, that the restriction of <, to I, differs
from <, at most on two points of I,.

10



Theorem 3. Let S is ergodic automorphism which has the same orbit par-
tition as odometer T. Then there exists time substitution of almost all orbits
of T to the orbits of S which s locally finite for almost all orbits. The growth
of the lengths of the corresponding intervals I, depends on so called scale of
automorphism S.

Remark that by Dye’s theorem and previous assertion each ergodic mea-
sure preserving transformation is isomorphic to another measure preserving
transformation which has the same orbit as odometer and for which time
substitution is locally finite for almost all orbits.

For Morse automorphism we will prove much more strong assertion about
time substitution.

Definition 3. Suppose that for two measure preserving ergodic transforma-
tions T, M with the same orbits, and the locally finite time substitution from
T to M is defined with permutations of each intervals I, n = 1,2... (see
definition) which are depended on n but are the same for almost all orbits.
We call such time substitution as uniformly locally finite -ULFTS. (This is
symmetric relation with respect to T, M. In this case we say that T, M are
allied transformations.

We will call that Morse automorphism and odometer are allied, the time
substitution has the exponential growth of length of interval and the finite
permutation for each length of the interval I, is so called the Morse permu-
tation which is defined for each interval of length 2", n =1,2... and is the
same for almost all orbits.

3 The odometer and the Morse automorphism

3.1 Orbit partition of the odometer

Assume that the space X is Zs, the integer dyadic numbers with Haar
measure m and 1" is the transformation of adding unity in the group Zo,

T:z—z+ 1.

Notice that as a topological space (with pro-finite topology), and as a mea-
sure space (with Haar measure), the group Zs is the same as the space of
group [[7°Z/2 (with the (3,1) Bernoulli measure). Thus we can consider
the natural action of the group > 7°Z/2 on Z,.

Let us consider the element x € Z, as a sequence (z1,z3,...) with x =
0,1, of the dyadic decomposition. Two sequences {xy}, {yx} are called co-

final if z = yi for all k& > ko(z,y). Finite sequences (that is, sequences

11



which are cofinal with (0)>° correspond to natural rational integers, se-
quences which are cofinal to (1)* correspond to negative rational integers.
Each equivalence class of cofinal sequences is an orbit of the action of the

group > {°Z/2.

Lemma 2. 1. The orbit partition of odometer T' is the partition into the
cosets of the subgroup of integer rational numbers Z C Zs, and in
terms of dyadic decompostion:

2. The orbit partition £(T') of the odometer T on the set Zy \ Z coincides
with the partition into cofinal classes (or with the orbit partition of the
group > 1" Z/2. So these two partitions are the same (mod 0):

&T) =¢0> Z/2) mod 0.
1

The integers Z generate one T-orbit, but decompose into two classes
of cofinality — cofinal with (0)*° and (1)>°.

Proof. If n € Z4 then evidently T"z = x + n and z are cofinal; if = # 0,
then x — 1 and x are cofinal. Consequently, if z € Z and n € Z, then z + z
and z are cofinal. If z,y are cofinal then there exists z € Z, such that
either x + 2z = y or y + z = x. The orbit Z consists of two classes of cofinal
sequences — one cofinal with 0°°, and one with (1)*. O

We can identify T-orbits of the generic point = of the group Z, with the
group »_1° Z/2, so it provides a linear order of type Z on the group y ;° Z/2.

Example 4. An interesting example of this nontrivial linear order is to use
the point x = —% € Zs, which has dyadic decompostion

3 =(10)>

(see below). Its T-orbit is the set {+ —k | k € Z}. On the other hand,
the orbit is the class of all sequences cofinal with (10)°°, so it is possible to
order by type Z this orbit, or vice versa to identify the group > 7Z/2 which
parameterizes that class in the natural sense, with the group Z. The reader
can do this easily.

Example 5. Notice that the group So also acts on the group
o0
z, ~[[z/2
1

12



as group permutations of the coordinates. However its orbit partition is
finer than the partition into classes of cofinality, but does not coincide with
it (mod 0). The so-called Pascal automorphism [11] also acts on the group,
and has the same orbit partition as the action of Seo- infinite symmetric

group.

If a measure-preserving transformation M of Z, has the same orbit par-
tition as the odometer 7', then our formulas for M simplify. The func-
tion X sz —t(x) €Zis

Mz =T Wy = z + t(z),

(here addition is in the sense of the group Zs). We can simplify other
formulas. For example,

MFg =100 g — ¢ 4 t(k,z) (mod Zs),

and so on.

