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ABSTRACT:

The present communication contains lectures given by the author at the Institute of Mathematics
of the Academy of Sciences of the People Republic of China in April 2009. They are devoted to
the free boundary problem for the Navier—Stokes equations governing the evolution of an isolated
liquid mass. The main attention is given tothe problem of stability (and instability) of a finite mass
subjected to the forces of self-gravitation and, possibly, of the surface tension on a freeboundary and
rotating uniformly about a fixed axis. In addition, the lectures contain an auxiliary material used in
the analysis of problems of fluid mechanics. In particular, basic properties of the Sobolev—Slobodetskii
spaces are analyzed and some auxiliary relations and inequalities (e.g. Korn’s inequality) are proved.
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1 Formulation of main results

The lectures are devoted to the free boundary problem governing the evolution of an isolated
mass of a viscous incompressible fluid bounded only by a free surface. It is assumed that the
liquid is subject to the forces of self-gravitation and to the capillary forces on the boundary.
The problem consists of determination of a bounded domain Q; C R3, ¢ > 0, as well as of the
vector field of velocities v(z,t) = (v1,v92,v3) and the pressure function p(z,t), z € Qi t > 0,
satisfying the equations

v+ (v V)v —vV20 + Vp = kVU (z, 1),
V.-v=0, z€Qy, t>0,

Tw,p)n=cHn, V,=v-n, z €y = 0y,
v(z,0) = vo(x), x € Q.

Here v = const > 0 is the viscosity coefficient, x and o are non-negative gravitational
constant and the coefficient of the surface tension, respectively, non vanishing simultaneously

(i.e., k+0>0),
d
U(m,t):/ _dz
Q4 |$—Z|

is the Newtonian potential depending on an unknown domain €2, I'; is the boundary of €,
H (z) is the doubled mean curvature of I';, negative for convex domains, T'(v,p) = —pI+vS(v)

. ov; ov
is the stress tensor, S(v) = (—J + —’“)
, S(v) 0w 1 0vj ) j k=123

exterior normal to 'y, V,, is the velocity of evolution of I'; in the normal direction. The
density of the liquid is assumed to be equal to one. The domain € is given.

By introducing a new pressure p — kU instead of p, we can write the above problem in
the form

is the doubled rate-of-strain tensor, n is the

vi+ (v- Vo —vVu+Vp=0, V.-v=0, €, t>0,
T(v,p)n = (kU (z,t) + cH)n, V,=v-n, x € 'y = 09y, (1.1)
v(z,0) = vo(x), z € Q.

From the conservation of mass and of momenta it follows that

94| = [,

/ v(z,t)dzx :/ vo(r)dz, / v X zdx :/ vo(r) X xzdz.
Q¢ Qo Q2 Qo

The problem (1.1) is well posed, in the sense that for arbitrary initial data vo(z) and Qg
possessing some regularity properties and satisfying natural compatibility conditions it has a
unique solution defined at least in a finite time interval.

There exist solutions of the problem (1.1) corresponding to the uniform rotation of the
liquid as a rigid body about a fixed axis (z3-axis). Then the velocity and the pressure are
given by

2
w
V(z) =w(es x ) = w(—x2,21,0), P(z) = 7\:15’\2 + po, (1.2)



where ' = (z1,%2,0), pg = const, e3 is a unit vector directed along the z3-axis and w is
the constant angular velocity of rotation. The boundary conditions furnish the equation that
determines the domain F , filled with the rotating liquid:

2
oH(z) + %\x'ﬁ Y KU +po =0, z€G=0dF, (1.3)

where H is the doubled mean curvature of G, negative for convex domains,

and w is a constant angular velocity of rotation. The domain F is known as the equilibrium
figure of uniformly rotating liquid. In the case 0 = 0 equilibrium figures have been studied in
classical papers of Maclaurin, Jacobi, Riemann, Poincaré, Lyapunov and many other great
mathematicians (see, for instance, the book of P.Appell [1] where the case o > 0 is also
considered). It was found that F may be axially symmetric with respect to the x3-axis
(as Maclaurin ellipsoids in the case ¢ = 0) or not (Jacobi ellipsoids, pear-formed figures
of Poincaré etc.) In the first case the functions (1.2) given in the domain F represent the
stationary solution of (1.1). In the second case the same functions defined in the variable
domain F,;4,, where 7y is obtained from a fixed equilibrium figure 7 = Fy by rotation of
an angle f about the x3-axis, represent a periodic solution of (1.1).

The question of stability of the solution (1.2) is of a special interest. As in classical
mechanics, following Lagrange, one used to decide about stability according to the properties
of the second variation of the energy functional. This is a quadratic form

w? , 2
PR() = [ 1Voolds + [ b )i + ([ Witas)

(1.4)
o / / PP 4g .
gJg ly—2|
where Vg is the surface gradient on G,
b(z) = —o(H? —2K) — e’ N () — 5285 — o2 4 12) — w2 - N(z) — s 25 (15)

ON ON

N (z) is an exterior normal to G and K is the Gaussian curvature, k1 and ko are principal
curvatures of G (the functional R is defined in (6.30) and (1.4) is justified in Sec.8).

If the form (1.4) is positive definite for arbitrary function p(z) given on G and satisfying
the conditions

/p(m)dS’ =0, /p(x)midS' =0, 1=1,2,3, (1.6)
g g

/gp(w)h(w)dSI =0, (1.7)

where h(z) = N(z) - (e3 x x), x € G, then the solution (1.2) of (1.1) was considered stable,
and in the opposite case, i.e., when this form can take negative values, the solution was
considered as unstable. (The function h(z) equals zero, if F is axially symmetric, and it
satisfies the equation 62R(h) = 0 that is a consequence of (7.3)).



Here these statements are justified by analyzing the evolution free boundary problem for
the perturbations of the velocity and the pressure. We assume that F is a given bounded
domain with a smooth surface G defined by the equation (1.3) whose barycenter is located
at the origin, i.e., the equations

/widx:(), 1=1,2,3
f

hold. The initial data, vy and g, are close to V' and F, respectively, and they satisfy the
natural conditions

Sl =17, [ mde=0, i=1.23 (1.8)
Qo

and

/ vo(z)dzr =0,
Qo

(1.9)
/ (x X vg)dx = / (z x V(z))dzx = Pes,
o F

where 8 = w [ ! |2dz is the magnitude of the angular momentum of the rotating liquid.
Then, if the form (1.4) is positive definite, we prove that the problem (1.1) has a unique
solution defined in the infinite time interval ¢ > 0, and v — V, p — P,y — F,, as t — oo.
Moreover, we establish that it is not the case when the form (1.4) can take negative values
for some p satisfying (1.6), (1.7).

For simplicity we assume that F is rotationally symmetric with respect to the xsz-axis.
The case of non-symmetric F is treated in [2,3].

It is convenient to work with the free boundary problem for the perturbations of the
velocity and the pressure v—V, p— P written in the coordinate system that rotates uniformly
with the same angular velocity w. It has the form

w; + (w - V)w + 2w(e3 x w) — vV?w + Vs = 0,
V-w(y,t) =0, yeq, t>0,

2
T(w,s)n’' = (cH' + %Iy'|2 + kU (y, t) + po)n’, (1.10)
Vi=w-n!/, yely,

w(y,0) = vo(y) — V(y) = wo(y), vy € Qo,

where Q) = Z(wt)Q;, w and s are the perturbations of the velocity and pressure written as
functions of y € Q,

cosf) —sinfl 0
Z(0)=| sinf cosf 0 |,
0 0 1
n’ is the exterior normal to T';, H' is the doubled mean curvature of I, and U’ = fQi ly —

z|~dz. The conditions (1.9) are transformed into

wo(z)dz =0,
o (1.11)

wo() - 1y (&) e + / o) s () = w /F na() - (),

Qo Q0

5



where n;(z) = e; X z, €; = (;5)j=1,2,3. It is easily verified that (1.11) hold for arbitrary ¢ > 0,
ie.,

w(z,t)dx =0,
% (1.12)
wie,t) mle)ds +o [ myle) ma)de =w [ ny(o) mi(o)da,
Q; o F
1 =1,2,3. We also have
) = |7, / zidr =0, i=1,23 (1.13)
Q/

t

To the solution (1.2) of (1.1) corresponds the zero solution of (1.10).
If the surface T'} is close to G, then it can be considered as a normal perturbation of G,
i.e., it can be given by the equation

$:y+N(y)p(y7t)7 yE€G, (114)

where p is a small function. In particular, I'y is defined by the equation (1.14) with a given
function py(y).

We can extend N (y) and p(y,t) from G into F so that IN remains sufficiently regular
and p remains small together with its gradient (more detailed assumptions concerning the
extensions N* and p* of N and p will be formulated in Sec. 5). Then the relation

z=y+ N*(y)p*(y,t) =e,(y), ye€F, (1.15)

defines an invertible mapping of F onto ;. We observe that the condition V,, = w - n' is
equivalent to

w(z,t) -n'(z)
n'(z) - N(y)’

where z and y are connected with each other according to (1.14), and (1.13) can be written
in terms of p in the form

pe(y,t) = (1.16)

[etepis=0. [ hepds =0 i=1.23 (1.17)
g g
where

P’ p*

2

3 4
Yi(z,p) = p(z,p)zi + Ni(2) (% — %H(z) + %K(z))

Now we present our main results concerning stability of the zero solution of the problem
(1.10), (1.12). This will be done for the cases 0 > 0 and o = 0 separately.

1. 0 >0.

First of all, we write (1.10), (1.12) as a nonlinear problem in a fixed domain F. We map
F on ) by the transformation (1.15). We denote by £ = L(y, p*) the Jacobi matrix of the
transformation (1.15) and we set L = detL, L=LL By li;(y, p*), 1Y (y, p*) fij(y,p*) we



denote the elements of £, £~!, £. Under the transformation (1.15), the equations (1.10) take
the form
(w, — PHLT'N* - Vu + (£L7'u - V)u + 2w(es X w) — vV - Vu + Vg = 0,

V. Lu= 0, yelF,

T(u,q)n
w2
=n(o(H() = HE) + 5 (P ~ 1y P) + 600 ~UW))| =M, ye,
_ uly. ) -nley)
pt(yat) - N(y) . n(ep) y Y E ga
LP(¥:0) =po(y), y€G, u(y,0)=uo(y), yeF,
(1.18)

where u(y,t) = w(e,(y).t), q(y,t) = s(ey(y),t), V = £7TV, £77 is the transposed matrix
£ v=v,, T is the transformed stress tensor: T'(u, q) = —gI+vS(u), S(u) = Vu+(Vu)T
is the transformed rate-of-strain tensor (we have omitted the primes). The conditions (1.12)
are converted into

/ u(y,t)Ldy =0,
f

(1.19)
/ Lu(y,t) - n;(e,(y))dy = —w/ Lng(ep(y),t)-m(ep(y))derw/ n3(y) - n;(y)dy,
F F F

The normals n(e,(y)) and N (y) are connected with each other as follows:

LTN (y)

n(ep(y)) = m

(1.20)

Let WZHV/Z(Q x (0,00)) be the Sobolev space with an exponential weight 7!, v < 0,

equipped with the norm
— ||
||uHWé:,ly/2(Q><(O,OO)) - He uHWé’l/2(Q><(0,OO))'
The spaces Wé:g(Q x (0, 00)), W;’éﬂ(ﬁ x (0,00)) are defined in a similar manner.
Theorem 1.1. Let | € (1,3/2), Qoo = F X (0,00), Gooc = G X (0,00). Assume that

uo € WSY(F) and pg € WH(G) satisfy the compatibility conditions

V-ug(z) =0, ze€lF,

S(uo)mo — mo(no - S(uo)ng) =0,
where ng(ep,) is the normal to Ty, and the smallness condition
H“OHWQIHU:) + HPOHW21+2(g) <ekl (1.21)

Assume finally that
*R(p) = elolls (1.22)



for arbitrary p € W4 (G) satisfying (1.6). Then the problem (1.18) has a unique solution
1+2,1/24+1 Ll/2 1+1/2,0 —~t
u,q,p such that u € W, (Q), Vg € Wyl (Qeo)s dlea € Wy, 7 (Go), €7 7'q €

Wy(0,00,W,7%(9)), p € W, 5720 (Gc), pr € W, Gc), pl ) € WEHHG), Ve >
0, v < 0. The solution satisfies the inequality

—vt
H“HW;;WM(QOO) + HVQHWQ’;Q/Q(QOO) + HCIHW;#/M(GOO) +1le™aly01 2,60

—t
Hlelgzermo oy + Worlhygsormirssriig +5upe el o) (1.23)
< c(lluollyirr gy + ool ),

where | |, /5,.g._ is the norm in W2l/2(0, oo; W3 (G)).

The estimate (1.23) shows that the zero solution of the problem (1.18) is exponentially
stable. In [2,4] similar estimate has been obtained for the Holder norms of the solution of
(1.10).

When we omit all the nonlinear terms with respect to w, p, p in (1.18), we arrive at the
linear problem in F

~

vy + 2w(e3 x v) — V20 4+ Vp =0,

V.v(y,t)=0, yeF, t>0,

T(v,p)N + Byp =0, (1.24)
pr=v(y,t) N(y), yeGg,

v(y,0) =voly) y€F, py,0)=ply), yeG,

where

ply,t)dS

|z =yl
is the first variation of the expression M in (1.18) with respect to p, and Ag is the Laplace-
Beltrami operator on G. The function b(z) is defined in (1.5). Linearization of (1.17), (1.12)
leads to

Bop(z,t) = —cAgp — b(z)p — n/g (1.25)

/p(y,t)dS =0, /yip(y,t)dS =0, (1.26)
g g

/ v(z,t)dz =0,
‘F

(1.27)
/ o(z, ) - ny(x)dz + w / oo, tns(z) -ma(@)dS =0, i=1,2,3.
F g

2. 0 =0.
We pass to the Lagrangian coordinates ¢ € {2y connected with the Eulerian coordinates
xz € by

x:£+/0 u(é, 7)dr = X (&,1), (1.28)

where

u(é,t) = w(X(¢,1),1).

oo



By the transformation (1.28) the relations (1.10) are converted into

uy + 2w(ez x u) — vViu + Vyuq =0,
Vu-u=0, EeQy, t>0,
R (1.29)
Tu(u, g = (s(U(X, 1) —UX)) + 5 (X = [X[)n,  £€To,
U(f,O) = wO(f)? f € QU?

where ¢(¢,t) = s(X(&,1),t)), n = n(X), X is the closest point of G to X, V, is the trans-
formed gradient with respect to x, T, is the transformed stress tensor, i.e.,

Vu=AV, T,(u,q) =—ql+vS,(u), Su(u)=(V,u)+ (V,u),

V = (8%1’ 3%2, 8%3) = Ve, A = (Aij)ij—1,2,3, Aij is a co-factor of the element a;; = 6;; +

J %é”)ch of the Jacobi matrix of the transformation (1.28) ( the determinant of this matrix

equals one). The normal ny(§) to Ty is related to n(X(&,t)) by

_ A H)no ()
") = T4 Hmo®) (1.30)
The equations (1.12) take the form
| ule.i=o.
‘2o (1.31)
[ sty 0 =~ [ ny(0) 0+ [ nglo) - i)y,
Qo F F
The function p in (1.14) can be written as a function of £ € T'y:
p(z,t) = R(X (1)) =r (¢, 1), (1.32)

where z = X (&, 1),
R(z) = +dist(z,G),

the sign ” — 7 corresponds to the case z € F and the sign ” +” to the case z € R3\ F. The
function R(x) is smooth in a certain neighborhood of G, and

VR(z) = N(z).

Hence B

Ry(X(¢,1) = VxR(X) - Xy = N(X) - u(&, 1), (1.33)
and u, ¢, r can be regarded as a solution to the problem
(w; + 2w(es x u) — vViu+ Vg =0,

Vu-u=0, EeQy, t>0,
2

T(u,gn = ((U(X,0) ~U(K) + S (X~ (X Pn, cery, (139
ry = N _) u,
\ U(f,O) = wo(f)a f € QU? T(f,O) = :0(57 0) = TO(&)'

9



This problem is studied in the weighted Sobolev spaces Wé’l/ Q(QOT), ! > 1, with the norm

el Qr = Q0 x (0,T)

2 2
wlle, ;. = ||u 11—
|| HWé’l/Z(Q%) H ||Wé’l/2(ng Wé L 1)/2(Q%)’

(the weight improves the behavior of the elements of these spaces for large t). We also find
it convenient to introduce the spaces WZZ’O(QOT) and W20 A 2(QOT) with the norms

2 NTINTP 2
luliFro oy = Il ioigo ) + Il ii0/g0 s

2 2 2
b — t B .
HU’HWSJ/?(Q%) HUHW;J/Q(Q%) + H UHWS’(I 1)/2(Q8«)

The main result concerning the solvability of the problem (1.34) is as follows.
Theorem 1.2 [5]. Let wy € Wi (Qg) with 1 € (1,3/2) and let the surface Ty be given

by (1.8) with py € Wé””(g). Assume also that wy satisfies the compatibility conditions

va(f):O, 5690,

(1.35)
S(wo)no — mo(no - S(wo)no) =0, & €Ty
and that
HwOHWé+1(QO) + HPOHV[/;'F:*/?(Q) S € (136)
where € is a sufficiently small positive number. Moreover, let the condition
3*R > clpll, g (1.37)

hold for arbitrary p € Ls(G) satisfying (1.6). Then the problem (1.34) has a unique so-
lution w,q,r such that u € Wé”’””l(ng), Vq € Wé’l/Z(ng), r € Wé“ﬂ’o(Ggo), ry €
W2l+3/2’l/2+3/4(Ggo)7 where Q% = Qo X Ry, G, =Ty X Ry, plgo. € /WQZH/Z’Z/ZHM(G&)’
S WZZH(FO), Vt > 0. The surface Ty is representable in the form (1.14) where p is con-
nected with r = R(X) by (1.32). The solution satisfies the inequality

HUHVV25+2,1/2+1(QgO) + qu”ﬁ’é"/?(ng) + HQHVV2!+1/2J/2+1/4(G80)

T lrlggearzogy,) T lrliggesrmasrs gy ) + SuplrCs Dl e (1.38)
+sup (e Olhgry) < eIl g + ol )

Estimate (1.38) shows that the solution of the problem (1.34) tends to zero as t — oo like
a power function.