At the same time, we believe that consideration of the Morse transfor-
mation below is a typical consideration in orbit theory. Namely, we will
consider the well-known Morse system from the point of view of the dyadic
odometer (that is, the relative invariants), and for this we will use the adic
realization of the Morse automorphism, and the corresponding Morse per-
mutations of the integers.

3.2 Traditional definition of the Morse automorphism

We recall the definition of the Morse automorphism. Consider the alpha-
bet {0,1} and define the Morse substitution by

¢(0) = o1,
¢(1) = 10.

This is extended to all words in the alphabet {0,1} by concatenation. The
Thue-Morse sequence is a fixed point of the substitution,

u = uguiug--- = lim ¢"(0) =0110100110010110... .

n—oo

The sequence u obeys the rule
uf0,2" T — 1] = u[0,2" — 1] @[0,2" — 1] for n >0,

where u[i, j] = u;---u; and @[ ...] denotes changing 0 < 1 inside [...].

13



The sequence u is non-3-periodic (no words appear 3 times repeatedly),
and similarly is non-4-periodic and non-5-periodic. The sequence is well
known in combinatorics, logic, and symbolic dynamics.

We next define the Morse automorphism. Consider the set of all two-
sided infinite sequences in the alphabet {0, 1}, all sub-words of which are the
sub-words of the infinite Morse-Thue sequence u*; this is the same set as the
weak closure of the two-sided shifts of the Morse-Thue sequence u. This is a
shift-invariant compact subset (in the weak topology) M of the space ¥ =
{0,1}%. The (left) shift on M is by definition the Morse automorphism
of M as a topological space with action of Z.

We recall the main properties of the Morse automorphism (see the earlier
papers including [5], and more recent treatments [9]).

Theorem 6. The automorphism M is a minimal, uniquely ergodic, uni-
formly recurrent, transformation of M. The spectrum of the corresponding
unitary operator Uy on L2(M,pn) (where p is the unique invariant mea-
sure) is mized, and contains a discrete part which is dyadic (and the same
as for the 2-odometer) and a continuous part which is singular with respect
to Lebesgue measure.

4 The Morse transformation and its orbit parti-
tion

4.1 Adic realization of the Morse transformation

Counsider the group Z, the compact abelian group of the 2-adic integers
under addition. It is clear that as a measure space this is isomorphic to the
countable product of copies of the group Z/2: Zy = {0,1}". The odometer
transformation 7" is an adic transformation by definition, with respect to
the natural partial (lexicographic) order on the group of 2-adic integers:

T:z—x+1.

We want to compare the Morse automorphism and the 2-odometer. For
this we use the so called adic realization of the Morse automorphism. The
general definition of an adic transformation requires an N-graded graph (in
our case, a graph with the two vertices 0 and 1 on all levels, and simple
edges between any two vertices of adjacent levels), and with a linear order

*In other words, this is the shift whose language coincides with the language defined
by wu.

14



on the set of edges which end to a given vertex. For the odometer, the order
is the same for both vertices: an edge which comes from 1 is greater than
an edge which come form 0. In order to obtain the Morse transformation
we change the order of the symbols 0,1 depending on the next symbol,

0<0l,1<;0
as follows:
{zit <{vi} <= 3Jj: mi=yfori>j
and
{z;} <, yj, where z = ;11 = y;41.

This allows us to define a new partial order as the lexicographic order on
the cofinal set of paths, or points of Zs or set of all sequences of 0, 1.

We now show what the next point is in the sense of the new order.

In order to define the next sequence to the sequence z = (z1,z9,...) €
Z,, x; =0,1, we use the following procedure.

1. Move through the sequence until the first repetition of symbols x; =
Zit1, this will be either ...00 or ...11;

2. Change 00 — 10, or 11 — 01;

3. Substitute all the previous digits to ones, 11111 ---1 in the first case,
and correspondingly to zeros 00000 - - -0 in the second case:

M((01)"00%) = (12""10x),

M((01)"1%) = (0™"1%),
M((10)"0%) = (1%"0%),
M((10)"11%) (027 F114).
For example,
M(00%) = 10%,
M(0100%) = 1110x
M(011x) = 001,
M(100«) = 110,

M (1011) = 0001

The rule expressing how to go from z to M(z) may also be expressed as
follows. Suppose that in a sequence

Z 9.’1/':($1,$2,...xr,$r+1,...),$i:0,1,7;:1...
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the first two adjacent coordinates which are equal are =, = z,41.