The difference in the treatment of the problem (1.1) with ¢ > 0 and o = 0 can be
explained as follows: since the elements of the matrix £ depend on the derivatives of p(y,t),
these derivatives appear in the equation for p;, in view of (1.20), and the corresponding
nonlinearity in this equation turns out to be too strong, if ¢ = 0. This is not the case in
the Lagrangian coordinates (see (1.33)). On the other hand, since u € W21+2’l/2+1(Q0T), the
transformation (1.28) does not seem to be regular enough in the case o > 0.

The proof of the solvability of the problems (1.18) and (1.34) relies on the estimates for
the solution of the non-homogeneous problem (1.24) and of the second (Neumann) evolution
initial-boundary value problem for the Stokes system

10



v, — vV + Vp = f(y, 1),

V-v(y,t) = f(y,t), yeF, t>0,
T(v,p)N =d(y,t), ye€G,

v(y,0) =vo(y), yeF.

These linear problems are studied in Sec. 2-4. In Sec. 5 and 6 basic ideas of the proof of
Theorems 1.1 and 1.2 are presented; the main attention is given to the estimates (1.23) and
(1.38). Sec. 7 is concerned with the case when §2R(p) can take negative values for some p
satisfying (1.6). It is proved that in this case the regime of rigid rotation is not stable in a
linear approximation, i.e., that the problem (1.24)-(1.27) has solutions growing exponentially
as t — oo for appropriate initial data. Finally, in Sec. 8 auxiliary material is presented. It
includes the Sobolev-Slobodetskii spaces, some auxiliary inequalities, in particular, Korn’s
inequality, and the calculation of variations of some functions and functionals under the
normal perturbation of the domain where the functionals are defined.

(1.39)

11



2 On the second boundary- and initial-boundary value prob-
lems for the Stokes equations

1. Stationary problem

Let Q be a bounded domain in R? with the boundary S € C?. We consider the boundary

value problem
{—VVQ’U-FVp:f((L‘) V-v=0, ze€4, 2.1)

T(v,p)n =d(z), «€S,

where n(z) is the exterior normal to S and T'(v,p) is the stress tensor. We observe that
the homogeneous problem (2.1) (with f = 0, d = 0) has a non-trivial solution v = n =
a+bxx, p=0, where a and b are constant vectors. We define a weak solution of the
problem (2.1). We multiply the first equation in (2.1) by a test vector field ¢ and integrate
over 2. Since

WV Vp=-V- T V. 5w) + Vp,

integration by parts leads to
5/ S(v):S((p)dx—/pv-(pdwz/f—cpdx+/d-<pd5’. (2.2)
2 Ja Q Q s

It is natural to define a weak solution of (2.1) as a vector field v € W, (Q2) and the function
p € Ly(9) satisfying (2.2) for arbitrary ¢ € W3 (2) (cf. [6]). The vector fields f and d should
satisfy the necessary compatibility conditions

/Qf-ndx—i—/sd-nd520, (2.3)

because the left hand side of (2.2) vanishes when ¢ = 7).
If ¢ is divergence free, then the term with the pressure drops out, and (2.2) takes the
form

g/QS(v) : S(<p)dm:/ﬂf-<pd$+/sd'90d5- (2.4)

We introduce the following spaces:
V: the space of (real valued) vector fields v € W3 (£2) orthogonal to all vectors of rigid
motion n =a + b X x, i.e,

/ v - ndx = 0; (2.5)
Q

J: the subspace of divergence free vector fields in V.
Vg C WQI/Q(S): the space of traces of the elements ¢ € V on S.
In V, we introduce the scalar product

v.¢]= [ S): S(p)da.

By the Korn inequality (see Proposition 8.9) this bilinear form possesses all the properties of
the scalar product, and the form [v,v]"/? = ||v||y is equivalent to [Vl (o) forallv € V.

12



Let V'’ and V7, be dual spaces to V and V5. For arbitrary f € V', d € Vig,p € V we
have

I/mf-wdeSHvaﬂva,
9 (2.6)

I/Sd' edS| < |ldllv,llellvs < Clldllv,llellv

We also set W = Wi (Q), Wg = W21/2(S), and we introduce the dual spaces W’ and

's. Tt is clear that Lo(Q) € W’ C V', Ly(S) C W5 C V', and inequalities (2.6) hold with
[ Flagey and ||l instead of | £y and [[d] ..(s). ], instead of [dlly,

Our first objective is to prove

Proposition 2.1 For arbitrary f € W', d € W' satisfying the compatibility condition
(2.3), the problem (2.1) has a unique weak solution v € J, p € La(Q2), and

[vllwy) + IpllLo@) < CUFlw + lldllw)- (2.7)

Proof. The proof is carried out in several steps.

Step 1. Determination of v.

We find v as a vector field v € J satisfying (2.4) for arbitrary ¢ € J. By the Riesz
representation theorem, a linear functional

%(/Qf-cpdx+/sd-<pd5)

can be represented in a unique way in the form of the scalar product [v, ¢], which gives (2.4).
Taking ¢ = v in (2.4) we easily obtain

[oflv < %(HfHV/ +ldlvy)- (2.8)

Step 2. Construction of p.
We introduce the space
K=vVodJ (V=JaoK)

of the elements w € V satisfying [w, ¢] = 0, Vo € J, and we prove the following lemma:
Proposition 2.2 For arbitrary f € Ly(2) there exists a unique element w € K such that
V-w=f. (2.9)

It satisfies the inequality
lwllwi@) < Clif Lo (2.10)

The correspondence between f and w is linear.

_ 1 f(y)
wi(z) = 47rv/9 |z — y\dy
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Proof. The vector field




belongs to W3 () and satisfies (2.9) and the inequality

lwillw ) < Cllfllza@)

(due to the theorem of Calderon-Zygmund). But it needs not satisfy (2.5) and belong to V.
Assuming for simplicity that fQ zrdx = 0 k = 1,2,3 (which can be achieved by a simple
coordinate transformation), we define wy € V' by

3
wy(z) =w) () +a+bxz=w(z)+ Y (ae; +bm).
i=1

The condition fQ wo - ndz = 0 yields the following simple equations for a; and b;:

1
a; = —@/ﬂwu(m)dx,

3 (2.11)
Zsijbj:—/wl.nidx i=1,2,3,
=1 f

where Si; = [om; - njdr. Since the matrix (S;;); ;=123 is positive definite, the algebraic
system (2.11) for b; is uniquely solvable, and we have

la +bx zlly o) < Cllwillzy) < CllflL.0)

which implies
lwallwy @) < Cllf I ()-

Finally, we define w as a projection of we € V on K. It is clear that w satisfies (2.9) and
(2.10). The uniqueness of w follows from the fact that V-w = 0, w € K impliesw € JN K,
i.e, w = 0. The proposition is proved. |

The inequality (2.10) shows that
lwllwi) < ClIV-wlr,@), YweK.

The estimate [|divw||z,q) < C|lwllv is obvious, and we see that the norms |lwl|yy;q and
[V - wl|f,(q) are equivalent in K. Hence we can introduce a new scalar product

(w, ) = /Q(v w)(V - )dz (2.12)

in this space.
To define the pressure p(z), we consider the expression

L(yp) = z/ S(v) : S(cp)dm—/f-cpdx—/d-cpds
2 Ja Q s
with v(z) that has been just found. L(¢) is a linear functional in ¢p € W, and
1L(p)| < (cllvllv + 1 fllw + ldllwy) llellws @
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This yields the estimate for the norm of the functional L:

1L < cllollv + [ fllve + lldllv, < CUfllw + lldlwy)-

For ¢ € J, L(p) = 0. By the Riesz representation theorem, for arbitrary ¢ € K, L(p)
can be represented as a scalar product (2.12), i.e,

Lig) = [ (V-w)(V - g)ds, VoK, (2.13)
0
where w € K is determined in a unique way and
IV - wl[py@) < 1L < CUFllw + lldllw,)- (2.14)

It is clear that equation (2.13) holds also for ¢ € J, i.e, it is verified for arbitrary ¢ € V;
moreover, in view of (2.3), (2.2) holds for arbitrary ¢ € W3 ().

It coincides with (2.2), if we set p = V - w. The estimate (2.7) is a consequence of (2.8)
and (2.14). The proposition 2.1 is proved. [

The problem (2.1) is elliptic, and the solution satisfies well known coercive estimates.
Proposition 2.3 If £ € Wi(Q), d € W.T/2(S), then v € W2H(Q), p € WIHH(Q) and
ol + Wl < CULF g+l irnrag))- (2.15)

Estimate (2.15) requires a certain regularity of the boundary S; we assume that it is
sufficiently smooth.

The proof is carried out by standard methods of the theory of elliptic systems. At first,
assuming that f € Ly(Q), d € W21/2(S), we can obtain the estimate (2.15) for [ = 0. This
is done via local estimates of the same kind as in the case of the Dirichlet problem for
the Laplacean and for the Stokes operator (see for instance [7]). Further improvement of
smoothness of the solution is obtained by using the theorem of regularity for general elliptic
boundary value problems.

2. Problem with a parameter

Now, we consider the problem with a complex parameter s

{sv—uV%—i—szf(m), V-v=0, z€q, (2.16)

T(v,p)n =d(z), z€S8.

The solution is sought also in the space of complex-valued functions.
A weak solution of (2.16) is defined as a divergence free vector field v € W3 (Q) and a
function p € Ly(Q) satisfying the integral identity

s/v-(pdm—l—z/S(v):S(cp)dm—/pv-cpdx:/f-cpdx—i—/d-cpdS, (2.17)
Q 2 Ja Q Q s

where p € W (Q), v- ¢ = Z?Zl v;p;, etc.
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Proposition 2.4 IfRes >a >0, f € W', d € WY, then the problem (2.16) has a unique
weak solution, and

|12 10 1, ) + [0l @) < e £ lw + Idllwy,), (2.18)

1Pl Lo@) < cllslllvllw + 1F llw + lldllw) (2.19)
with the constant independent of s (but it may depend on a).

Proof. We denote by H the space of divergence free vector fields from W3 () and, as above,
we find v as the element of H satisfying the equation

s/ﬂv-cpdx—i—g/QS(v):S(cp)dx:/ﬂf-cpdx+/sd-<pd5’ (2.20)

for arbitrary ¢ € H. Since s is a complex number, the form
Qu(v.0) =5 [ v-pdst ] [ S(0):S(e)ds
Q 2 Ja

can not be taken as a scalar product in W (2), and we use the Lax-Milgram theorem. It is
possible, because

1Qs(0,9) = (Reslv] o) + 5150 [174()” + (ms)?llo]1{,0)
> C(IsPllvllE 0 + IS, 0)
> C(|sllo]17,(0) +§||S(v>||%2<m>2
> C(lall[v}, ) + 5 1S@)F,00))" = Cllvliy )

(2.21)

By the Lax-Milgram theorem, there exists a unique v € H satisfying (2.20) for arbitrary
@ € H. Setting ¢ = v, we obtain, in view of (2.21),

v
31113 0y + 5 1S @) B0y < ellolvg oy (17w + el ),
which implies (2.18).

The construction of p is carried out essentially in the same way as in Proposition 2.1:
p=V-w, where w € H- = W} (Q) © H is determined by

Ls(tp):s/gv-cpdx—i-g/QS(v):S(go)dx—/gf-cpdm—/sd-(pdS

= / V.- wV - pdx.
Q
It is clear that

IpllLo0) = IV - wllwy ) < cllslllvllw + | Fllw + lldlw,)-

The proposition is proved. |
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Proposition 2.5 If Res > a >0, f € Wi(Q), d € W2l+1/2(5), then the problem (2.16) has
a unique solution v € WFTH(Q), p € WaTH(Q) and

l l
2 o]l o ey + [l oty + [Pl ey + 15172 el o)

|s
< O gy + 1721 L agy + s,
+ s[4 d — n(d - n)l| @ + 5] d- 7|y 5))7

[ Ipll o (s) < C(\|f||w2l(m + 15201 £l a0) + 1dlly, 1172 gy + 512l 1y ) -
(2.22)
with the constant independent of |s|.

Proof. We go back to (2.20) and write the estimate of v, assuming that f € Ly(Q2) and
d-neW,*(S), d—n(d-n) = di, € Ls(S). We obtain
[ #-vds | [ d-vd] < 1 lallolao) + Idianlags) o1an 105

- nlly e g ol (2.23)
< (I lnagen + el lly 17z g ) 10y + ledan a5y 0tan 25y

because
vl < cllvlliy

for divergence free vector fields. From (2.20) and (2.23) it follows that

IsllolZ,0) + 05 < C((HfHLQ Hlld-nfye )l @ + HdtanHL2(5)HvtanHL2(5))
(2.24)
We multiply (2.24) by |s| and apply the inequality ab < % + g—i, a,b,e > 0. This gives

[sPlvl1Z, (@) + Isllolfyy @)

Cle)IF 117 ) + 1] | deanl |7 o 5y + Il - nHiV?l/Q(S) + els?0l[Z, ) + els*?

vl Ly (S)
The last term we estimate by the interpolation inequality

12101175y < CUslPllvlIZ ) + Islllo 31 0))-
Taking e sufficiently small, we arrive at

51?1012, + 15101y (o) < CUF T + 151" NdianlZs) + lld - n]? wirrg)  (22)

Now we consider v as a weak solution of the problem (2.1) with f replaced by f — sv.
By (2.19) and (2.25),

1Pl 22@) < CUIF lai0) + Islll0lLa@) + @llra(s))
< OIf ooy + 511l s) + I1d - Ly, 172(g))
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In addition, from the regularity theorem for solutions of elliptic boundary value problems it
follows that v € W.T2(Q), p € Wi(Q) and

lollyiszay + Py < CUF = 5ol + Il o g,
Applying again the interpolation inequality
[slllv i) < €1llvllyzeg) + Clen)ls! ™2 [v]| o) (2.26)

with a small €; and taking (2.25) into account, we obtain the first estimate (2.22). Now we
easily deduce the second estimate from the boundary condition

p(z,t) =vn-Sv)n—-—d -n(z), zecs.

The theorem is proved.
3. Evolution second initial-boundary problem

We pass to the analysis of the evolution problem

v, — vV +Vp=f(z,t), V-v=f(zt), z€Q t<T, T<+o0
T(v,p)n =d(z,t), z€S (2.27)
v[i—o = vo(z), =€

We shall look for the solution of (2.27) such that v € W22+l’1+l/2(DT), [ € 10,5/2),
Vp e Wl l/2( Dr), where | € [0,5/2), Dy = Q x (0,T). The restriction | < 5/2 minimizes the
order of compatibility of initial and boundary conditions. As above, we assume for simplicity
that the surface S is sufficiently regular.

We start with the case of zero initial data and zero divergence.

Proposition 2.6 Assume that vo(z) =0, f =0, f € WZZ’Z/Z(DT), d—n(dn) € W21+1/2’l/2+1/4(2T),
d-n e WS (0 n W0, T, Wy (S)), where 1 € [0,5/2), Dr = Q x (0,T), Sp =
S x (0,T), and that the zero extension of f and d in Q x (—00,0) and S x (—o00,0) is
the extension with preservation of class, i.e., f° € WZZ’Z/Z(D%O), d’ e W2l+1/2’l/2+1/4(2§’9),
where f* = f,d° =d fort >0 f° =0,d" =0 fort < 0; DF = Q x (—o0,T),
LP® =8 x (—00,T). Then the problem (2.27) has a unique solution v € W22+l’1+l/2(DT),

Vp € W(Dr), p e W22 (50 n W0, 7, Wy 3(S)) and

[ollyastasirzgpn + IVPlytirz iy + Pl iz + 1Pls o,
CTY1F 172 gy + 1 = -] wrrasiss s+ 1l o+ 1dnl ),

(2.28)
where | - |5, 5, is the norm in Wl/Q(O,T; W3 (S)).
If, in addition, d -n € W20 l/2+1/4(ET), then
H’UH 2HLIH/2(p -|- vaHWQl,l/Q(DT) + HpHWé+1/2,z/2+1/4(ET)
(2.29)

<c(T )(HfHWé(DT) + HdHWé“/Q’l/QH/?(ET))'
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Moreover,

0l 2etasrre g +IVPI e by + [P lier20 5+ 1Ply2 /2,5,

< etllfllyprirz p,y + lId—n(d- n)|| wirirzize sy Fld-nllpaeo g (2.30)
+|d- "|z/2,1/2,2T) + C2HUHL2(DT)’
|lv]] WRHAH/2 +||VpH LI/2(p -i—HpH Wz
(2.31)

< C3(HfHW2u/2(DT) + HdHWé+1/2,z/2+1/4(ET)) + callvl .y (pr)

with the constants independent of T'.

Remark 2.1 fO is the extension of f with preservation of class, if 1/2 < 1/2 (i.e, [ < 1) or
if 1 > 1, f(x,0) = 0 (according to the trace theorem, f(z,0) € Wi '(Q)). Ifl = 1, then

f(z,t) should have a finite norm (fOT Il £ (-, )||L2 dt)1/2 that should be added to the right

hand side of (2.28) - (2.31).
d® is the extension of d with preservation of class, if [/2+1/4 < 1/2, (i.e, 1 < 1/2) orl >

1/2, d°(z,0) = 0. Forl = 1/2, there should appear an additional term (fUT ||d(-,t)\|2%)1/2
n (2.28) - (2.31).