This means that ©1 = 23 = x5 = -+ = &y # T2 = T4 = ...Tg, Where
either t =r,s =r+1ort=r—1,5s =r depending on the parity of r.

If £, = 0, then the sequence M(x) has the first » — 1 coordinates equal
to 1, and all subsequent coordinates are not changed: (1,1...1,0,%,%). In
this case, in the formula M(z) = z + t(z), we have t(z) > 0.

If z, = 1 then M(x) has the first » — 1 coordinates equal to 0, and all
subsequent coordinates are not changed: (0,0,...0,1,%,%...). In this case,
in the formula M (z) = x + t(x), we have t(x) < 0.

Our algorithm of definition of M (x) does not work if z has finitely
many 0s or 1s or equal adjacent coordinates with 0 and 1. Define as an
exceptional set of Zo the countable set of points of Z, whose dyadic decom-
position has finitely many adjacent pairs z,, z,41 of the type: x, = 2,41 =0
and z, = z,41 = 1, or (in a more direct description) the set of sequences
which are cofinal to (0)*°, (1), (01)°, (10)°.

Theorem 7. The orbit partition of the Morse transformation M in its adic
realization (mod 0) coincides with the orbit partition of the odometer. More
exactly, consider the M-orbit of the point x € Zs which has infinitely many
coordinates with x, = x,41, and infinitely many Os and 1s (this occurs on a
set of full measure). Then the orbit of x coincides with the set of all points
which are cofinal with x. On the set of exceptional points (which has Haar
measure 0) the orbit equivalence relation of M is different from the relation
of cofinality.

Proof. We start the proof with a simple lemma.

Lemma 3. Let x € Zy and assume that = = {z...} is the dyadic expan-
ston of x. If for some r we have x, = x,11, then each element y of Zy for
which y; = z;,1 <1 < r belongs to the M-orbit of x.

Proof. Suppose that , = 0. Then if we apply the definition of the Morse
transformation to the sequence with coordinates

T =T =" =xp =0,

we obtain all integers 0,1...2" — 1, so the fragment of M-orbit of the
point zx = 0,k = 1...n coincides with the set 0,1...2" — 1, consequently
all y with the condition y; = x;,1 < % < r belongs to the M-orbit of the
point 0. If z, = 1 then the same is true if we start with a sequence with
coordinates

T =T9 ="' =x, =1
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Returning to the proof of Theorem 7, we use the condition that there are
infinitely many k with z = 1 in order to define correctly the full (two-sided)
orbit of x (see the paragraph above about exceptional orbits). Now suppose
that two points z and y are cofinal, and

Tk =Yg,k > N.

Then there exists > N such that z, = z, ;1 = 0 so, by Lemma 3, y belongs
to the orbit of z, completing the proof. O

It is also possible to define the Morse transformation as adic transfor-
mation using differentiation of binary sequences. Define the differentiation
operation

D: Z2 — Z2

by
D({‘T”}ZOZO) = {($n+1 - xn) mod 27 n= 07 17 Tt }

We remark that there are no good, simple “arithmetic” or “analytic” expres-
sions for the behavior of D. The next result (see [9]) relates the Morse-Thue
sequence to the operator D.

Lemma 4. ToD =D o M.

This is an immediate corollary of the definition of M. The new definition
was made by the author as an example of the adic realization of the trans-
formation (see [6, 11]). In the adic realization, the Morse transformation M
is a 2-covering of the odometer in its algebraic form.

4.2 Jump function of the Morse automorphism, and Morse
arithmetic

Now we give a precise expression for the “jump-function” ¢(-) in the for-
mula M (z) = z+t(z). Notice that the value of the function ¢(z) depends on
the finite fragment of x; more exactly, on the fragment (z1,...xz,),r = r(z)
where 7 = min{k | zp = 21} (see above).

Define the sequence:

2“3& if r =1 (mod 2),
ar = r+1
=2 ifr =0 (mod 2)
for » > 0.
The first few values of a, as a function of »r = 0,1... are shown below:
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r/0 1 23 4 5 6 7 8 9
a; |01 2 5 10 21 42 8 170 341

This sequence satisfies the recurrence relation
ary1=2"4+a,—1, r=0,1,2...,
with the initial conditions ag = 0,a; = 1. Another evident relation is
ar_1+ar+1=2".

We conclude that
2l <a, <2,

so in particular there can only be one number a, in the interval between two
adjacent powers of 2.
The recurrence relation

asp = 2a2p—1 +1;  agpy1 =2a2,, n=12...; ay=0

is a corollary of the definition. Notice that the dyadic expansion a, corre-
sponds to the sequence

r+1

(01)"3

forodd r>1

and
(10)z for even r >0,

or equivalently
(01)" = agny1, (10)" =1(01)" ' = ag,.

For each = € Zy, we define r = r(z) to be the minimal index of the
coordinate for which the equality z, = x,41 occurs for the first time (see
above). Consequently, for all z which has a repetition 00 or 11 we have the
following result.

Theorem 8. 1. The transformation M is defined on the group Z, of 2-
adic integers. It is continuous at all but two points: —% and —%. The
transformation M preserves the Haar measure on Zy and is metrically

isomorphic to the Morse automorphism.
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2. The explicit formula for the Morse transformation on © € Zy is

M(:r):{ #tan, i =0,

z—ap, if x,=1.

where 7 = r(z).
Both cases can be expressed in the formula

M(z) =z + (=1)"a,, where r=r(z).
If we compare this with the initial formula, we obtain
M(z) = T"® g = 2 + t(z),

SO
te) = M(z) —z = (~1)"®a (.

Our formula can be applied to the integers as elements of the group of
dyadic integers Z C Z, as follow. For n € Z, denote by r(n) the minimal
number of the digit in the dyadic decomposition of

n:Za;k2k,$k =0,1

for which the value () = Z(,)11 = €(n). For example,

r(n)=1, €en)=0, if n=0 (mod 4),

rn)=1, en)=1; if n=3 (mod4),

r(n) =2, €en)=0, if n=1 (mod8),

r(n) =2, en)=1;, if n=6 (mod 8).
The general formula for n,k =1,2... is the following:

r(n) =k, €n)=0, if n=ar_1(mod 2’”1)

and
r(n) =4k, en)=1, if n=—ap_1—1l(mod 21)

The general formula for M(z), which generalizes the formula above, is
M(n) =n++ (—1)6(n)ar(n).

Thus we obtain the Morse order on the integers: the following table illus-
trates this order on the semigroup N which is half the orbit of O:
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9 10 11 12 13 14 15

n |01 2 3 4 5 6 7 8
Mmn)[1 3 7 2 5 15 4 6 9 11 31 10 13 8 12 14

The extension to negative integers is given by the relation
M(—n)=—-M(n—-1)—1.
This give the order on the other half orbit corresponding to 1:

112 3 4 5 6 -7
2|4 -8 -3 -6 -16 5

These tables give the time substitution at the point 0. We call this the
Morse order.

The following sequences show us the Morse dynamics on the integers,
namely what is the Morse re-ordering of the integers:

0—-1—-3—-2—-7—-6—-4—-5—15---,
and for negative integers:
-1—--2—--4—--3—--8—=-7T—-5——6---.

As we saw, the integers generate the exceptional (semi)-orbits M (see
above and Section 4.1); our goal is to describe this re-ordering for generic
orbits and to present the time substitutions in a more explicit form.

5 The structure of time substitutions; main con-
struction

Now we are ready to give the answer to the question about general time
substitutions for the Morse automorphism. The first step is the definition
of very interesting finite permutations (elements of the groups Ss») which
will be used to describe the re-ordering of the group Z, and the time substi-
tutions.

5.1 Definition of Morse permutations and Morse order

Our first construction concerns some special elements of the finite symmetric
groups Son which we call Morse permutations, and defines a linear order on
the set 1,2,...2".
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For all n > 1 we will define by induction a permutation g, € San. It is
convenient for this definition to consider the ordered set of integers: {2", 2"+
1,...,2"t1 —1}, instead of {1,...2"}; later we will use it as permutations of
an arbitrary linear ordered set on integers b,b+1,0+2,...,0+2"—-1,b€ Z
(using the shift 4 — i+ b,i = 27, ... 27T —1).

Here are some of the first permutations (n=1,2,3) presented in cycle
form:

g1 (273)7
g2 (4757776)7
g5 : (8,9,11,10,15,14,12,13).