Proof. For simplicity, we assume that [ # 1, [ # 1/2. We extend f° and d° with
preservation of class in the domains Q x (T,+00), S x (T,+00), respectively, and consider
the problem

{ut—VVZU—i-Vq:f*(x,t), V-u=0, 7€, —oo<t< oo, (2.32)

T(u,q)n =d*(z,t), =z€S5,
where f* and d* are the extended f and d. They satisfy the inequalities
1F* lwipeey < ellflwipge) < el f lwi(p:

@™ [ gyierr2irze1/8 500y < elldllyyierroirzersa s .

Following Agranovich and Vishik [8], we reduce (2.32) to the corresponding parameter-
dependent problem, using the Laplace transformation. We recall that it is defined by the
formula

fls) = /0+Ooe‘stf( nat € Lf, s=a+it, a>0,

and the inverse transformation has the form

a+oo .
Fit) = — / et f(s)ds < L1 f.

211 — oo

It is easily seen that f (a +i€) is the Fourier transform of the function e~% f(t) extended by
zero in the half-axis ¢ < 0, hence the following Parseval formula holds (see Theorem 8.1):

-I—oo
—/ fla+i€)|?de = / (t)|2e 20t dt.
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Since Lf; = sLf, the application of the Laplace transform converts (2.32) into (2.16).
Estimate (2.22) and the Parseval equality yield

lelysnsrnes gy + IVl ey < @ UF lytare e

+ H(d* —n(d*- n))HWé:I/Q’l/2+1/4(E£) + Hd . ’I’I,HWQl,-zl/Q,O(Eg) + |€_atd* . nll/2,1/2,2§)’

(2.33)
where Q3 = Q2 X (—00,00), XL = S X (—00,00). Since a > 0 and f*(z,t) =0, d*(z,t) =0
for t < 0, we have

15 g2y + 1" = =) ygmarmsssag
+[ld" - nfl, /20 (5300 +led" - nlyy v
(=) /1,1/2,53 (2.34)

< O gz gy +lld = nld- ) yrssssipssrs,

+||d - nHW;“/?’O(zT) +ld-nly05,)

We define the solution of our problem (2.27) with vy = 0 as the restriction of u(z,t), q(z,t)
to the time interval (0,77). It is clear that w = 0 and ¢ = 0 for ¢ < 0. Inequalities (2.33),
(2.34) imply

[0lly2sss1r2 1Pl 12y < O lwiior
+|ld—n(d- n)HW25+1/2,5/2+1/4(2T) +||d- 'nHWé+l/2,0(2T) +|d - n|l/2,1/2,zT).

Using the boundary condition p = vn-S(v)n—d-n, we estimate Hp”wl+1/2,0(ET) +1plij2,1 /2,57
2 k) b
or ||pH 1+1/2 1/2+1/4( T) and obtain (228), (229)

The solutlon defined in this way is unique. For parabolic problems, this has been proved
in [8]. Indeed, let v = v; — v2, p = p1 — p2 be the difference of two solutions (v1,p1)

and (ve,p2). We can extend (v,p) in DY so that v € WZZIZ’Z/ZH(DQ’S), Vp € Wl 1/2( %),
Pres € WH_I/2 l/2+1/4(200) v(z,t) =0, p(z,t) =0for t <0 and V-v =0. Let

flz,t) =v; — vV + Vp, d=T(v,p)n|s, te€ (—o0,+00).

It is clear that f € Wé:i/Z(Dg’g), de Wé;1/2’l/2+1/4(2£). Since f(z,t) and d(z,t) vanish for
t < T, the functions f'(z,t) = f(z,t+7T), d'(z,t) = d(x,t+T) vanish for ¢t < 0. In addition,

Flx,s) =T f(x,s), d(z,5) =eTd(z,s).

Let v’ € Wéjf’””l(Dgg), V' € WQl:Z/Q(Dgg) be a solution of the problem (2.29) in the
infinite time interval, corresponding to the functions (f’,d’). It vanishes for ¢ < 0, moreover,

v'(z,s) = e To(z,s), Vi(zs)=eTVp(z,s).
But these relations mean that

v'(z,t) =v(z,t+T), Vp'(z,t)=Vp(z,t+T),
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hence
v(z,t+T)=0, for t<0, Vp(z,t+T)=0, for t<0, q.e.d.

In order to prove (2.30), (2.31), we apply (2.33) to v, = e®v, p, = e*p. These functions
satisfy the relations

vat—VVQUa—i—Vpa:ava—i—fa, V-v,=0, z€,
T(va,pa)n = daa VS S,

Ua|t:0 =0.

Inequality (2.33) applied to v,, p, gives (2.30) and (2.31) is obtained in a similar way. The
proposition is proved. |

Theorem 2.1. Assume that [ € [0,5/2), | #1/2, 1 # 1, and that the data of the problem
(2.27) possess the following properties:

f e wiDp), f e WDyp), f = V-F, F, € Wo'*(Dp), d — n(d - n) €
W, ), dm e Wy (0r) 0 Wy (0, T W, (S)), wo € Wi ()
the following compatibility conditions are satisfied:

V-vy = f(z,0), z€Q,
and in the case l > 1/2 also
S(vg)n —n(n - S(vo)n) =d(z,0) —n(n -d(z,0)), =zebS.
Then the problem (2.27) has a unique solution v € I/VlJr2 l/2+1( Dr), Vp € Wl 1/2( Dr), and

ollyytsearzrs gy + IVPltarz oy + IPlhgisarzogsy + olis o5,
< eT)(1F Doz gy + 1 g0, +HFtHW20,z/z(DT)

+[ld —n(d- n)H l+1/zz/z+1/4( yHld el mzo s+ 1dnlys s, + [vollyie q),

(2.35)
[l oy HIVPl e gy + Pl s o+ Plyoazen
<01(||f\| 172y F I gz + 1 Fellyporn gy
=l )y, +||d Allyriimog, + A nlyaiss,
+ [0l q ) + callv oy
with the constants c1, co independent of T'.
If, in addition, d -m € W;’Z/ZHM(ZT), then

vl H20/241 +HVPH Li2(p +HPHW21+1/2,1/2+1/4( )

< ATV F yyiar2 gy + I 720 + Iollwier ) + [ Felly 002, (2.37)

+ ||d]] WL/ 2414 s, T)),
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H’UH L20/24 —i— HVpH L2y —i— ||pH L1224 4y
< cl(ufuwé,mwﬂ - HfHW2l+1/2,0(DT) ool + 1Py, (239
+ HdHWé+1/2J/2+1/4(ET)) + 2|l Ly(Dr)-

Proof. We reduce (2.27) to a similar problem with zero divergence by construction of an
auxiliary vector field wq(z,t) = V®(z,t), where @ is a solution of the Dirichlet problem

V20(x,t) = f(z,t), z€Q, ®(z,t)|pes=0.
This function satisfies the inequality
@l zs20 ) < €l gt o) (239
(see Proposition 8.19); in addition, since
V20, (z,t) = fi(z,t) =V - Fy(z,t), z€Q, Oz,t)=0, z€8
and
VA (—h)®y(z,t) = V - Ap(—=h)Fy(z,t), x€Q, Ay(—h)Pi(zx,t) =0, z€S,

where Ay(—h)®(z,t) = ®(x,t — h) — ®(x,t), t > h, we have, by the energy estimate,

IV@ellyoar2 py < ellFillyoarn -

Hence
i llyrszareen g < (1t gy + I yoire,)- (2.40)

The difference v1 = v — w; is a solution of the problem
vy — vV, + Vp = filz,t), V-v1 =0, z€Q,
T(vi,p)n =di(z,t), z€S (2.41)
vl|t:0 = ’U()(H?) — wl(m) = ’001(27), T € Q,

where

fi=7—wi+vViw,
dlzd—VS(’wl)

The problem (2.41) can be reduced to the problem of the same type but with zero initial
data. Let [ < 1/2. In this case we construct the solenoidal vector field ws satisfying the
condition ws(z,0) = vo1(z) and the inequality

w2l L2241 < C||1701HW%+1(Q)- (2.42)

For the difference vo = v; — wo we have

vy — V20 +Vp=Ff,, V-vy,=0, z€Q,
T(”?ap)n = d27 HANS Sa
,02(3:70) = 07
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where

fo=Ff1—wyu+vVw,,
dg = d1 — VS’(wg)'n.

These functions satisfy the assumptions of Proposition 2.6, and the solution (v2, p) can be
estimated by (2.28), (2.30). It is easily verified (in view of (2.40), (2.42)), that these estimates
imply (2.35), (2.36) for the solution of (2.27). The remaining estimates (2.37), (2.38) are
deduced from (2.35), (2.36) and from the boundary condition p = vn - S(v)n —d - n.

The construction of ws is carried out in the following way. We find wsy(z,0) in the
form woy(z,0) = w1 + ue, where u; is the extension of vy, with the preservation of class, as
in Proposition 8.10; we assume that w; has a compact support. Then, using the result of
Bogovskii [9], we can find w9, also with a compact support, satisfying the equation V - ug =
—V - u; and the inequality

HU2HW21+1(R3) < CHU1HW5+1(R3) < CHUO1HW21+1(Q)-

Finally, we define the extension of ws(z, 0), wa(z, ), in the half-space R? x R, by the formula
(8.25); it is easily verified that the extended vector field remains solenoidal and satisfies (2.42).
If I € (1/2,1), then the functions f € WQU/2(DT), d-n e WQl/Q(O,T; WQI/Q(S)) can
be extended by zero without loss of regularity. The same is true for d — n(d - n) €
W2l+1/2’l/2+1/4(2T), since d —n(d-n)|;= = 0, in view of the compatibility conditions. Hence
the above arguments remain in force for [ € (1/2,1).
In the case | € (1,5/2) we calculate vi¢|t—o = vi1(x). We have

v11(z) = vV?010 — Vpo + f1(,0),
where pg is defined as a solution of the problem
Vpo(z) =V - f(2,0), z€Q, po(x) =vn-S(vo)n —do(z) n(z), €S
According to Proposition 8.20,
o gy < e(Iwollyzes ) + 1O lyi-s ) + 1, 0) - mll i1, ),
hence
o1y < e(lvollyzes @) + 1FC 0 it ) + 14, 0)  mllypan g ). (243)

We construct solenoidal extensions of vg; and vi; in R? with preservation of class in the
way described above, and then we find a solenoidal wo(z,t), ¢t > 0, such that

wa(x,0) = vo1(x), wu(x,0) =wvii(z)

and
HwQHWé+2,l/2+1(DT) < C(HUUIHWé“(Q) + H1711HW21—1(9)>. (2.44)

We can define ws by the formula (8.25).
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Finally, we find p; € W2l+1’l/2+1/2(DT) such that pi(x,0) = pp(x) and
Hp1HWé+1,z/2+1/2(DT) < CHpOHWéfl(Q). (2.45)
For the differences u = v — w — w9, ¢ = p — p1 we obtain the problem with zero initial
data treated in Proposition 2.6. By using (2.29), (2.30) we complete the proof of (2.35)-(2.38)

and of the theorem.
The cases [ = 1/2, 1 =1 are treated in [10].
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3 On the linear problem related to the stability of uniformly
rotating liquid (¢ > 0).

In this section we consider the non-homogeneous problem (1.24), i.e.,

(v; + 2w(es x v) — vV2v + Vp = f(z,t),
V-v(z,t) = f(x,t), reF, t>0,
T(v,p)N + NByp = d(z,1), (3.1)
pt =v(z,t)- N(z) +g(z,t), z€G,

[ v(2,0) =vo(z) z€F, p(x,0)=p(z), ze€g,

with Byp defined in (1.25).

For the moment, we omit the orthogonality conditions of the type (1.26), (1.27) and we
do not use (1.22).

Theorem 3.1. Assume that | € [0,5/2), | # 1/2, 1 # 1 and that the data of the problem

(3.1) possess the following regularity properties: f € WQl’l/Q(QT), fe W2l+1’O(QT), f(z,t) =
V- F(z,t), Fe Wo'"2(Qr), d- N e WGy n w20, ;W) /?G)), d— N(d-N) €
Wy B Gy, g e Wyt G, v € WETNE), po € WETA(G) where T < o,
Qr =F x (0,T), Gr =G x (0,T). Moreover, let the compatibility conditions

V-vy(z) = f(2,0), =z€F, (3.2)
and, if 1 > 1/2,
V-vo(z) = f(z,0), ze€F, vigS(vo)N =Ilgd(z,0), z€G (3.3)

be satisfied, where ligd = d — N(d - N) is the projection of d on the tangent plane to

G. Then the problem (3.1) has a unique solution v,p,p such that v € WZHZ’Z/ZH(QT), Vp €

Wy (@Qr), p € WG oW 0.7 W, %(9)), p € Wy Gy (0, T w3 (),

pt € W21+3/2’l/2+3/4(GT), and the solution satisfies the inequality
YT(Uapa P) EH’UHWQH‘QJ/?'H(QT) + HVPHVVQU/Q(QT) + HpHWé_H/Q’O(GT) + |p|l/2,1/2,GT

Hllollyyiesrzo gy + oelyyresrireerag, ) + sup oGy Ollwrezgy + 102,572,610

< C(T) (HfHWZU/Q(QT) + Hfuwé+l,0(QT) + HFHWQO’I—H/Q(QT)
+ HHgd||Wé+1/2,l/2+1/4(GT) +d- NHWéH/?,O(GT) +1d-Nly1/0.6,

+ gllyyrarzizrars g+ lvoll e ) + ||PU||W5+2(g))-

(3.4)
As above in Sec.2, we invoke the corresponding parameter-dependent problem:
sv + 2w(es x v) — vV2v + Vp = f(z),
V-wv(z) =0, e F,
() v (3.5)

T(v,p)N + N Byp = d(z),
sp=wv(z) - N(z)+g(z), z€G,
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Proposition 3.1. Let Res > a > 1, f € Wi(F), d ¢ W2l+1/2(g), g € W2l+3/2(g) with
I € [0,5/2). Then the problem (3.5) has a unique solution v € WiTH(Q), p € W, TH(Q),
pe WE™%(G), and

l l l
120l o) + 0l + Pl ey + 152l + 151210l yarm g,

sl 2 gy + 517210l 72 6y + ol 5206y < O gy + 15120 oy

+ ‘8‘1/4+l/2Hd - n(d ' n)HLz(g) + HdHW2l+1/2(g) + ‘S‘l/ZHd : nHW;/Q(g)

l
1512 gy 373 gy + 191072y

with the constant independent of |s|.

Proof. We restrict ourselves with the sketch of the proof of the estimate (3.6) in the

simplest case [ = 0. We refer to [11,12] for the ideas of the proof of the solvability of (3.5).
To shorten the notation, we set

l
|52l 5 0) + lullywy oy = llulllig.
5 ()

STEP 1. We consider the model problem in the half-space R? = {z3 > 0}:

;

sv(z) — vV (z) + Vp(z) = 0,
V- -v(z) =0, ze€R3,
dvs  0vj .
G99 L 90N Zp j=1,2
”(axj + amg,) g =54 (3.7)
81)3
_ €w—— _gA'p=
pt2vg = oA bs(z),
sp+wvs=g(z), =z3=0,

r_ 9% 4 9%
where A’ = 907 + 9o3"

Using the Fourier transform in x1, 2, we reduce (3.7) to the boundary value problem on
the half-axis R, = {z3 > 0}:

( d2
2 ~ . ~ .
1/(7" - —)vj +igp=0 j=12,
dm%

2

~ dp e e . dug

2 — —
1/(7’ —dxg)vg—i— T =0 D G+ =0, >0,

dv; o ~ .
1/(8;3 + zfjvg) =b;, j=12, (3.8)

- dv: o~
P WSS 4 ol¢Pp = bs,

d:Eg

35"‘53:5, zg =0,

:6_>0a ﬁ_>0a (.’L‘3—>OO),

where & = (£1,&), r=r(s,&) = /sv™ L+ [€]?, -7t <argr <.
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It is convenient to exclude the function p from (3.8) and write this problem in the form

( d2
1/(7“2— 2)U]+z§]p—0 j=12,
dxg

. dp dus
y(TQ——)“j+—p:07 i + ialy + o =0, 3> 0,

dxg d(L‘3 dx I3
v, .\ ~ (3.9)
I/(—(9 J +ij1)3) = bj, ] = 1,2,
. dv: .
— 2w = 2Py = b — 2 |¢’G, w3 =0,
Z3

k5_>07 5_>07 (173_)00)

In the paper [11] the explicit formula for the solution of (3.9) is obtained, in particular,
it is shown that

~ 1-— 5i3 7 60 333 i €1 I3
- 60($3)bl+l/2 (r+[€])P Z il 7’+|§|PZVZ]6
= (3.10)
U|§|260($3) o~ U|f|2€1($3) -~
- 2sr(r + |§|)PUZ3g C2s(r + |§|)PV239’
where
e TT3 _ 67\5\13
eo(z3) = e ", ey(x3) = g (3.11)
P= (24 jg)2 —arle + et = L (Lo aep (1 - Ly L D) gy
+ [
and Ujj;, V;; are the elements of the matrices
E(Br—[ED)s + ZIEP)  &&a(Br—[E])s + ZIEP)  iurs(r — &])
U= | &&(Br—[E)s+ 217 E(Br— s+ 21D d&rstr—[&]) |,
—i&irs(r — [¢]) —ilars(r — [¢]) —[&lrs(r+1€])
—&Q2rs + ZIE?)  —&ka(2rs + ZIE)P)  —ibas(r + [€]%)
V= ~&&@rs+ K7 —&Q2rs+ JlEP)  —ilas(r® + [€7)
—i&1|E|(2rs + TIEP7)  —ikak](2rs + ZIEP)  [Els(r® + [€7)
If Res > v > 0, then c|r(s,&)| < +/Is| + [€]? < d|r(s, &)| and
2
L5+ Isllel + [P + olel* < e(mIP) (3.13)

moreover,

00 | Jj 2 .
[ Bty ¢ Lo,
0 dxé V2

0o | 7j 9 2j—1 2j—1
[ e, <
0 dm% |r2|

j=0,1,2.
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Making use of these inequalities and of the results of Sec. 8 concerning the equivalent norms
in the Sobolev spaces, we obtain

10lllo s, + IVPlaeg) < c(lllballl /22
(3.14)
(Ml 2,22 + sl 12y + 191272 gy )-

(see details in [11,12]).
From (3.10) it follows that
3 = -
I Z Usibi al¢’g
u(0) = v2r(r+€))P V2P

i=1

and, as a consequence,

N . 5(s €l Vg
v3(0) —g = —;<;+4’5\2(1— r—i—\f])F'

Using the fourth equation in (3.9) and taking %1’3’ = —(&v1 + &U2) into account, we obtain

after simple calculations

i
d$3

w17, < e(lBl+ @l + 1)

To estimate the norms of p, we use the equations

-~ . _ dv:
=9 -0(0), o5 =bs+ - 2w

:E3=0‘
and the theorem on the equivalent norms mentioned above. This leads to
Iy 272 gy + 001372 gy + 10375 g

(3.15)
< e(lllb1 1l joze + 1ealll s + Wbl 72 gy + 1932 g )

Inequalities (3.14), (3.15) imply estimate (3.6) for the problem (3.7) in the case [ = 0.
STEP 2. We consider the non-homogeneous problem

(sv(z) —vV20(z) + Vp(z) = f(2),
V v(z) =h(z), z€R3,
8’03 avj 7 .
U(8—%+a—m> —b], _]—1,2, (316)

0
-p+ 21/8—2 —olA'p = b3(z),

sp+wvs=g(z), z3=0.