We define the Morse permutations for arbitrary n by induction. Suppose
we have already defined g,_1, as a permutation of the set

{21 . 2m — 1},
Then g,, will be defined as a permutation of the set
{on, ... 2"t 1)

The action of g, on the first half of the set {27,...,2" +2"~! — 1} is defined
as an “almost” shift of permutation g,,_; onto 2". More precisely,

gn(i) = gn_1(i =201 42771 v <j<onypontl g
with one important exception:

gn(an+1) =2t -1

(remember that 2" < a,41 < 2"!). On the second half {27 4+2n—1  2n+l_
1} the action of g, is also made of copies of the action of g,,—1, but slightly
different:

gn(t) = gn-1(i —2") + 2,
again with one exception:
gn (2" + ay,) = 2"

All these permutations are well-defined, and are cyclic permutations, nev-
ertheless the first and second examined halves of the set 27...2"T! — 1 are
“almost invariant” in the sense that there is only one element of each half
that has the image in the opposite half.
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We will use the Morse permutations in order to define the linear order
on the set. For this we need to break the cycle at one point. This point we
will call the first (or the minimal) point, and its pre-image (in the cycle) as
the last (or the mazimal) point. We will write the cycle from the first point
when it is already selected.

We now define two opposite linear orders on the set

{27 2" 4 1,...,2" "L 1},

breaking the cycle as follows. The order 7,, has minimal element 2"*! —1 and
the second order 7,, has minimal element 2". It is clear from the definition
that the maximal (or the last) element in the order 7, is a,t1, and in the
order 7, the maximal element is 2*+! 4+ 27 — an+1 — 1. The order 7, is
simply the image of 7, under reflection i « 2"t 42" — 4 — 1. Recall that
the symbol a < b means that b is next to a in the sense of the order.

The structure of the Morse permutation and order will be more trans-
parent if we divide the set {2",...,2"*! — 1} into groups of four elements.
We will see that there are two types (7 and 7) of such groups which are
alternate.

Example 9.
3: 15<14<12<13<8<9 <11 <10,
T3: 8<€9<ll<l0<1b<l4<12<13.
5.2 Random linear order on the group Z, and time substitu-

tion for the Morse transformation

We want to define an explicit linear order on the group Z depending on z
which corresponds to the time substitution from the odometer to the Morse
transformation:

—=t(=2,z) = t(—1,2) = t(0,2) =0—t(l,z)=t(z) = t(2,2) —-- -,

where we recall that M*z = T*k%) The values of t(k, z) for a fixed generic z
run over all of the group Z. Thus we want to reorder the orbit of 1" to the
orbit of M.

Definition 4. The Morse random order T(x) (corresponding to the non-
exceptional point x) on the group Z is the linear order defined using the
map k — t(k,z) where M*z = T2 5. In other words, it is the re-ordering
of the T-order to the M-order on the orbit of the point x.
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We will give an implicit description of the Morse order (depending on z).
Firstly, we describe the structure of our answer, and explain what the Morse
linear order 7(x) looks like.

Definition 5. A Morse linear order 7 on the group Z comprises the linear
orders on the systems of countably many finite intervals in Z, each of length
a power of two, the union of which is the whole group. On each of the finite
intervals, the linear order follows the Morse order defined above, and we
glue the boundary elements (the mazimal and minimal points of the adjacent
intervals).

Such an ordering, and such a corresponding infinite permutation, belongs
to the class of locally finite linear orderings of 7 defined in Section 2.4. The
order depends on the point x and is therefore called a random order.

The locally finite ordering has a system of increasing intervals on Z of
length 2¥ for various &, and we equip each of these with its Morse order. At
each stage it appears that the old interval is included in the new interval.
The final points of each linear order 7, are glued to one of the boundary
points of the next interval. The length and order of gluing hardly depends
on the non-exceptional point x, indeed the structure of the construction is
universal.

We next describe in more detail such a construction.

5.3 A parametrization of the points in Z,

It is convenient to parameterize the points © € Zo as follow. Let z =
(x1,z2...) be the dyadic decomposition of z. The sequence of coordinates
is a sequence of independent 0,1 variables with probability (%, %) Instead
of the coordinates of x, we consider all the numbers r1(x),r3(z) - - - of coor-
dinates for which z,, = .41, and fix also the value 0 or 1 of z,, = €(z). For
almost all elements z the sequence {r,} is an infinite increasing sequence,
which together with e(z) = 0,1 defines x uniquely. Indeed, it is easy to see
that if we know {r,} and €(z) then we can restore all the subsequent co-
ordinates®. The probabilistic properties of the parameters can be obtained
from the fact that the Haar measure is the Bernoulli measure.

Lemma 5. 1. The differences rp+1 — ry are mutually independent and
have the same geometrical distribution

Prob{r, =k} =2"% k=1,....

>The sequence {r,(z)} can be interpreted easily in terms of the differentiation opera-
tion D from Section 3.2, since r,(z) is the place on which the sequence Dz has a 1.
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2. Consider the function t(x) from Section 2.2 with Mz = T"®)z. Then
Prob{t(z) = +a,} = Prob{0(z)(1) = +a,} = Prob{ri(z) =r} = .

This means that the values of t(x) are not arbitrary, and have exponen-
tially decreasing probability.

Fix z; for each such choice, corresponding data {r,(x) = r, }nen, and €(x)
e, we make a corresponding re-ordering of the group Z. The point z will
correspond to 0 in the group Z, and the ordinary order on the group Z
corresponds to the dynamics of the odometer k « T%z.

5.4 Construction of the Morse linear order, and its time-
substitution.

Now we describe the algorithm which sequentially constructs, for each frag-
ment of dyadic numbers, the final interval on Z with the needed linear order.

1. The initial interval is constructed as follows. Consider 7 (xz), which
is greater than or equal to 1 by definition. If r; = 1, then z =
(0,0%,%...) or x = (1,1,%,%...). In the first case, Mz = Tx =
(1,0,%,%...), so the M-image of  (of 0) is the same as the T-image
and is 1, thus 1 is M-next to 0. In the second case Mz = T 'z, so
that —1 is M-next to 0. Thus the initial interval is either {0,1} with
the usual linear order, or {—1,0} with that linear order. Suppose now
that 1 = r > 1. In this case the initial (r — 1)-fragment of z has
coordinates (01)%,(10)*,1(01)* or 0(10)*, where s = 5% or s = 52
depending on the parity of r. We will consider 2" points from Zo whose
coordinates with indices m > r are the same as the coordinates of .
The set of these points in Z is the interval 0,1, ...2", and we will shift
this set in order that the fragment 1, ...z, of the point = starts on the
place of 0 in Z. We translate the interval of integers {0,1...2"—1} C Z
to the interval of integers

L ={-a,_1,-a,_1+1,...0,...,2" —a,_1 — 1 =a,}
if x, =0, or
L={-a,—a+1,...,0,....2" —a, — 1 =a,_,}
if , = 1. These are the initial intervals of our construction, namely

I = (_ar—la ar)
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and
L = (_araar—l)-
In the construction we have only used the fragment

(.’El,.’EQ, e {Er+1)

of the point . We must define a new linear order on this set according
to the action of the Morse transformation.

2. Now we apply the Morse order 7, on the interval I; and 7, on the
interval I; defined above, using the shift of 27,271 — 1 to those two
intervals, as mentioned in the previous item. We obtain a linear order
on the intervals depending on whether z, is 0 or 1. Carrying the
boundary points from the interval

on ... ontt g

to the interval which we obtained gives the following boundary points
of our linear order. Initial (minimal) points are

—ar—1 € (I1,7(r)),
correspondingly B

ar—1 € (I),7(r)),
and the maximal (or last) points are

ar—1+ 1€ (I, 7(r)),

correspondingly B
—ar—1 — 1 € (I1,7(r)).

We have obtained the initial step of the construction of the linear
order 7(z).

Example 10. Letr; = 3. Thenz = (0,1,0,0,%,...) orz = (1,0,1,1,%...),
and one of the ends of the interval will be a, = 5, and we obtain the interval

(_27 _]-7 07 ]-7 27 37 47 5)
for the first case and

(_57 _47 _37 _27 _]-7 07 ]-7 2)
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for the second case. The initial points are —2 and +2 and the last points
are 3 and —3 correspondingly. The linear orders are T and T, namely

—2—--1->51-0—-5—-4—2-—3,

or

2—-1—--1—-0—--5—-—-4— —-2— —3.

We have given an explicit form of the first part of the time substitution
for each point, so we already have an algorithm for calculating the function
t(-). Because this function uniquely defined the functions ¢(k,-) by the

formula
k—1

t(k,z) = t(M'z),
i=
it is possible to stop the algorithm for constructing the time substitution
here. However we will give a continuation in order to describe it as a random
re-ordering of the whole group Z.