Assuming that f and h decay at infinity sufficiently rapidly, and

h=V-H(z)+h(z) (3.17)
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with compactly supported h’, we reduce (3.16) to (3.7). We extend f into the entire space
R3 in such a way that

£z, msy < CHfHLQ(Ri)a

and we introduce w; as a solution of the equation
swi(z) — V2w, (2) = f(z), @€ R,

i.e.,

. 7
T srrE@ra+ay

where © means the Fourier transform in all the space variables x1, 22, z3. Tt is clear that

[llwill2,re < ell|£]]l1r2 (3.18)
Further, let ws = V@, where @ is a solution of the Dirichlet problem
V2®(z) =h(z) —V-wi, R}, &(z)s-0=0. (3.19)

By the Green identity,

25 2\V20(2)dr — 2V (H — wi)dr — "(2)®(z)dx
Léiw@wﬂdx— u/'M)Vfﬂ)d V() (H — w))d /’h()@(m

RS R RS
< C(HH — will @) [Vl Ly ) + 17 [l2g s (supp h’)Hq)HL@(Ri))

< Vellz,ms) (HHHLQ(Ri) + 1P Ly ez + ||w1HL2(R1))-
(3.20)
Moreover, coercive estimate for the problem (3.19) (see Proposition 8.19) yields

IV@liz@s) < c(lwillizgs, + 1Pl )

hence

2l 0

, (3.21)
< clsl (1 H I Ly + IVl aqez) + N1l ) + c(lwillwagsy + 1Pl es) )

The differences vi = v — w; — wa, p1 = p — VV2d — s® represent the solution of the
problem (3.7) with the data

owi;  Ows; Owz; ~ Owgg :
b/-:b'— J ]\ J =1.2
i =i U(8x3+8x]~> ”(ax3+axj)’ I=5h2
Ow3 Owaz
bh = by — 2 -2
3 3 Va’L‘?, Va’L‘?, ’

/
g = ¢ — w13 — w23,
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and they can be estimated by (3.14), (3.15). These estimates, together with (3.18), (3.21),
yield
’Hv’HQ,Ri + ”vaLQ(Ri) + HpHW;/Q(RZ) + HpHW;/Q(R2) + ‘S‘HIOHW;;/Q(R2)
< e(If ey + i ez + Neellljoge + sl + lolysegs (322
 ISHE l ygmsy + W o) + Il asy)-

STEP 3. We estimate the solution of (3.5) in the neighborhood of an arbitrary fixed
point zg € G by Schauder’s localization method. Without loss of generality we may assume
that o = 0 and that the interior normal —IN(0) is parallel to e3. Let ((z) be a smooth
cut-off function equal to 1 for |z| < §/2 and to zero in the domain |z| > §. The functions
w = ((z)v(z), g = Cp, r = (p satisfy the equations

sw —vV?w + Vg = f(z)((z) +mi(v,p),
V-w(z)=V( v(x), z€F,

T(w,q)N — o NAgr = ((z)d(x) + ma(v,p) — (bopN, (3:23)
sr(z) = w(z) - N(z) + g(z)((z), z€G,
where
mi(v,p) = —2vV({(z)Vv — vo V2 + pV{ — 2w(es x (v),
ma(v, ) = v (v() o + V() (w - N)) + No(C(@)Agp— AglCn), (30

bop = —b(x)p — H/g %

We assume that in the d-neighborhood of the origin (d > 26) the surface G is given by
the equation

z3 = ¢(z'), 2’ = (x1,22).

The function ¢ is smooth and ¢(0) = 0, V¢(0) = 0, which implies
IVo(a')] < cla’], |b(z')] < elz'? (3.25)

for |2'| < d. The components of N and the Laplace-Beltrami operator Ag are expressed in
terms of ¢ as follows:

Py 1

Ny=—2%£ =12, Ng= ———uo—, 3.26
S VI VeP 1+ Vg2 (326)

Py Py 9]
¢T7v6¢|2> 7. (3.27)

1+ |Vl -
Vol 5

0= e 3

We make the change of variables in (3.23):
y=F@): y =2, ys=u3-¢().

If d is small enough, then the transformation F' is invertible, and it establishes one-to one
correspondence between the domain K; = {|z| < d, ¢ € F} and a certain subdomain
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13 of Ri’: ThS operators V, and S(v) are transformed into V = Vy — %Vﬂy’ ) and
S(v) = Vv + (Vo)T, respectively, and it holds

Ve f(@) =V Fz(y) = Vy - Fy),
where ﬁ = fi — i3 22:1 Gyo fa-

We write the equations (3.23) in the variables {y}, keeping the old notation for all the
transformed functions. We have

sSw — Vv2w + VQ = Ml(’l.U,Q) + ml(vap) - 2(")(63 X ’LU) + C.fa (3 28)
V-w:(V—§)-w+§C-v, '
where V =V,
M (w,q) =v(V? = V)Hw + (V - V)q. (3.29)
We note that the function V(- v can be written in the form
1
V¢ -v=-V(- (vV?v — Vp —2w(es3 x v) + f)
s
1 (3.30)
=V- As(vap) + as(v,p) + EVC : f7
where )
As(v,p) = —~(vV(Vv — pV(),
S
{ (3.31)
as(v,p) = g(— vD?¢ : Vv + pV2(¢ — 2wV( - (e3 x v)),
20— (_9%¢ — (v — (V_ V). Vi ;
D¢ = (31'1‘853]')1;7]':1,273’ Vv <amj)i,j=1,2,3' Hence h = (V — V) - w + V( - v satisfies (3.17)
with
2 R / 1
H=e3) ¢pwa+Asv,p), ' =as(v,p)+_V( f. (3:32)
a=1

We write the boundary condition TIN — o N Agr = (d + my — IN(byp for the tangential
and normal components separately, moreover, we can take only the first two components of
the tangential part. This gives the system of three equations

3
y(z Soi(w)N; — Noy(N - §(w)N)) = ((dy — Na(d- N)) +moa — Na(N -ms), a=12,
=1

+vN - S(w)N + Byr =(d- N +ms - N + Cbop,

L=

i.e.,

{ vSa3(w) = La(w) +la(v) + (dp(y), =12, (3.33)

—q + 1/833(117) - O'A/’)” = Lg(’lU) + B,’I“ + lg(’v) + Cd -IN — Cbo(p),
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3
Lo(w) = V(Sag - Zs'\aij + No(NV - §(w)N)),

j=1
La(w) = v(Sas(w) = N - S(w)N ),
B'r = —o(A' + Ag)r,

la(v) = m2a(v) — No(me(v) - N),
13(’0) =my - N.

Finally, we have
sr+ws = (w3 +w-N)+(g. (3.34)

Now, we extend w, g, r by zero into R? and R? and consider (3.28), (3.33), (3.34) as the
problem of the type (3.7) in the half-space. We estimate w, ¢, by (3.22). We note that in
view of (3.25) the leading coefficients of the operators My, V — V, L;, B’ are small in the
case of a small §. We have

1M1l gy < 8 (Iwlhwas) + IVallarz)) + el e),
[(V=V)- wHWQl(Ri) < C(5||w||W§(Ri) + HwHWQl(Ri));
similar estimates hold for the norms of L;(w) and ws + w - N. We also have

Imalzaeyy < €(0) (10lhwa (s + 1P]2a(0) )

2172 gay <€) (I0llwy sy + Iz s, )
where Sps = K5 U S, and similar inequalities for /;(v). Finally,
1B/ lly12ggey < (81l gy + vz ey )-

In view of all these estimates it is not hard to verify that application of (3.22) to our problem
leads to

2 272 gy + 1501y 72 gy + 7l
< c(I¢F Npaery + Mg¢allljozs + 160 Nllyrrs gy + 160y (3.35)

B0y 172 gy ) + 0 (1P 2 10) + 10 ) + Dol )

provided ¢ is sufficiently small. Inequalities of this type can be obtained in a neighborhood
of any point of G and of any interior point of F as well, if the distance of this point to G is
larger that §; > 0 (in this case the norms of g do not occur in the estimate). If we cover F by
a finite number of such neighborhoods and add the squares of the corresponding estimates
(3.35) together, we obtain

llvllle.z + 1VPla ) + Pl gy + Isllollyr gy + ol gy

+e@) ([0 lwz ) +Iplae) + lolwz@ + 1000}y r2(g, )
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The next step is the estimate of [|p|[z, )
STEP 4. We consider p as a solution of the problem

Vp=V-(f —2w(es xv)), z€F, p=vN-Sw)N+By—-d-N, zcg,
where the equation is understood in a weak sense. Let ¢ be a solution of the Dirichlet problem
Vip(z) =plz), z€F, ¢lg=0.

By the Green identity,

/\p[ dx—/pV2<pdx—/Vp<pdx+/ a(pdS

(3.37)
= —/ (f —2w(es x v)) - V(pdm—i—/(uN S(v)N + Bop—d - N) a(PdS
F g ON
This formula and the coercive estimate
lellwz ) < cllplir,z)
for ¢ imply
1Pl < c(IFzam) + I2lzaim) + 1V0lae) + lollwace))- (3.38)

When we estimate the norm of p in (3.36) by (3.38), use the boundedness of the integral
operator by (see [13]), then estimate the norms of v and p by interpolation inequalities

1wl ) < erllvllwzer) + (cle)lsl sl vl

lollwzg) < e2llellysre g + (clea)ls| Mlsllollysr2 gy,

fix 0 sufficiently small and after this choose a = inf Res sufficiently large, we obtain (3.6) in
the case [ = 0.

Proof of Theorem 3.1. We reduce (3.1) to a similar problem with zero divergence by
construction of an auxiliary vector field wy(z,t) = V®(x,t), where ® is a solution of the
Dirichlet problem

V20(z,t) = f(z,t), z€G, ®(z,t)|peq=0.

According to Proposition 8.19, this function satisfies the inequality

H<I>HW;+3,0(QT) < CHfHW;H(QT); (3.39)
in addition, since
V20 (z,t) = fi(z,t) =V - Fy(z,t), z€F, &(z,t)=0, z€g,

we have

qu)tH 01/2 Q < CHFtH (340)

0 l/z (Qr)’
hence
oty g2 gy < (1 Tptriiamy + 1Fellpoar o )- (3.41)
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The functions w = v — uy, p, p satisfy the relations

w; 4 2w(es x w) — vViw 4+ Vp = f(z,1),

V-w(z,t) =0, reF, t>0,

T(w,p)N + NByp = di(z,t), (3.42)
pr=w(z,t) - N(z) + g1(z,t), =z €0,

w(z,0) =vy —ui(z,0) =wo(z) z€F, p(z,0) =py(z), z€g,

where

{ fi=1F—2w(es x uy) —uy +vViuyg, (3.43)

di=d—-vS(u;)N, ¢gi=¢g+wu;-N.

In particular,
d1 -N = d'N—I/N'S(Ul)N|m€g.

Now we reduce (3.43) to a similar problem with zero initial data in the same way as it
has been done in the proof of Theorem 2.1. To be definite, we consider the case [ € (1,3/2)
(this assumption is made in the analysis of the nonlinear problem). Let

wi(z) = vV2wq — 2w(es x wg) — Vpo(z) + f1(x,0),
where pg is a solution of the problem

V2pg($) =V (fi(z,0) — 2w(es x wo)), x e F,

po(x):I/N-S(’wO)N-l-Bo(po)—dl-N, T EQG.

By Proposition 8.20,

Ipolhwscry < (1160 gty + 0yt + Mool iorzgy + 11 (20) - Nl o)
It follows that
lwillyi-r iz < C(HfIHWQI*I(}') Fllwollyer iz + lloollyiar gy + lidi - NHW2t—1/2(g)>- (3.44)
We introduce the solenoidal vector field us(z,t) such that
u(7,0) = wo(z), wua(z,0)=wi(z)

and
lwallyprrniras g,y < ool e + lwillyo ) ). (3.45)

Moreover, we construct pi(x,t) and py(z,t) such that pi(z,0) = po(z),

p1(z,0) = po(z), pre(2,0) = wo(z) - N + g1(z,0) = pi () (3.46)

and
HP1HW2l+1,t/2+1/2(QT) < CHpong(f)v
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P01 llyyesr20 s+ Morellyyiarrzvira g+ 1Pliy2s 2,60 < C(HPOHWZ{H(g) + HP’1HW5+1/2(Q))-
(3.47)
The construction of these functions is described in the proof of Theorem 2.1 and in Proposition
8.18.
For the differences 4 = w — uo, m = p — q1, ¥ = p — p1 we obtain the problem with zero

initial data
up + 2w(es x u) — vV2u + V1 = fo(z,t),

V-u(z,t) =0, xeF, t>0,

T(u, )N + NByr = da(z, 1), (3.48)
re = u(z,t) - N(x) + go(x,t), x€G,

(| w(z,0) =0, z€F, r(z,00=0, ze€g,

where
fo=711— (th + 2w(eg X wg) — vV2ws + Vp1>,
dy = dy — (T'(w2,p1)N + By(p1)N),
g2 =91 +wi - N —py;.

Since f,, d2, go vanish for ¢ = 0 and [ < 3/2, we can extend these functions by zero
to the domain ¢ < 0 and apply the Laplace transform, as it has been done in Sec 2. The
problem (3.47) is then converted in (3.5). From (3.6) and the Parceval equality we obtain
the estimate (3.4) for the problem (3.48),

Yr(u,m,r) <c¢ (HfQHWé,z/z(QT) + ||ds — N(ds - N)||Wé+l/2’l/2+l/4(GT) + ||ds - NHWéHN’O(G’T)

+lda - Ny 1060 + Hg?HW;”/WM/‘*(GT)) + co (||UHL2(QT) + \|7“||L2(GT)),

with the constants independent of T'. From this estimate of and from (3.41)-(3.47) inequality
(3.4) follows. This completes the proof of Theorem 3.1.

The case | € (3/2,5/2) is considered in a similar way. The modification concerns the
function p;(z,t): in addition to (3.46), it should satisfy the condition

pltt(xao) = wt(iﬂ,O) -N +gt(x,0) = p’l’ c W2l_3/2(g)

and the inequality

lorllyyisrzo g + lPrellyiearzarzessaig, s +10ly2s/2,67

< c(llpollyzsag) + 16l yyr1r2 gy + 10 lyi-ar2(g, )

The construction of this function is carried out in the same way as in Proposition 8.18.
Now we turn our attention to the homogeneous problem (1.24) supplemented with the
orthogonality conditions (1.26), (1.27), and to the corresponding spectral problem

sv 4 2w(es x v) —vV2v + Vp =0,
V-v(zr) =0, zeF,
T(v,p)N + NByp =0,

sp=wv(z) - N(z), z=e€q,

(3.49)
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/p(y)dS =0, /gyip(y)ds =0,

Q

/ v(z)dz =0, (3.50)

pa
/ v(z) - n;(z)dx +w/ p(z)n;(x) - ns(x)dS =0, i=1,2,3.
F g

We write (3.49) in an equivalent way. By the classical result of Weyl, arbitrary w € Lo(F)
is representable in the form
u(z) = w(z) + Vo(z)

where w is divergence free and ¢(x) vanishes on G. It follows that
Va(z) = Vip(z) + V()

where 1) is the harmonic function and 1) —q|g = 0. We denote by J(G) the space of divergence
free vector fields in F and by P; the orthogonal projection to this space. It is easily verified
that (3.49) is equivalent to

sv 4 2wPj(e3 x v) — vV2v 4+ Vi) = 0,
V-v(r) =0, z€F,

3.51
sp=v(z) N(z), =€, (3.51)
Vip(z) =0, z€F, o(z)=vN-Sw)N+ Byp, z€G.
The pressure is excluded, and our problem can be written as
AU = sU, (3.52)

where U = (v,p)7, and A is a 2 x 2 matrix integro-differential operator:
_ [ An Ap
A= < Aoy 0 ’
(cf. [12]) with A;; defined by

AH’U = I/v2’v — V’(l)l — 2&)?’(83 X ’U), A12p = —V’(/)Q,

A21’U =7 N,
V2 =0, V=0, z¢cF,
Y = 2N - S(u)N, 1 =Bp, =z€G.

As the domain of A, D(A), we take the lineal U = (u, p)” withu € W2(F) and p € W§/2(g),
satisfying (3.50) and the boundary condition

[IgS(v)N = S(v)N — N(N - S(v)N)|g = 0.
In this linear set we introduce the norm
) 1/2
1010 = (Il e + Ilyarzg)) -
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The operator A possesses the following properties:

1. Tt acts in the space defined by the conditions (3.50): if these conditions hold for the
components (v, p) of U € D(A), then they are satisfied for the components (f,g) of FF = AU.
This is verified by a direct computation (cf. [14], Proposition 3.1).

2. If Res > a > 1, then the equation AU — sU = F' is uniquely solvable, and

1/2
10l < elFlle = (171,00 + ooz g)) (3:53)

with ¢ independent of s, i.e., there exists a bounded (A — sI)~!. Since D(A) is compactly
imbedded in Ly(F) x WS/Z(Q), (A — sI)~! is completely continuous. The equation (3.50)
is equivalent to (s — a)U = (A — al)~'U, hence the spectrum of A consists of a countable
number of eigenvalues with the only accumulation point at infinity. It follows that only a
finite number of eigenvalues with positive real part may exist.

3. Proposition 3.2. If the quadratic form (1.4) is positive definite for arbitrary p
satisfying (1.26), then all the eigenvalues of A have negative real part.

Proof. We note that the orthogonality conditions (3.50) for v imply

3

v=v"+ 3 dipni(),

i=1
where v (z) is the vector field orthogonal to all n(z) = a + (b x z), a,b = const and

[ o@ng(a) - ni(e)ds.
g

w
di(p) = —
K N

We introduce the vector field u = v — d3(pns(z). Since 2(e3 x n3) = —V|2/|? and
15 - N|g =0, u and p satisfy the equations
su + 2wPj(e3 x u) — vV?u + V¢ = —sdz(p)n;(z),
V-u(z) =0, ze€lF,

3.54

sp=u(®) N(), 2eg, (354

Vi¢(z) =0, z€F, ¢(z)=vN-S@)N+Bp, z€G
with 2| ,|2

w” T
Bp= Bop+ 7——— / p(y)ly'[*dS
I3l .7) Jg
and
/ u(z)dz =0, / u-nydr =0,
7 7 (3.55)

[ @ na@)iz +w [ plang (o) m(a)is =0, a=1.2
F g

It is important to notice that the integral fg pBpdS coincides with the quadratic form
(1.4): [; pBpdS = 6*R(p).

We multiply the first equation in (3.54) by u and integrate over F. Upon integrating by
parts we obtain

14
sllull?, (z, + 2w/}_(u1u2 — upin)dz + 5! /g BppdS + L|S@)3,0 =0, (3:56)
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In view of the positivity of the form (1.4) we conclude from (3.56) that w = 0 and p = 0, if
Res > 0.

If Res = 0 and s # 0, then, by the Korn inequality, the same calculation yields v = 0,
u = 23:1 do(p)n, (). It follows that

3 2
sy di(p)m;(x) +2w(es x Y damy) + V(¢ — wdsla’]’) =0, z € F, (3.57)

i=1 a=1

2
5p(@) = Y dama(@) - N(2), €.
a=1

When we compute d;(p), using the last equation, we obtain d3(p) = 0 and also

S S
8d1 = —w§d2, Sdg = w§d2, (3.58)

where

S = HnaH%Q(}')a S= [ (22 —2d)de, a=1,2.

‘F
Moreover, applying the operator rot to (3.57), we obtain

sdi(p) = wda(p), sda(p) = —wdi(p). (3.59)
From (3.58), (3.59) it follows that d; = dy = 0, hence u =0, p = 0.
It remains to consider the case s = 0. As above, we deduce from (3.54) that u =

S22 da(p)ny(z) and, as a consequence, .2 do(p)n, - N|g = 0. This implies dy = dy = 0,
u =0, g = qyp = const and —qyp + Bp(x) = 0 on the boundary. Hence fg BppdS = 0 and
p = 0. This completes the proof of Proposition 3.2.

Finally we consider the evolution problem (1.24) with the initial data satisfying (1.25),
(1.26).

Proposition 3.3. If the condition (1.22) is satisfied, then the problem (1.24)-(1.26)
with the initial data vy € WITY(F), po € WEH(G), 1 € [0,5/2), satisfying the compatibility
conditions (3.2), (3.3) (with f =0, d =0) has a unique solution v, p, p, as in Theorem 3.1,
and this solution satisfies the inequalities

Yr(v,p,p) < C(HUOHWé“(}‘) + HPOHW21+2(g))a (3.60)

[oC, )i () + oG Dlleegy < e (lwollyrr ) + ool g ) (3.61)

with the constant ¢, 3 > 0 independent of T
Proof. The problem (1.24)-(1.26) is equivalent to

Ut = .AU, U|t:0 = U() = (’UU,pU)T (362)

and U(t) = e AUy. Since the spectrum of A is located in the left complex half-plane, we
have
U@ IR < ce U]l r (3.63)
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and -
/0 O (1) [t < e|Uoll3 (3.64)

with some 31 > 0, 8 € (0,1). The solution of the non-homogeneous problem
Uy =AU+ F, Ul =Up = (vo,p0)"

that is expressed by the formula

t
U(t) = e AU + / e A F(r)dr
0

satisfies the inequality

T 26t 2 2 T 26t 2
| e < o(ivalf+ [ IF@lfar).

To shorten the arguments, we restrict ourselves with the case [ = 0. If U is a solution of
(3.62), then Us(t) = PtU(t) satisfies

Ugt - AUﬁ + ,BUﬁ, U5|t:0 - U().

It is not difficult to see that for this problem the estimate of the type (2.30) holds (although
the initial conditions are not homogeneous). In the case [ = 0 it is equivalent to

T T
2 2 2 2
| 10O+ [0 0dt+ sup ot +sup 050

T
<o [ 10Ot + (ool )+ o)

with the constants c;, ¢z independent of T'. Taking (3.64) into account we obtain
4 2 T 2 2 2
| 0@t + [ 10O e+ sup Lo,y )+ 512 s Dl

< s (00 l3ry oy + ool gy )

This implies (3.60) and (3.61). The norms of p can be estimated as follows. The problem
(3.62) is equivalent to (1.24)-(1.26) with p satisfying

V2p(s,t) = —2wV(es x v), #EF, pa,t)lseg = N - S(v)N + Bop.

We have
IpC,Dllws ) < e(Iolwgce) + 190072 g + 100, Dl 22 g, )

which yields all the missing estimates for p.
The case [ > 0 is analyzed by the same kind of arguments; they are only slightly more
complicated.
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4  On the linear problem related to the stability of uniformly
rotating liquid (¢ = 0).

In this section we consider the problem (3.1) with

Bop =b(z)p — n/ M, reg, (4.1)
g lz—yl

The main result of the section is as follows:

Theorem 4.1 Let [ € [0,5/2), | # 1/2, | # 1. For arbitrary f € WQZ’W(QT), f €
Wi (Qr), such that f = V-F, F € Wo"2(Qr), vg € WIHH(Q), d e Wi AP Gy),

€ W21+3/2’l/2+3/4(GT) satisfying the compatibility conditions (3.2), (3.3), the problem (3.1)
has a unique solution v,p,p, such that v € W22+l’1+l/2(Q ), Vp € W2” 2(QT) pla, €
W2!+1/2,l/2+1/4(GT)7 pc W2l+1/2,0(GT)7 o€ W2H3/2’l/2+3/4(GT), (1) € WITL(G), Vi €
(0,T), and the solution satisfies the inequality

||vH W2 (o + I pH W (Qp + Hp” W22 + HPH W20 (42)
5 .
+ “pt“Wé+3/2’l/2+3/4(GT) + ?Eg Hp(-, )HWéH(S) < c(N1( ) + HUHLQ(QT) + HPHLQ(GT))a

where

NY(T) = ||fH12/Vé,l/2 + HfHWmo nt \|F||§V;,1+z/z + Jlwoll}

( W1+l( )

, (4.3)
+ Hd”W2l+1/2,l/2+1/4(GT) + HgHWé+3/2,l/2+3/4(GT)

c is the constant independent of T.

Estimate (4.2) holds also without additional Le-norms of the solution in the right hand
side, but then ¢ = ¢(T).

We outline the proof of Theorem 4.1, following the paper [10]. The solvability of the
problem (3.1) in any finite time interval can be easily deduced from Theorem 2.1. Indeed,
since

t
p(z,t) = po(x) +/ (’U(J?,T) - N (z) + g(z, T))d’r,
0
this problem can be written in the form (2.27) with f and d replaced by f —2w(e3 x v) and
d— n(Bo(po + fg gdt) + é(v)), respectively, where

l(v) = BU/O v(z,7) - N(z)dr.

The lower order terms 2w(es x v) and £(v) can be estimated by interpolation inequalities,
which permits to solve the problem by successive approximations and prove the estimate

2 2 2
Jv]? W22 (g + HVPHWQUM(QT) + HPHW2l+1/2J/2+1/4(GT) + HPHW2l+1/2,0(GT)
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2 2 2
+H’0t||W2l+3/2’l/2+3/4(GT) + ?EE ||P(’at)||Wé+1(5) < c(T)Ny,

using the Gronwall inequality (details are omitted).
We concentrate on obtaining the estimate (4.3). We consider the model problem
v, — vV +Vp = f(z,t), V-v=f(z,t) $€Ri,
Tis(v,p) + disBp = —di(z,t), [ =const >0, i=1,2,3,
pe+v3=g(z,t), p(z,0)=po(z), z€R®={z3=0}
v(z,0) = vo(x), zeRy

(4.4)

Proposition 4.1 Let Ry = R3 x (0,T), R, = R? x (0,T) and let v € Wi """ (Ry),

Vp e WQU/2(RT), pE W2l+1/2’l/2+1/4(R’T) be a solution of the model problem (4.4) having for
all t < T a compact support contained in Cy = By x (0,)), where By is a disc |z'| < X in R?
and X € (0,1). The solution satisfies the inequality

. 2 ) 9
sup (<<v( s ))is1ms + o ,t)HWéH(Rz))

T
A I PO A

T
< c<<<”°>>12+1,R1 + HpoHa,Qm(RQ)) +c/0 (((f(.,t)»iRi + (N e (4.5)

+ Hd(-,t)”ivéJrl/z(RQ) + “g('at)”?}[,éJr?’/?(Rz))dt

+ c</0T<<f(-,t)>>z2+1,Ridt) 1/2</OT(<p('vt)>>z2+1’Ridt) 1/2
where
<<U>>1,Ri = (/0 Hu(.,x?)”%/vé(w)dxg) 1/2

and c is a constant independent of T.

Proof. At first we present some auxiliary propositions.
1. We recall that the norm

lulle = [ 0+ 1P 0 Pag) (1.6

where

MO=/UWW%W% ¥ = (21,39) € B2,
R2

is the Fourier transform of wu, is equivalent to Hu||W25(R2) (see Proposition 8.3). Another
equivalent norm is

m dZ, 1/2
(] V™G o + ) )

where A™(&)u = > 7 (=1)™ " C% u(2’ +i2') is a finite difference of order m of the function
u(z"), m > 1, a > 0. This is proved by expressing the norm (4.7) in terms of .
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Both statements extend to 27- periodic functions. In the periodic case the norm equivalent
to [ullyysys T = (—m,7), is

fullsy = (3 e + o))"

gez?

where

u(€) :/Eu(x')e_ig'x/dx',

are Fourier coefficients of u with respect to the system of functions €%, ¢ € Z2. They

are eigenfunctions of the Laplace operator —A’ = 81, 59—;2 in ¥ with periodic boundary
2

conditions. The corresponding eigenvalues are equal to |£]?; hence,

2\ 1/2

sy = ((2m) 20820l 5y + | [ e

2. We introduce the norms WZ_Z(E), [ > 0, of periodic functions by a standard formula

iy = sw | [ ule)p)a
”Lpnwé(z):l )
and
1/2
iy = (3 1672OP +| [ uta)
£e72\0
1/2
= (@) 2y + | / ude'|")"”,
where v’ = u — (2m) "2 [, u(2')dz’. They are equivalent to each other. In what follows we

deal only with the space W, 1/ 2( Y).
If w € W, /*(2), then (27)2(=A") Y2/ + [, u(z)da’ € W,'*(S), and

Ay + | [ )

3. We recall the trace theorem (Proposition 8.6): every function v € Wy (2) given in
Q=13 x (0,2r) C R? has a trace v(-,0) € WI/Q( ¥) and

Wiy (4.8)

10,0) 2725y < el e
For arbitrary u € W;/z(E) there exists its extension into Q, v € W (Q), such that
lollwg @) < ellullyyirz s

For periodic functions, the extension can be defined by

o@sas) = 3 (E)e S Hlrs¢ ()

£ecz?
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where ( is a smooth cut-off function equal to 1 for small 23 > 0 and for zero for x3 > 1.
4. Let ¢(z’) be a periodic function from W, V/ 2( ¥.). There exists a vector field w given in
R? x (0,27), periodic with respect to x1,z2 such that

V-w(z) =0, w(,0)=esp(r)

and
lwllwio) < el 1wl < clellm) (4.9)

Indeed, we can take w in the form w(z) = dez w(¢, $3)ef'$/ where
W; (&, w3) = —i&;P(E)zze T3, 5 =12,

B3 (€, 13) = |€]P(E)T3e €178 4 G(&)eIElws,
We pass to the proof of (4.5). We write the first equation in (4.4) in the form

’Ut—V'T(’U,p):f(ZE,t)—VVfEfl, (410)
multiply it by v, integrate over Ri and make use of the boundary conditions. This leads to

1d v
57 (101 aa ) + Bliolge) ) + SIS@IE, s

= [ (110 vlot) + Flotpla,)) o (4.11)
g
+ [ () ol 0,0) + fye' Dpla’, 1)) o
R?
Next, we extend p from ¥ to R? as a periodic function and introduce w as in n.4. with
p=—r) =) [ pads's o= p- (22 [ plalis
b b
By (4.9),
lolhwg oy < clloly 2y N0l < (sl + ol ), (412
moreover, applying (4.12) to A™(z)w, we obtain

(V)10 < eliellygons, < clillygng

(4.13)
e ey < e(losC Dz + lallwagsy )

We multiply (4.10) by w and integrate over €. Since supp v, supp p C Cy C 2, we obtain
d
v wdzx — / v - wdr + < / S(v) : S(w)dzx

dt
+ﬁ/ 27r AN 1/2,0'+/,0dy’ dx':/fl-wdx+/d-wdx’.
) Q )
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. . T dE(t
Finally, we multiply (4.14) by a small v > 0 and add to (4.11). This gives #—l—El(t) = F(t),
and, as a consequence,

E(t) + /Ot Ey(r)dr = E(0) + /OtF(T)dT, (4.15)

where

1
B = 5 (1013 + ol o)) +7 [ -,

14 14
Bi(t) = ZIS@)2,ms) ~ 7 /Q vowds + 2 /Q S(v) : S(w)ds
+/37Hp(3 t)”?—[*lﬂ(z)a

F(t) = [ (F1(o.0)- 0(o.0) + o pla )do + |

(d(ac’, £) - v(z,0,1)
2
+Bg(x’, t)p(z, t))dm' + 7/ fi-wdz + ’y/ d - wdt'.
Q 2
By virtue of (4.12) and of the Korn inequality

HvHWg(Ri) < CHS(U)HLz(Ri)

that holds for vector fields supported in Cy, E(t) and FE;(¢) satisfy the estimates
e (0B ) + DB o) ) < B@) < 2 (002 as ) + 10 DI, o))

Bi(0) 2 a0y ) + 10I2, gy ) = allgllacs 0],

provided -y is small enough. Moreover,

[F@] < F 1l (lvllz,@s) + vlwlp,es)) + 1 zo@e) 1PlLs@s )
@l 2y (10|25 =0l Lo (r2) + Y@l Lo (R2)) + BHQHWQ/?@) ||P||W;1/2(E),

so (4.15) implies

t
2 2 2 2
19O, ety + IO sy + [ (901 a8 + oI,
2 2 !
< C(HUUHLQ(Ri) + ||Po||L2(R2)> + C/o (||f1||L2(Ri)(””||L2(Ri) + 7wz, @) (4.16)
+ Hf“Lg(Ri)”pHLg(Ri) + lldll 1y r2) ([[V]25=0l Lo (r2) + VIl Lo(2))
4 Blallyaragsy ol 725y + Iglliags ol oqus )br, ¥E<T.

Now, we take a finite difference A™(z) of (4.10) assuming that m > 2 +1, z = 2/ € R?
and |z| < a < 1/m, so that the supports of finite differences of all functions in (4.10) are
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contained in . We obtain

v,gm) — V2™ L vp™ = £ (g 1y V™ = (g 1) z € RY,

Tis (0™, p™) + 6;38p™ = —dl(m) (z,t), B =const, i=1,23,

A + ol =g (1), p™(2,0) = oM (2), @ ER?,

v (2,0) =vi™(z), zeR3,
where v(™ = A™(z)v etc. Repeating step by step the above arguments we arrive at the
inequality of the type (4.16), i.e

t
IO, gy + 10+ [ (1901 g + I )

t
< (10§12, s + 10812 sy + / (L™l oy (1™ 1)
+ ’YHw(m)HLz(Q)) + Hf(m)HLQ R3)Hp(m)HL2 R3) + Hd(m)HLQ RQ)(HU(m)‘x:’,ZOHLQ(RQ)

™ ) + B9 725 1™y =373 5y + 9™ oy 10 | oy )

for any t < T. We divide (4.17) by |z|>T2(+) | integrate over the disc |2| < a and add the
resulting inequality to (4.16). We estimate from below the left hand side of the inequality
obtained using the properties of the Sobolev norms listed above:

dz
2 2 2
Hv“LQ(Ri) + /z<a Hv(m)HLQ(Ri)W > C<<v('at)>>l+1,R§La

m dz
”p”%z(R?) +/|Z|<a||9( )||%2(R2)|Z|2+2(l+1) = CH'OHIZ/Vg“(z)’
dz
2 m) (2 2
HV'UHLQ(Ri) +/z<ava( )‘|L2(Ri)|z|2+2(—l+1) > c<<V’U(-,t)>>l+1’Ri.

Finally, since (—A’)_1/4p(m) = ((-=A)~*p)(m) and

e

( /E pda’|”

27‘(‘ 2”( )(l+1)/2—1/4

PlZ, )

dz
1/4 —1/4 m) (|2
A+ [ AT ).