(3) The general inductive step may be described as follows. Suppose
that we have already considered the first n — 1 members of the se-
quence 1y,_1(x) = r,—1, and obtained the linear order of one of the
intervals Ip,_1(z) = {bp_1,cp—1} of length 2"»-1 and including 0 € Z
which is equipped with the Morse linear order 7, , or 7, |, with
the minimal point of the order coincided with one of the endpoints
of I,, either b,_; or ¢,_; correspondingly. We will choose the next
interval I,(z) = {by,c,} and define a linear order on it so as to in-
clude I,,_1(z), and such that the restriction of the linear order on I, (z)
coincides with the initial linear order. Consider the number r,, being
the next after r,_; with equal coordinates x,, = x, 1. Denote the
maximal point of the order on I,,_1 by /,,_1. There are two cases:

(a) Ifr, =r,_1+1, then z,, =z, , and in this case I,, = I;, 1 U J,
the minimal element of I, is the same as in I,_1, where J is
an interval adjoining I, from the side which is opposite to the
minimal element. The linear order on I, has the same type 7 or 7
as on I,_;. The next element to the maximal element of I,,_;
in I,, will be the second (non-minimal) endpoint of I,,.

(b) Ifr,, > r,—1+1 then the construction depends on the parity of the
difference rp,—r,—1 > 1. If this difference is odd, then z, | # x,,
and the Morse order on I,, will change its type to be opposite to
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the type of order I,,_i; in particular the minimal element of I,,,
say bp, will be on the opposite side to the minimal element ¢,
of I,,_1. If the difference is even, then minimal elements are
both b or both ¢. Now the interval I, = JUI,_1 UJ’ where J, J'
are adjacent to the I,,_; intervals in Z. The lengths of J and of J’
are equal to

] = > 24

Grp—1+1<i<r,—15i=rp—1(2)

|J'| = > 20
1 +1<i<rp,—1;i=1+r,—1(2)
It is clear that the length of I, is 2. By definition, the restriction
of the Morse order on I,, onto the interval I,,_; coincides with the
initial order on I,,_{. The next element to the maximal element
of I,— in I,, will be the second (nonminimal) endpoint of the
interval I,,.

and

The randomness of the construction and of the re-ordering consists in
the various possibilities for the sequence 7,(z) and the values z, . Thus
the re-ordering can be different for various values of z. Nevertheless the
structure of the new orders are similar for all points. Now it is evident that
the probabilistic behavior of the length of the intervals I,, depends precisely
on the sequence 7, and the size of jumps has geometrical distribution (see
Lemma 5). For example, the long jumps have exponentially small probabil-

ity.
5.4.1 An exercise and an informal explanation

A good concrete example of the ordering of Z is given by rational (periodic)
elements of Z,. We will give the first fragment of the linear order for®

z = (100)* = —1.

5This equality is true because

(100)* + -+ - + (100)™ = (1) = —1.

7 terms
Similar arguments give the equalities (01)> = —2,(10)> = —%,(1100)>* = —1 and so
on.
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and leave for the reader the case of
z = (1100)> = —1.

The orbit of the point —% = (100)° is interesting because it is a generic
point (in the sense that the orbit is of type Z), and at the same time the
values of the coordinates which are repeated are the same, so z,, = 0. In the
case of (1100)*° the situation is more complicated: the values of z,, change
as Try, ., = 1,2, = 0. The periodicity does not give any simplifications, so
together both cases give the full picture.

This is the beginning: the invariant 32 digits of the linear order for —% =
(100)*° are

{{.]<-9<-8<—6<—-T,|<-2<-3<-5<—4],<+6<+b5<+3<+4

<—1,<0<2,<1],<22 <21 <19<20], <15 <16 <18 < 17|, <
<T<8<l0<Y<ld<13<1l<12|...}.

Here a < b means that Mz = T%, M2z = TPz, for example MT* = T
and MT% = T°.

We can see that in all the examples the order subdivided (as marked
by |) into the blocks with 4 points with order (1,2,4,3) or (4,3,1,2), then
the 4 blocks generate the block of the next level, and so on. But the dis-
tance between the quadruples (or jumps) depends on z, more exactly on the
number k of adjacent coordinates which have the same values rp = rg41.

The cases © = (0)°°, (1)°°, (01)*°,(10)*>° remain. As we will see in the
next section, these are one-sided: the first two left-sided, and the second
two right-sided.