IN

we have

dz
2 —1/4 m) |2
HPHH—1/2(E) +/|z|<aH(_A / ):0( )HL2(2)‘Z’2+2(1+1 CHIOH Wwit2 sy

The integrals of scalar products in the right hand side of (4.17) are estimated from above in
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the following manner:
(m) dz
/z<a||f1 HLQ(Ri)Hv(m)HLQ(Ri)W
(my2 _dz \/? my  dz  \L2
< (LI ) (] I e )
< C<<f1>>z,m1<<”>>z+2,m1a
(m) dz
/Z<a||f1 ||L2(R1)||w(m)\|L2(R1)W
< C<<f1>>z,R1<<w>>z+2,R1 < C<<f1>>z,Ri”PHW2l+1/2(2)a
(m) m dz
I T g P
< CHdHWéH/?(E)||(P||Wé+3/2(2) < CHdHWéJrl/?(E)HpHWé+1/2(E)7

m m dz
/Z<a ||f( )HLg(Ri)HP( )||L2(Ri)|z|2+m < <<f>>l+1,Ri<<p>>l+1,Ria

dz
J A P s PRt . e ey
dz
(m) (m)
/Z<a ||9 HW21/2(R2)||P ||W;1/2(E) |z|2+2(l+1) < H9||W5+3/2(R2)||p||Wé+1/z(E),

dz
(m) (m) 7
/Z<a ||g " HLQ(RQ)HU " ‘|L2(R1) ’Z‘2+2(l+1) < Hg||W21+3/2(R2)||v||W21+1/2(R3_)'

After simple calculations, using the Cauchy inequality, we arrive at (4.5). The proposition is
proved.

Now we estimate the function p in our basic problem (3.1) (with o = 0), using Proposition
4.1 and Schauder’s localization method. Let zy € G. Without restriction of generality we can
assume that zp = 0 and the z3-axis is directed along the interior normal —N(0). In the
dp-neighborhood of the point 2y = 0 the surface G is given by the equation

73 = ¢(z'), |2'] <dy
where ¢(z') is a smooth function of 2’ = (z1,2z2). It is clear that ¢(0) = 0, V¢(0) = 0, and
¢$1 ¢$2 1
N(z) = , ,— .
“ <¢1+|V¢|2 V1+[VeP ¢1+|V¢|2>

Let x € C§°(R?), x(x) = 1 for |z| < 1/2, x(z) = 1 for |z| > 1. We set xa(z) = x(z/N),
A € (0,1) and introduce the functions

U =vxX\, g=DPX)x, T =pPX\
They satisfy the relations
u —vVu+Vg=fxr+f1, V-u=fx+fi,
T(u,q)N + Nx»xBop = dx» + dy,
re=u-N+gxx 7(2,0) = po(z)xr = 10(7),

U(H?, 0) = ’U()(HS)X/\ = Uy,

(4.18)
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where
f1 = —2w(es x xow) —v(V(vxn) = xaV?0) +pVxa, fi=v-Vxy,
di = (S(v) — xaS(v))n.
We make the change of variables z = ®(y) :

Yy =2/, y3=uwz3— P(z)

"rectifying the boundary” near the origin and transforming the gradient with respect to z

into the operator V=vV- V¢8iy3 where V = (%,%,%), Vo = (g—lﬁ,g—?z,ﬂ). Since

N3 < 0 in the neighborhood of the origin, we can rewrite relations (4.18), without changing
notations of the transformed functions, in the equivalent form
u —vVu+Vg=fy, V-u=fo
Tis(w, q) + 0i3b(0)r = dP, i=1,2,3,
re+uz = g2, 7(y,0) =ro(y),
u(y,0) = uo(y),

(4.19)

where

F2=Fx+ fi—v(V = V)u+ (V- Vg,
fo=fx+fi+(V-V) u,
d® = (dyr+di) - N + V(533(U) -N- §(U)N> + (6(0) — b(y))r + x2Kp,

d9) = —(djxx + dij) + Nj(N - (dxx + di))

3
+(Sj3+ > SjkNk) —vN;(N -SN), j=1,2,
k=1

z,t)dS
92 = gxx + (u- N + ug), Kp:FJ/M
g

ly—=2|
S(u) = Vu + (V)T is the transformed rate-of-strain tensor. It can be assumed that w, g

are given in the half-space Ri and r in R?.
Now, we use Proposition 4.1. By (4.5),

sup (00 g+ IO
T
+/0 (<(VU('aT)>>l2+1,RE’; + HT("T)H?/Vé“/?(RZ))dT
T
< ool + Il o) +o [ (KA DDy + (Sl Dy, (420)

2 2
FIDC O s o) + 192 5 ) )

+ c(/0T<<f2('at)>>l2+1,Ridt)1/2(/OT«Q(-,t)>>l2+17Ridt>1/2,
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where D = (d(V),d®,d®). A similar estimate can be obtained in the neighborhood of
arbitrary point x € G. We introduce a finite ”\/4-net” of points 2 € G and a set of cut-
off functions xj(z) such that yi(z) = 1, if |z — | < A/2, xx(z) = 0, if |z — zF)| > A,
| DIxk| < eA=H,

01<Zxk <c, 7€,

with constants independent of A. We set

Up = VXk, 4k =DPXk» Tk = PXk;

write estimates (4.20) for all these functions and add the estimates together. The sum in the
left hand side can be estimated from below by

T
. 2 . 2
e(sp I sy + [ 10 e 7)

T
_ A2 7))
c(A)(gg o, gy + /0 lo( ’T>||W;—w(g>d7)

This is evident for the case of integral [ and follows from the inequality

Ixke(@)o(z) — xk(W)o)* = 27 XE (@) [o(z) — o) — o) Ixr(2) — xe ()],

if [ is not integral. The functions fo, fo, D, g in (4.19) depend on the data f, f, d, g
of problem (4.1), and also on v, p, p and their derivatives. The higher order derivatives
appear with small coefficients proportional to V¢ or b(0) — b(z), not exceeding cA in the
A-neighborhoods of z(®). Therefore the above calculation leads to the inequality

(4.21)

T
R(T) = sup o) gy + [ 1012 g d

o(NP(T) + AVT) 4 AR(T)) e (012 i, (422

IN

2
I, 1073 g+ 12106+ HKpHWg,l/W(GT)),
where N (T') is defined in (4.3) and
2 2 2 2
VAT) = HUHW22+Z’I+Z/2(QT) + vaHWé’W(QT) + HpHWé+1/2,z/z+1/4(GT).

This is the desired estimate for p.
Next, we consider (3.1) as the problem (2.27) with d — N Byp instead of d, f —2w(e3 x v)
instead of f, and we apply the inequality (2.31). This leads to

VAT) < e [1f — 2(es x )] +ld = NBool s jeijsis
2

wy'2(Qr) (Gr)
o0l 401, + 10l
hence, by (4.22),
VAT) + RAT) < o(NET) + oI, etaronirs g, + 1912 10rn g

2 ; (4.23)
+ H’OHWS‘WHM(GT) + HpHWé’O(GT) + HKPHW2l+1/2,l/2+1/4(GT)>a
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if A\ is sufficiently small.
Now it is necessary to estimate the norms of the solution on the right-hand side. We use
the interpolation inequality

191216 gy < 117010, + (D191 ) (4.24)

with arbitrarily small e; > 0. To estimate the Lo-norm of p, we regard p as a solution of the
problem
V2p(z,t) =V - (f(z,t) + vVf - F), z€F,

p(z,t) =vN - S(wi)N+ Byp—d-N, z€g.

Repeating the arguments in the proof of Proposition 3.1, Step 4, we obtain

P22 < (1 Flatr) + 19 o) + IFll o) + 19wy + ol zage) )

Similar inequalities hold for the finite difference of p with respect to ¢, hence
1Plyo0r2 gy < C(NF Nyourz gy + IV lyporrz gy

(4.25)

FIF o,y + 190002 gy + IPlwiiar) )

In view of the equation p; = v- N + ¢, the W0 /24174

as follows:

-norm of p and Kp can be estimated

ollyoarzisss gy + 1EPllyorrzsiss g < e(Iolnaar) + lotliagn

(4.26)
< c(nanz(GT) 10l aar) + lolra(an) )
moreover, as shown in [13],
1K plygio720 gy < elolys-20
hence, by interpolation inequalities, it holds
1Kol t120) + 10lhytoagy < lpllyssogy, +eleloli@n. (427
Finally,
V00l 00720py + Wolhyienarsinis g, < esllvlyrionnn g,y + ele)oliaar. (428
Inequalities (4.22), (4.23), (4.25)-(4.28) with sufficiently small ¢; yield
VA(T) + R*(T) < ¢(NF(T) + [vllno(@r) + 1ol aer))- (4.29)

To estimate p;, we use the equation p, = v - N + ¢ and inequality (4.29). As a result, we
obtain (4.2).
We also need to estimate the solution of (4.1) in weighted spaces W. ”/ 2(QT)
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Theorem 4.2 If f ¢ W (Qr), f eNfWVQHZ’O(QT), f=V-F, FeW2Q), v e
W(Q), d € Wl+1/2’l/2+1/4(G ), g € Wl+3/2’l/2+3/4(GT) and the conditions (3.2), (3.3) are
satisfied, then the problem (3.1) has a unique solution v € W2+l 1—H/Q(QT), Vp € Wé’l/Q(QT)

c W2l+1/2 l/2+1/4(GT)

with pla, , and the inequality

2 2 2
HvH’W22+l,1+l/2(QT) + HVPHITV;“Q(QT) + HPHITV$+1/2J/2+1/4(GT)
2 2 2
TPl 1720 gy + SURIOC Dyt s) +5up o )y s) (4.30)
(N} + (1 +8)vl7,0p + 1L+ DIl )

holds with

N2 = 1By + 15 o gy + 1F IEnsrs g

+H1’0HW1+I + HdH~l+1/2 W24 + HgHIQ/T/é”/?’““?’/“(GT)

and with the constant c independent of T .

Multiplying the relations (3.1) by ¢, we obtain

(tv); — vV2tw 4+ Vip = tf(z,t) +v, V-v =tf(z, 1),
T(tv, tp)n + nBytp = td(x, 1),

(tp)r = tv - n +tg(z,t) + p,

tpli=o =0, tv|i—g =0.

(4.31)

It remains to apply inequality (4.2) with [ — 1 instead of [ to (tv,tp,tp) (this is possible,
because (4.2) is valid also for [ € (0,1/2)). The functions v and p in the right hand side of
(4.31) can be estimated by the same inequality (4.2).

Remark. In view of the interpolation inequality

100 Dllzag) < S0 Dtz + e@lplly v gy 6 € (0,1),

the norm ||p||z,(q,) in the right hand side of (4.2) can be substituted by

T 1/2
. 2
(] 1000, g te)

The norm ||p|| is defined in a standard way:

—1/2(g)

ng z)dS
HpH 1/2(9') = sup ‘ || || ‘
pews?@)  1¥llwy/%(g)
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5 Proof of the estimates (1.23) and (1.38)

In this section main ideas of the proof of stability of rotating liquid are presented. As above,
we consider the cases o > 0 and o = 0 separately.

1. The case o > 0.

We modify the equations (1.18). We write the condition T(u, g)n = Mn separately for
the tangential and normal components and we notice that in view of (1.3)

w2
M =o(H(z) —H(y)) + 7(|$'l2 — Y P) +KU(z) —Uy), == eyly).

Using (8.54), (8.55), we compute the first variation of M with respect to p. It coincides with
the expression —Byp defined in (1.25). Hence

M = —Boyp + Bi(p),
where Bj(p) is a nonlinear remainder. It follows that (1.18) can be written in the form

Ut + 2&)(63 X ’U,) — VVZU + Vg = ll(ua Qap)a
vu(y,t)ZZZ(uap)a 3/6-7:, t>0?
HQS(U)N :l3(uap)a

5.1
g+ vN SN + Bop = la(u.p) + B (o) (5-1)
pt:u-N+l5(U,p), yega
’LU(y,O) :wU(y)a yej:a ,O(y,O) :pU(y)a yega
where
L (u,q,p) = ‘ift (L7IN* - V)u— (L7 V)u+ (V- V = V)u+ (V- V)g,
ly(u,p) =T — L)WV -u=V-Ly(u,p), Ly=(I—L)u,
I3(u, p) = Tg(TIgS(u)N — T1S(u)n), (5.2)
li(u,p) = v(N - S(u)N — n - S(u)n),
LTN
Is5(u,p) =u-(N —a), a=——,
2 1 2 1 2
_w? | dH, / A4
Bilp) = 2 7N +a/0 (=) Ggtds [ (1= 955 (5.3)

H, is the doubled mean curvature of the surface F%s) ={r =e5(y), yeg}

L&
v = | o) — e O

and L,(y) is the Jacobian of the transformation z = ey, (y).
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The orthogonality conditions (1.17), (1.19) can be written in a similar way:

/pdS = /(p— e(y,p))dS = 1(1),

g g

[ owids = [ (pus = witw. s =10,

g g

/fudw = /fu(l — L)dzx = m(t), (5.4)
Léwm®+wémym%=Aﬂ%m@—m@@mmy
M4AMymw—A%@»m@w@+A%wm@zmm.

Following [15], where the problem (5.1) was studied in the Holder spaces of functions, we
look for (u, q,p) in the form

u=u' +u", g=4¢+q", p=p+/," (5.5)
where v/, u”, ¢/, ¢", p/, p” are defined as follows. First we find u, p{ such that
[ ohas =10 [ suds =100),
g g
/ ugdy = m(0), / ug - m;dy +w/ pom; - M3dS = M;(0),
F F g
and, in addition,
V-ug(y) = la(uo, po),  y €F, MHgS(ug)N(y) = l3(ug, po0), y €G- (5.7)
It is clear that uy = wo — ug, p{, = po — py satisfy (3.50) and the compatibility conditions
Voug(y) =0, yeF, HgS(up)N(y) =0, yeg,
hence we can define u/, ¢/, p" as the solution of the problem (1.24) with the initial data
u'(y,0) =ugly), yeF, py,0)=ply), yeg.
For u”, ¢, p” we obtain the equations

(u) +2w(ez x u") — vV + V¢ =l(u +u", ¢ +¢",p + "),

V-u" =ly(u +u’, p +p), reF, t>0,

HgS(u")No = l3(u’ +u", p' +p"),

—q¢"+vN - S(u')N + Bop" = ly(u' +u",p' +p") + B1(p' + p"), z€g,
:01/t/ —u"-N = l5(ul + u”, pl + p//)a

u’(y,0) =ug(y), yeF, o0 =p), yeg.

Now we pass to the estimates of (u/, ¢, p’) and (u”,q”, p").
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Proposition 5.1. There ezist the functions ug and py, satisfying (5.6), (5.7) and the
inequality

H“gHWéH(}-) + HIO()/HWQIJF2(Q) (5.9)
5.9
< c(HO)|+ O] + pm(0)] + [M(O)] + wo, w0z + s (ator p0) 1755 )

Proof. We put

HONW -y . L0y N, yeg.

/1 .

It is easily seen that
é%ﬁﬂ®,é%m&w®-

Next, we introduce the vector field ui(y) = V¢(y) where ¢ is a solution of the Neumann
problem

V2= foly), yer, 20

ON ‘g = fi(y)

with fo(y) = l2(wo, po) and
_N(y) -y 1

The necessary compatibility condition [ fo(y)dy = fg f1(y)dS is easily verified, in addition,
we have

/fl(y)yidS:/ fo(y)yidy 4+ m;.
g F

On the other hand,

/ﬁ@mwz/ﬁyNsz/ﬁ@m@+/MMM%isz&
g g F F

hence,

Am@@zm

By the well known coercive estimate for the Neumann problem,

lutllysr ey < (I follwgr + Ml ) < e(follwie) + Iml )-
Next, we construct uy € Wit (F) such that
g S(u2) N (y) = l3(wo, po) — TgS(u1) N (y) = b(y).
We set ug(y) = rot®(y,t) with & € W.T?(F) satisfying the conditions

0P 0*P
_a—N_Oa _b(y)XN(y)a yega

®(y) IN?
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and the estimate
Hq’HwéH(}-) < chHwé—l/2(g).

It is clear that ua(y) =0 on G and [, us(y)dy = 0; moreover,

us(y) @ (y,t)
which implies IV - 2% ;= 0and
auQ

Finally, we introduce the vector field
3 —_~
us(y) =Y _ Mirote; A(y)
i=1
where A € C3°(F), [rA(y)dy =1/2, and

M; = M; — /f(ul(y) +us(y)) - ni(y)dy — w/gpﬁ’ng -;idS
Since rotn, = 2e;, we have

3
/fug(y) ‘n;(y)dy =Y _ Mie; - e; = M;,
i=1

in addition,
3
HU3||W5+1(]__) < CZI |MJ|
=

The function pfj(y) defined above and u{(y) = w1 + ug + ug satisfy all the necessary require-
ments. The proposition is proved.

Let us estimate (u’, ¢, p'). It follows from (5.4) and from the formula (8.48) that the right
hand side in (5.9) does not exceed c¢N§, where

Ny = HUOHWQIH(]:) + HPOHWQIJFZ(g)a

hence

N(/), = HUB'HW;H(Q + Hpguwéﬁ(g) < CN(?

and
Ny = Hu6||W2l+1(]-‘) + ||p6||W25+2(g) < ¢Np.

By Proposition 3.3,
Yr(u', g, p') < ey, (5.10)

o/ D)y ey + 116G D gy < e No (5.11)
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with the constants independent of T'.

Now we turn to the estimate of (u”,q”,p"”). We are in a position to apply Theorem
3.1, but before this we should estimate the nonlinear terms (5.2). We assume that N*(y)
is a sufficiently regular function of y € F (this can be achieved,for instance, by setting
N*(z) = N(y)((z) where y € G, z = y+ N(y)A\, 0 < =X < 4§, § > 0, and ( is a smooth
cut-off function equal to one near G and vanishing for |A\| > ¢/2). Concerning p* we assume
that p* = Ep where F is a linear extension operator with the following properties:

ON g 7
0™ (sl yrt1r2, oy < cllollwy), 7€ (0,1+5/2]. (5.12)
Wit )

It follows that the time derivatives of p* satisfy similar inequalities:
||Pf(a t)||W2T+1/2(_7:) < CHptHWg(Q)a re (Oal + 3/2]7

Pz Gy O)llyrt12 ey < ellpueliwg @), 7€ (0,0 +1/2].

Proposition 5.2. If

then
Hll(u7 q, ’O)HWé’l/z(QT) + ||12(’U,, p)HWé'H’O(QT) + HLQ(ua p)||Wg,1+l/2(QT)
F s (w, p)lyyierrzirzersagg g + Walw, ) lyyrerroirzerss gy + s (W, p) yyiearairesrs g

+ B (P)Hwéﬂ/?,O(GT) +1Bulij25/2,6, < Y (u,q, p).
(5.13)
The proof of this proposition is rather technical and is omitted. It particular, it contains
the estimates of the surface and volume potentials that occur in B;(p). We present here one
of the typical estimates of the single layer potential

wmzéh@w

lz—y|

Proposition 5.3 [13]. Let S be a bounded closed surface of class WQZ“*6 with € € (0,1),
le(1,3/2). If h € Wéfl/Z(S), then V€ Wit (Q), where Q is a domain bounded by S, and

HVHWQIJFI(Q) S CHhHWQl—l/Q(S)-
We notice that the compatibility conditions
V- ug(y) = la(wo, po),  MgS(ug)N = L3(uo, po)

are satisfied, so we can make use of Theorem 3.1 and prove the following existence theorem
for the problem (5.8).

Proposition 5.4. Given T > 0, there exists such ¢ > 0 that in the case Ny < € the
problem (5.8) has a unique solution defined for t < T and satisfying the estimate

Yr(w',q",p") < eN. (5.14)
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We give the sketch of the proof of (5.14). We set
Y =Yr(, ¢, p), Y'=Yr@",q",p"), Y =Yr(u,q,p).
By Theorem 3.1 and Proposition 5.2,
V" < eiNg 4 Y2 < e1NZ + 26(Y'2 +Y"?) < ¢3NZ + 26,V (5.15)

If 2coc3NE < 1, then it can be shown that Y” < £, where £ is the root of the equation
20962 — € + c3NZ = 0 given by the formula

- 1 1 NG 2c3 NG
2cy dcs 2ca 14 /1 —2cpe3NZ’

Y" < 2e3N§ (5.16)

which implies

The existence of the solution of the problem (5.8) can be proved by successive approxi-
mations (we omit the details).
Thus, the solution of the problem (5.1) is constructed in the time interval (0,7"). Let

N(T) = [u(, T) i ey + oG D a2 g,
NUT) = [/ Dl ) + 16 G Dl
By (5.11), (5.16),
N(T) < N'(T) + ¢Y" < cse™PT Ny + s NG < (cae™PT + ¢5(T)e) Ny.
Choosing T sufficiently large and e sufficiently small, we obtain
N(T) <Ny, 6<1.

By the same arguments the solution of (5.1) can be extended to the time interval ¢ € (T, 2T)

and the inequality
N(2T) < 6N(T)

can be proved. By repeating these arguments we arrive at the estimate
N(kT) < 0*Nog, k=1,2..

which yields the exponential decay of the solution. Other estimates announced in Theorem
1.1 are obtained in a similar way, also on the base of Propositions 3.3 and 5.4.
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2. The case 0 = 0.

We consider the problem (1.10) written in the Lagrangian coordinates in the form (1.33).
As we have seen above, the function M in the boundary condition T,;n = Mn can be written
in the form M = —Byp+ Bi(p); the expressions Byp and Bi(p) are given by (1.25) and (5.3)

(with 0 = 0). We pass to the Lagrangian coordinates and obtain the relation
M = —B{r + B{(r,u),

where

B =b@r(e )~ [ rn0dSy o op,

&7’

w B 1 2 B _
Biwr) = SIN'COP 4 [ (1= 8) 50 ds = () - b))

[ ldinenl___vds ___ is )
o [EX, N (D) X&) - X, 0]~ "I E=a)

Hence (1.33) is equivalent to

w; + 2w(es x u) — vViu + Vg =11 (u,q),

V-u =l (u), £e gy, t>0,

I S(u)ng = l3(u),

—q+vng - S(u)ng + Bjr = l4(u) + By (u,r),

r(&,t) = N(€) - u+Is(u), €€l

u(é,0) =wo(€), €€, r(£0)=p(E), &eTy,

where IIpd = d — ng(ng - d),

l1u

)

(u,q) = v(Viu — V?u) + Vg - Vg,
lh(u) = (V ) u=V-Lu), L=I-A")u,
l3(u) = (I S(u)ny — ILS, (u)n),

(u) =v(ng - S(u)ng — n - Sy(u)n),

(u) = (N(X) = N(§)) - u(&, ).

The proof of solvability of (5.18) is based on the analysis of the linear problem

T

l4u

l5u

vy + 2w(es x v) — V20 + Vp = f(£,1),

Vw6, t) = (6,1, €€y, >0,

I,S(v)Ny = Iod, ¢ € Iy,
—p+vng - S(u)ng + Byr =d - ny

re —no(§) - v(€,t) =g(&t), {eTy,

v(£,0) =vo(§), £€Q,  r(&0)=ro(§), €Ty

(5.17)

(5.18)

(5.19)

(5.20)

In contrast to (3.1), this problem is written in the domain ¢ that can be transformed in

F by the mapping inverse to & = e, (y), vy € F; the function pg should belong to W2l+3/2(g).
In this way we reduce (5.20) to (3.1) and prove the following theorem (see details in [5]):

o7



Theorem 5.1. Let[ € (1,3/2), Q% = Qo x (0,T), G% =Ty x (0,T) and let the data of the

problem (5.20) possess the following regularity properties: f € Wé’lﬂ(Q%), fe WZI—H’O(Q%),

f=V-F, FewW2QL), vy € WiT(Q), ro € Wi (Ty), d € WLH/Z2H14 g0,
g€ W21+3/2’l/2+3/4(G0T). Assume also that the compatibility conditions

V. Vo = f(£70)7 5 € QOa I/H()S(’Uo)'no = Hod(f,O), 5 € FO

are satisfied. Then the problem (5.20) has a unique solution v € W§+Z’I+Z/Z(Q%), Vp €
Wé’l/Z(Q%), re WZZH/Z’O(GOT), r, € W21+3/2,1/2+3/4(G0T) such that P|G% c W2l+1/2’l/2+1/4(G0T),
r(-,t) € WITH(Ty) for arbitrary t € (0,T), and

V(T) = ol ysnasrs gy, + 19073 gy + P lytssrnorasoss g,

+ ”T“Wé+l/2’0(G%) + H?"tHWé+3/2,1/2+3/4(G0T) + fgg HT("t)HWQHI(FO) (5.21)

2

T 1/2
2 2
<c(N) + ( / (1012 5 + 1712, 172, ) ),
where

ND) = g gpy + 1 lhytssogagy + Py seus gy + Irollugssg
Hlvolly 10y F l@llyierrzirzera oy + 19l esnizesss o -
Moreover, if f € Wé’l/Q(Q%), d € Wé+1/2’l/2+1/4(G%), g € W2l+3/2’l/2+3/4(G0T)

f €
Wy (@Y, F e W 2(QY) (this means that f € Wy 0(QY), tf € WH(QY)), F e
Wy Q%) tF e witY(QS)), then

-

Y(T) = ||v||17V22+l‘1+l/2(Q%) + ||VPH’Wé,l/2(Q%) + ||p‘|Wé+l/2’l/2+l/4(G%) + HTHVNVQlH/Q‘O(G%)

+ Ilpgeomsrnsorgy) + SUp I hwges g + SR Bl 522

< c(N(T T1 12 2 2 at)'"”
< e(N@) + (| 0 2ol + 17120 ) )
where
N@) = Iz ggy + 1 flerogoy + I sz o, + 7ol oy,
+H’U()HW21+1(Q) + “d”W2l+l/2’l/2+l/4(G%) + HQHW2[+3/2,5/2+3/4(G%).

The constants in (5.21), (5.22) are independent of T'.
As in the case o > 0, we estimate the nonlinear terms (5.19) and apply Theorem 5.1.
Proposition 5.5. If

Y(T) < 6 (5.23)

with a certain small 51 > 0 and py € W2”3/2(g) is extended in F so that

k
HPUHWQIH(]-') < CHPOHWéH/?(g)a
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Then
Il gn, + Welissiagg, + IEgonsrs g, + Wsllgronsasrssaragg,

+ ||l4||V~Vé+1/2’l/2+1/4(G’%) + HlE’HWéH/Q’I/HIM(G%) + H16‘|Wé+3/2,1/2+3/4(G%) (5.24)

< C(HUHQW;H,H—U?(Q%) + HV‘IH%VVQUM(Q%) + HT||%VV25+1/2J/2+1/4(G%))
< ¢h, Y (T)
with the constant c¢ independent of T > 1.
We also need to estimate weak norms of u and p that occur in the inequalities (5.21),
(5.22). This is achieved by construction of a special Lyapunov function that is often referred
to as a generalized energy.

Proposition 5.6 [16] Assume that the problem (1.10) has a strong solution defined for
t € (0,T), and Ty is representable in the form (5.3) with p(y,t) satisfying

sup [p(+,1)[c1(g) < 02 < 1. (5.25)
t<T

Then there exist two positive functions, E(t) and Ey(t), such that

dg—it) + Ei(t) =0, (5.26)

e1 (w5 )13 0 + 126Dy 6)) < B® < o2 (lw, )13 0 + 106Dy )s (5:27)

and

Ei() 2 ca (I8 0) 00 + 12 DI2, o g))

, , (5.28)
> ea ([l gy + 1GOOI, 112 )
with the constants independent of T .
The proof of this proposition is given in Sec. 6.
It follows that
2 2 ! 2 2
||u(7t)HL2(Qo) + ||’r(7t)HL2(F0) +A (Hu(7 T)HLQ(QQ) + ||T(7T)||W;1/2(FO)>dT (529)

< (11001, + o0 D35 )-

Theorem 5.1 and Proposition 5.5, 5.6 allow us to obtain the following uniform estimate
for the solution of the problem (5.18).

Proposition 5.7. Assume that the solution of (5.18) is defined fort € (0,T) and satisfies
(5.23). Then

Y(T) < eNy, (5.30)

where
Ny = Hw0||Wé+1(QO) + ‘|,00||W5+1(g)'
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Proof. Making use of (5.21), (5.23), (5.29) we obtain
Y(T) < (VH(T) + No) < (07 (T) + Ny ).

Now , we multiply (5.26) by 1 + #* which leads to

d(1 +2)E(t)

pn + (1 +t2)E\(t) = 2tE(t),

and, as a consequence, to

t t
2 2 _
(1+t%)E(t) —I—/O (1+7%)Ey(7)dr = E(0) + 2/0 TE(T)dT

t t —
< E(0) —I-Z\//O T2E(7')d7'\//0 E(r)dr < E(0) +c\/Y(T)Y(T).

By (5.22), we have
Y(T) < e(0iY(T) + No) + e/ Y (T) /Y (T),

which implies B B
Y(T) < e1\/6,Y (T) + ¢ Ny,

and if

1
6 < —
\/—1 — 2¢ ’
then N
Y(T) < 2¢9Ny, (5.31)
g.e.d. |

The solvability of the problem (5.18) is proved step by step, first in the time interval
t € (0,1), then ¢ € (1,2) and so forth. We outline the construction of the solution in the time
interval ¢t € (T, T + 1) under the assumption that it is already constructed for ¢ € (0,7') and
the estimate (5.30) is obtained (the details can be found in [5]).

We reduce the construction to the solution of the problem (1.28) for t € (T, T + 1) with
the initial condition w(&,T) = lim, . ou(&,T — 7). We introduce the functions ug and g
that coincide with u and ¢ for ¢t < T and are defined by

uo(&,t) = =3u(&, 2T —t) + 4u(,3T/2 — t/2),
q0(§7 t) = _3Q(§7 2T — t) + 4Q(§7 3T/2 - t/2)7

for t > T (this extension guarantees preservation of class). For ¢ € (T, T + 1) these functions
satisfy the relations

(5.32)

wor + 2w(es x ug) — vViug + Vo = l§°)(uO, a0) + wor — (ug)(©,
Vg =1 (ug), €€,

oS (uo)no = 15 (uo)

— qo+vno - S(ug)ng = 18 (ug) + MO(&,8), € €Ty,

(5.33)
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where f(0)(¢,1) is a function given for ¢ € (0,T) and extended into the time interval (T, T +1)
according to the rule (5.32). For ¢t € (T T+ 1), we introduce new unknown functions
v =1u—1up, p=q—qo and we set X, (&, §+f0 7)dr. Since M = m(X,) + po, where

2
w
m(Xy) = kU(Xy) + 7|X’IIL|27

we have
M — M(O) =m — m(O) = m(Xuo-Hl) - m(Xuo) +m(Xu0) m 0 (Xuo)a
moreover,
_ _ Om(Xug+s0) ' 0 P Xugrsn)
(X p0) = m(Xi) = S| [ g T ety
where
t
Inin)| 2 aw) = wt X (60)- [ v nr
88 s=0 0 T
(fat) uo(ﬂ, ) /t /
— K Dy(n, dn - v (&, T)dT
[ e [ Ve

, t
s ol sy ([ vonar)as

(
is the first variation of m(Xy,4+,)—m(Xy,) with respect to v (it is computed in the same way as
dU in Proposition 8.26). By Dy we mean the Jacobian of the transformation z = X,,,(&,t) (it
is equal to one for ¢ < T'), and Ay is the cofactors matrix corresponding to this transformation.
We subtract (5.33) from the equations (5.18) for (u, ¢) and arrive at the following problem
for v, p:

v, + 2w(es x v) — V20 4+ Vp = I (ug + v, q + p) — L1 (uo, qo) + F(&,1),

Vv =la(ug +v) — la(ug) + f(&, 1), £eQy, t>T,

Iy S(v)ng = l3(wo +v) — l3(uwy) + d(&, 1), (5.34)
—p+ frng - S(v)ng — A(v) = la(ug +v) — la(uo) +I5(v) +d(,t), = €T,
v(&T)=0, &€,

where

£ = Ui(uo, q0) — 11 (w0, q0) + () — gy,

FE1) = Ia(ug) — 1Y (ug) = V - F(&,1),

F(¢,1) = L(uo) — L (up),

d(€,t) = Us(uo) — 1S (uo),

d(€,1) = la(wo) — 157 (wo) + m(X[ug]) — m'® (Xuq)),
! O*’m(Xyo+sv)

I5(v) = i (1-— S)Td&
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These functions vanish for ¢ = T', which implies p|;—7 = 0, v¢|;=7 = 0.
Given the solution of (5.18) in the time interval (T, T + 1), we are looking for the solution
of (5.34) with finite norm

Vi(w.p) = lwllyiizireege o+ Tlvllymeiseg

0
Q1

0 _
IVBlysirn g+ TIVBl sy Qe =0 x (DT +1).

The differences Iy (ug + v,q + p) — L1 (w0, qo), l2(up + v) — l2(up) ete. satisfy the inequalities

21 (w0 + v, 90 + ) = Li(uo, @)l 102 g0

T,T+1

+ Tl (wo + v, g0 +p) — L1 (w0, 90) [ yy1-1.0-172 0

$ri1)

< chy (HUHW;H,H!M(Q%TH) + THUHWQIH’I/QH/Q(QOT,TH)
HI9Plygerngy., o+ TNV ));

12 (w0 +v) = Ia(w0) lyrrroggq )+ L0 + ) = L(wo)l o1z gp )

+ ||Ils(up + v) — l3(U0)||W2l+1/2,l/2+1/4(G%,T+1) + ||la(uwp +v) — l4(u0)||W£+1/2"/2+1/4(G0T,T+1)

+ T(Hl2(uo +v) = b(wo)llyrogo 1+ I1E(uo +v) = L(uo)[your24172 49

*r rr+1)
+ |13 (uo + v) — l3(“0)”W§‘1/2’1/2_1/4(G°T,T+1) + || la(wo +v) — 14(11/0)Hwé—l/Q,l/2—l/4(G%,T+l)
<cd ( ‘ T )
< by HUHW22+I’1+I/Z(Q%,T+1) + Hv||W21H’(l+1)/2(Q°T,T+1) ;
' (5.35)
provided Y7 < §;. Moreover, we have
I ‘ Tl ~1/2,1/2~
[ 5(’0)‘|Wé+1/2,l/2+1/4(G(7)1,T+1) + T 5(U)||W21 1/2,1/2 1/4(G%,T+1) (5.36)

2
< T TR ) '
< elolhygerrmimsnriy, o+ Tl )

We are in a position to apply the estimate (4.2) to the problem (5.32), although this prob-
lem somewhat differs from (5.19): instead of Bj we have the operator A(v) in the boundary
condition. But this is also a lower order operator of the Volterra type, so the inequality (4.2)
is still applicable. Using (4.2), (5.35), (5.36), we prove the following proposition.

Proposition 5.8. There exist e > 0 such that if

~

Y(T) < ceq,

then the problem (5.32) has a unique solution, and

V(©.p) < e ullgeain o) + 1Vl g9, ) < V(D). (5.37)

To estimate r(&,t), we use (5.37) and the formula
t
r(&,t) =r(,T) +/ N(X)-u(&1)dr, te(T,T+1).
T
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In this way we arrive at the inequality ?(T +1) < 0117'(T), and, as a consequence, at
Y (T +1) < c1¢9Ny < ce, where ¢q is the constant in (5.31) (co = 2¢2). When we impose on
the initial data one more restriction cycie < 81, we obtain for Y (T + 1) the estimate (5.31)
with the constant cyp.