5.5 Addendum: Exceptional orbits

The points
0=(0)*,-1= (1)~

are exceptional: they have no full orbits because they have no pre-images.
So the semi-orbit of O defines a linear order (and a permutation) on the
semigroup Z., and the semi-orbit of 1 similarly defines a linear order on Z_
(see the formulas at the end of Section 4.1). The points with denominator 3
are also exceptional and not generic, as we saw. The orbit of the point (10)*°
does not coincide with an orbit of the odometer. Now we can obtain the
complete comparison of the orbit partition on Zs for the odometer 1" and the
Morse transformation M. We remark that for the odometer the points 0 =
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(0)*>° and 1 = (1)* belong to one orbit, but for the Morse transformation
this is not true.
Consider the following orbits of the odometer T":

T0, the orbit of 0;
T, the orbit of 3£ k € Z;
T, the orbit of 22 k € Z.

On the other side, the Morse transformation M has two positive semi-orbits
(which have no past), namely the orbits of the points 0°° and 1°°, and
two negative semi-orbits (which have no future), namely the orbits of the
points (01)* and (10)*°. We call them mazimal points, and denote the set of
these two points as M AX = {(10)°°, (01)>°}. We will join those three orbits
of the odometer 7' with four semi-orbits of M and obtain two new orbits
of the Morse automorphism M by definition. By the initial definition, the
orbit 79 divides into two positive semi-orbits of M — one starts with 0 and
the second with —1: each of these glue correspondingly with orbits 7 and 7o
of T, and recall that for the initial definition of M they are only negative
semi-orbits. So we glue each two positive semi-orbits to two negative semi-
orbits, and obtain two new full orbits of M.

Because the transformation M is not defined on these two sequences,
we can by definition choose the values among another two sequences which
conversely have no pre-images, or for which the inverse map M~! is not
defined. There are only two such points z for which there is no x with the
property M (xz) = z, namely (0)>*° =0 € Z and (1)>* = -1 € Z.

We may assume’ that

M((10)®) = M(-3) = (0)® =0, M((01)®=M(-2)=(1)®=-1.

W=

Here the boldface numbers denote rational integers: 0,1 € Z C Zs.
This gives us the following picture:

8 11 4 1 5 2 .
_ga_?7+§7+§7_§7_§7 (') _17_27_4'_37_8"'7

the second is finished with —%; and we prolonged it with 0:

10 16 14 11 5 8
T3 +?7+?7+?7+§7+§7

"We glued the semi-orbit of O to the semi-orbit of —%, and the semi-orbit of 1 to —%,
but we can change this gluing to the opposite one.
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_%7_%7"’_%7_% (') 071737277"' '

As predecessors to the symbol ! in both pictures we have the former orbits
of T, which now become the negative semi-orbits of M, which we glued to
integers. Thus the transformation M is now defined on the whole group Zs.
In particular, we have defined M for all integers from Z.

It is clear from the definition that

M(—n)=-Mn-1)—-1, n=1,....

This formula is valid for all z € Zy since M(—z) = —M(z — 1) — 1, and is

true even for the exceptional points x = —% and z = —% since

M(~}) = -M(~%) - L.

It is easy to deduce from the definition of M that M is continuous on Zsy \
MAX, and that it is not possible to extend M by continuity to those two
points, because, for example, the limit of each of the two sequences (10)™(0)>
and (10)"(1)* as n tends to infinity, is the same, namely (10)>(= —31), but
the values of M on the sequences tends in the first case to (1)*°(= —1) and
in the second case to (0)>(=0).

Thus, except for three orbits of T (or four semi-orbits of M), all the
other orbits are simultaneously orbits of both transformation. This com-
pletely defines the adic realization of the Morse transformation and its orbit
partition, as well as the time substitution of the odometer.

6 Conclusion

We gave an explicit form of the time change on the orbits of the odometer
in order to obtain the Morse transformation. The answer shows us that
the structure of the new ordering of the orbit is locally finite in the sense
we have defined. We proved that Morse transformation and odometer are
allied in the sense of our definition (section 2). This structure of the time
change indicates that the two automorphisms are not very different in terms
of their orbits (but nevertheless can have different spectrum). It is possible
that they have the same entropy scale in the sense of [13]. What can we say
more generally about the properties of automorphisms which are related by
such a time change? For example, if one is Bernoulli will the second also be
Bernoulli?

The measure on the space of linear orders of Z (or on the space of locally
finite permutations of Z) which we have defined with our algorithm is of great
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interest itself. It is the image of the invariant measure on Zy with respect
to the function S{t(k, ) }kez : Zo — Gz.

It is interesting also to study the time change for other examples of

measure-preserving automorphisms, for example the other substitutions like
the Morse transformation, and automorphism with positive entropy. The
classes of random infinite permutations which appear in these cases give
new examples of nontrivial measures on the infinite symmetric group.
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