The solvability of the problem (1.28) in the time interval ¢ € (0, 1) is established by similar
(even easier) arguments.
Now we can extend the solution step by step to the infinite time interval ¢ > 0 and prove

(5.31) for T = oo. This completes the proof of Theorem 1.2.
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6 Estimate of generalized energy

This section contains the proof of Proposition 5.6. We consider the problem (1.10)-(1.13),
i.e.,

w; + (w - V)w + 2w(es x w) — vViw + Vs = 0,

V’lU(y,t):O, yEQta t>07

2
T(w, s)n = (S |y/|* + KU (5, ) + po)n. (6.1)
Vo=w-n, yely
L w(y,0) =vo(y) — V(y) =woly), ¥y €,

w(z,t)dr =0,
Q
: (6.2)
téw@ﬂmmwﬁwéﬁWWmmﬂzwAm@%M@m i=1,2,3.
/wmmwzm /M%mwzmisz& (6.3)
g g

We assume that the solution of this problem is defined for all ¢ > 0 and possesses all the
derivatives that occur in (1.10). The free boundary I'; is given by the equation (1.14), the
extension p* of the function p in F satisfies the conditions formulated in Sec. 5. We start
with the following auxiliary propositions.

Proposition 6.1 Given the function fo(y,t), y € G, belonging to W21/2(g) and satisfying the
orthogonality condition

| fatw s =0,
g
there exists a vector field W (z,t), © € Qy, such that W € W (Q),

fO(ya t)

V-W(zt)=0, z€Q, W-n| =207
r |27 (y, p)N|lv=e;' @

Wz, t) - n;,(z)de =0, i=1,2,3,

Q
W )llwg ) < el follyirzg: (6.4)
W ()l Ly 00 < cllfollzag)s (6.5)
W)l o) < el forllLoig) + ol iz g)- (6.6)

Proof. The vector field Wy = Vo(y,t), y € F, where ¢ is a solution of the Neumann
problem
o

2 e _ e
vqb(y?t)_oa yEFa 8Ng f07
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is divergence free, satisfies the boundary condition W - N = f; and the inequalities
IWollwiz) < ellfollyyirzgy,  Woll,r) < el foll o)

IWotllL,r) < cllforllzag)

We introduce the vector field

Wi(z,t) = Ly YWo(ys 1)l o1 () (6.7)

L(y, p)

Since
0= Vy Wy = Vy ’ ([’Wl) = ?Vy ’ Wl(eﬂ(y)at) =LVy- W1|m:ep(y)

fo=Wo-N=N-LWi(e,(y),t) = L'N -Wy1 = |L"Nn - W[ _,
we see that V- W; =0 and

Jo

Wi-nlr, = mb:e#u)'

Now we pass to the estimates of Wy. By (6.7),
W illLo(e) < cllWilep, Do) < clWollary < cllfollLao)

moreover, using the Holder inequality and the imbedding theorem (Proposition 8.12), we
obtain

L L
IVW il (o) < e(max | =V Woll Ly + IV L s [Woll o))

< | Wollwys) < llfollyirzg):

where the constants depend on ||p*|| Wi (Fy) i.e, on ||p||W§+a(g), a > 0. In addition, we

have
awl(ep(y)a t) . an (ZE, t)

ot N ot |fv=ep( )

+VW1(5E t)’:v ep(y N*Pfa

OW i (ey(y),t)  LOWy(y,t) 0 L
ot L ot +8t( )Wo.

which permits to estimate the time derivative Wy(z,t) as follows:
Wt ()| na () < C(SI;P L LI Wor (s )l oy + LT L) el Ly m) W0 () | g ()
S [N [VW 1) < e(lforleago) + 1 ollyarzg)-

Now we define W by

3
W =W, —rotA, A=ua(zx) Zek W, - n,dz,
Q¢
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where a € C§°(£2), th a(z)dz = 5. Since rotn; = 2e;, W satisfies the condition

W - n;dr = /Q wy - n;dr — A - rotn;dz = 0.
t

Qt Qt

Inequalities (6.4)-(6.6) follow from the estimates of W. The proposition is proved.

The next proposition concerns estimates of functions satisfying the conditions (1.17).

Proposition 6.2. Assume that p is subject to (1.17) and [p(-,t)[c1(gy < 0. Then
lp— PLHLz(g) < cdllpllry o),

1
”p —pP HWQ_I/Q(Q) < C(SHprgl/Q(g)’

where p is the projection of p on the space of function satisfying (1.6).
If ¢ is sufficiently small and (1.37) holds, then

1
cillpllzag) < o llna) < e2llpllna(g)s

bl gy < 10l 1r2g) < ol 12

R(p) > C||P||%2(g)
Proof. Let x;(y) = v;, i = 1,2,3, and x4(y) = 1. Tt is clear that

4
p=p"+> bixiy),
=1

where b = (b1, b, b3, by) is a solution of the system
4 o <
/pdeS: Zbi/XindS :e Zcngz
g i—=1 g i=1
Since the matrix C = (fg XindS)i,j:1,2,3,4 is invertible, we have
4 .
b= C" / px;dsS,
=t
where C*J are the elements of C~!. By (1.17),

/pX4dS=/pdS=/ (p—w(y,p))dSZ/p&LdS,
g g g g
/gpxzdSz/gpyidSz/g(pyi—wi(y,p))dSZ/gp&dS, i=1,2,3,

where £ = §H — 5 KC, & = p(yi€ + Ni(§ — 5H + 6K) ). Tt follows that
!émﬁ%%MWMM@SWMm
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These estimates imply (6.9)-(6.12). Finally, (6.13) follows from

3*R(p) = O°R(p" + (p — p1)) = 3*R(p™) = dllpl7, )
> cllpt |17, — dllolIZ, )
and from (6.11). The proposition is proved.
Proof of Proposition 5.6.

We multiply the first equation in (6.1) by w and integrate over . We make use of the
relation

% Qtf(x’t)dm:/ﬂt(ft(x’t)+w'v)f(ﬁc,t)dx

that can be easily verified by the passage to the Lagrangian coordinates. We observe that
—vV%w + Vs = —V - T(w, s) and we integrate by parts, using the boundary conditions. As
a result, we obtain

——||w — kU + —|z'|* )w - ndS + || S(w)||7. = 0.

We have y
12'|*w - ndS = / (w - V)|2'|*dz = —/ 2|2z,
Ty o dt Jo,

d
/ Uw-ndS= | (w-V)U(z,t)de = — | Udx — / Udzx.
Ty o dt Jo, o

Since

1
/Qt Utdz:/ﬂt dx/ﬂt(w(y,t)-vy)‘x_y,dyz/m(w(y,t)-vy>U(y,t)dy,

we can conclude that

/ Uw - ndS = 1i/ Uz, t)dz.
T 2 dt Qs

Putting all the terms together, we obtain the energy relation

1d w? K
14 (w2 ——/ yx'\2dx——/ Uz, 1)dz
Zdt( L) = "2 g, 2 Jo, ) (6.14)
v
+ 5”5(117)“%2(@) = 0.

We can write (6.14) in another way. Since th x;dz =0, (6.2) implies

3
’lU(I,t) = wJ_(]:at) + ng(t)nk(x)a (615)
k=1

where w is the vector field orthogonal to all the vectors of rigid motion

n(z) =a+bxx,
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ie.,

wt(z,t)dz =0, wh(z,t) -n;(x)ds =0, i=1,2,3.
Qt Qt

These conditions yield the following relations for g (¢):
3
> Sitgr(t) = | w(x,t) -n;(z)de
k=1 2t

= —wS3;(t) +w/ ns(7) - n;(v)de = Boz; — wS34(t), j=1,2,3,
f
where 8 = w [ |2/|?dz and Sj (%) = [o, M;(@) - ni(v)dz. The matrix S(t) with the elements
Sjk is symmetric and positive definite, hence

3

ge(t) = 3 55 (8) (B —wSam (1) _wzskm ([ st mntidy= [ my(o) o).

m=1 Qt
(6.16)
where S*™ are the elements of S~1.
By (6.15) and (6.16),
3
d 2 d 12
=l 09 = = (Il 10, +j;19kgjsjk)
d
= = (w1, 0, + S S (e — Su () (805 wSs; (1))
Jk=1
d
(10t 12, 00y + 2 (O + Saa(t)w? — 260)
d 12 § 20q33 1 2
g (00 + g+ B(5™(0) — ) + S0 — 280).
The expression
1 2 2 def
B2(5%(t) — 5—33 = ﬁ 25]3 53’; t5(511323 + 892873 — 2512513523) = 2Q(t)

is a positive definite quadratic form with respect to Si3, Sog, since 2579 < v/ S11v/S22. Hence
(6.14) may be written in the form

14
E(EHWLH%?@) + Q(t) + R(t) — Ro) + §HS(wl)H%2(Qt) =0 (6.17)

dxdy
R(t / / — ol 6.18
( ) 2fQ |l‘l|2dI a, Jo, ’x_y’ 0’ t’ ( )

is the energy functional and

dzdy
- 7.
2f ]m’]de // \x—y\ ~ pol7|
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Since I'; is given by the equation (1.14), we can consider R(t) as the functional depending
on p and write

R(t) =R(p), Ro=TR(0).
The difference R(p) — R(0) can be expressed as

1 2 s 2 s
R(p) — R(0) = 0R(p) + %(5273(,0) + /0 (1-s)(“ 7;(2 p) _d 53(2 Pl Yds. (6.19)

As shown is Sec. 8, dR(p) = 0, hence

| =

1%
(w17, @, +2Q() + 0°R(p) + 2R1) + §HS(ML)H%2(Q,§) =0. (6.20)

DN =
o

t

It can be proved that the remainder

1 2 s 2 S
Ritp) = [ (1) (EEGD - TRER,

satisfies the inequality

Rl < ellolleno) ol < edlloly - (6.21)

We supplement (6.17) with one more relation. We write the first equation in (6.1) in the
form

wi + (w- V)w! + (wh - V)w' + (w' - V)w' + 2w(es x wh) (6.22)
+ 2w(e3 x w') — V2wt + Vs = —w), '
where w' = w — w® = Y23 _| g (t)n, (). We notice that
3 3
ow, ow,
/ ! / _ / k
(w' - V)w; = Zwkax; = _Zwk oz;
k=1 k=1
hence 1
(w' - V)w' = —§V]w’\2,
moreover, _
2(e3 xm;) =—V(n;-m3) +n', i=12.3
with n' = n,, n? = —n;, n® = 0. It follows that (6.22) is equivalent to
wi + (w- V)w! + (wh - V)w' + 2w(es x wh) — vV2wt
3 3
1 (6.23)
V(=03 Oy — H?) = w0 > et
j=1 7=1

We multiply this equation by the vector field W constructed in Proposition 6.1 (the function
fo is going be chosen later) and integrate over ;. Since th (wH—w Z?Zl gk(t)nk) Wdzx =0,
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we obtain

d wL.de_/ wL-(WtJr(w'V)W))dﬁUJFQw/ (e3 x w') - Wiz

% Qt Qt Qt
1%
+= [ S(wt :Sde+/ wr - V)w'  Wdz
5 Qt( ): S(W) m( ) (6.24)

3
1
- (M 4w M- N3+ =|w > )W -ndS = 0;
/Ft( jElgm] 3+ 5lwl)

we recall that M = —Byp + B1p where By and Bj are given by (4.1) and (5.3) (with o = 0).
Now we multiply (6.24) by a small v > 0 and add to (6.21). This leads to

dE—(t) + Ey(t) =0, (6.25)
dt
where
1
E(t) = 3 (HwiHiQ(Qt) +2Q(t) + 8?R(p) + 2R1(p)) + i wt - Wdz, (6.26)
t

Bi(t) = 515w a7 | wh (Wit (w: V)W)ds

Q

+ 2w7/ (e3 x wh) - Wdz + ? S(wt) : S(W)dzx (6.27)
Qt Qt

+7/ (wh - V)w' - Wdz —~.J(t),
Q

and J(t) is the surface integral in (6.24).
We pass to the estimates of F(t) and F;(t). We have

!/Q wh - Wdz| < |Jw| 1y 0) Wil < clw .00 0 2:0),
t

hence, by Proposition 6.2 and inequalities (1.37), (6.21),

B(t) > c( w20, + 1913,0)) = (w1200, + 1013,0)),

if ¥ >0 and 0 > 0 are small.
Now we consider the surface integral J that can be written as the integral over G (see
Proposition 8.25):

3
L,
7=/ M 0350, 1+ gl o)

In view of (6.16), gg(t) = —w S35, SE™ Jg 3 - My dS + g, (t), where

3
oh(6) =Y (S0 ( [ mymndo— [ nyony) + 8570 [ gy mpds
P o F g
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and SF™ are the elements of the matrix inverse to Sy = (f]E Nk - MndT)km=123, 1.€.,

SE™ = BemlInl 72,

It follows that
—J = / B'pfodS — J = / pB' fodS — J'
g g

where

B'f = Bof +w’ "?”’ I, /f Y, t)ns(y)nk(y)dS,
k=1

J = /g(BIP+ w’ !2+ng M- M3(z ))fodS-

By (1.37), the integral operator B’ possesses the property [, pB'pdS > c||p||L
arbitrary p satisfying (1.6). Hence the equation

RB'Pyf =g

for

(6.28)

is uniquely solvable for arbitrary g € L2(G) satisfying the same condition; moreover, if g €

W./%(G), then
HfH 1/2 < CHQH 1/2 @)’

We define fy as a solution of (6.28) with g = Py(—Ag)~"/?p*. Then
ol < el 1r2g) < ellolhy1r26y

moreover, using the equation (8.48) for the estimate of g}- and w’ and the inequality

B dsS| < edllp||> _,,.
‘/g IPfO ‘— c ||p||W2 1/2(g)

(whose proof is omitted), we can show that

1< eBllpl, s

This implies

= [ oR(-8) R0t — ol s
g

Since the expression fg ptPy(—A)"2pdS is equivalent to ||pl\|€v_1/2(g), we have
2

—J>
J CHPH —1/2(9)

if § is small.
Now we estimate Fj(t) from below. It is easily seen that

‘/Qt(egxwL)-de‘—i-‘/QtS(wl) dm‘+‘/ Jw' - Wdx
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1 1
< cllw™llwien W llwiany < cllwllwg @ llelly -1z,
1 1 1
‘/fw (w - VIWdz| < cl|w™||rs ) [[Wllwi o lwllzs ) < cllw™ e W llwy @)
with the constant proportional to ||w||z,(q,). Moreover, in view of (6.6) and of the equation

_w-EFN
PL= M)

(A(p) = N - LN is computed in Sec. 8), we have
[WillL, () < cllforllzyg) < C||(_A)71/2P0pt||L2(Q) < cllwlpyr,)

< (ot lwson + ol 1r2))

and, as a consequence,

1 1 1
[t Weda] < clwt o (I oo + 1ol e )

These estimates imply
Fi(0) 2 2180 s + MWy 112,g) = 0 sty (Her gy + lolhy vy )
Due to the Korn inequality, HwH|W21(Qt) < HS(wl)||L2(Qt) we obtain
Bi(t) > e llw Iy, + Vol 12 gy )

if 7y is sufficiently small. This completes the proof of Proposition 5.6.
The generalized energy can be also estimated in the case o > 0, which gives the inequality

(12, ) + 10613 gy < e (llwoll2 a0 + ll0l2ny g ) (6.29)

with # > 0. But the inequality of this type has been already obtained in Sec. 3, and we omit
the proof of (6.29).
It should be noted that in the case ¢ > 0

dxdy
R(t) = o|Ty| + // — polul, 6.30
() ‘ t‘ 2]‘9 | /|2d$ a, Jo, ’x_y’ ‘ t’ ( )
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7 Inversion of the Lagrange theorem in the problem of stabil-
ity of rotating viscous incompressible liquid

In this section we assume that the quadratic form (1.4) can take negative values for some
p satisfying (1.6), and we show that in this case the linear homogoneous problem (1.24)-
(1.27) has solutions growing exponentially as ¢ — oco. By analogy with classical mechanics,
statements of such type are referred to as "inversion of the Lagrange theorem?”.

The proof is based on the construction of the Lyapunov function, as it has been done in
Sec. 6. We follow the paper [17].

We require that

S = / —$3dx—/( —22)dz > 0 (7.1)

which means that F is an oblate spheroid.
First we need to prove some auxiliary propositions.

Proposition 7.1 For arbitrary vector field of rigid motion n(x) = a+ b x x, where a and b
are constant vectors, the equation

By(n(z) - N(x)) = —w’n(z) - ', (7.2)
holds, where x’' = (21, x2,0).

Proof. We take an arbitrary small smooth function r(z) and consider the integral
w2
) = [ (@) + S 1o/ + U(@) + o) n(s) - nds,
r
where U(z) = [ |z —y|~ 'dy and € is a domain whose boundary I' is given by the equation

r=y+N(yrly), yeg.

By n and H we mean the exterior normal to I' and the doubled mean curvature of T,
respectively. It can be shown that only the term containing w? is different from zero; indeed,
we have [.n-ndS =0,

/Hn -ndS = / Arz - n(z)dS = — / Vrz : Vrn(z)dS =0,
r r r

/FU(x)n(g;)dsz/VU(x)dx://Qﬁdxdy:o,

[ U@ni@) - n(as - /VU ()

i y)dzd +// i(y)dzd
= [ Ly vt f, o= mdady
—/QVU(y)-m(y)dy,

from which we can conclude that

/ U(2)n;(z) - n(z)dS = 0.
T
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Hence
w2
I[r] = ) /F |2’ |?n(z) - n(z)dS = w2/ﬂn($) -x'dx

and I[0] = 0. Taking the first variation of both parts of this equation with respect to r we
find (see Sec. 8)

- / Byrn(z) - N(x)dS = w2/ r(z)n(x) - 2'dsS,
g

g
i.e.,
/r(x)Bo(n(w) -N(z))dS = —w? / r(z)n(z) - 2'dS.
g g
Since r(z) is arbitrary, we can conclude that (7.2) holds. The proposition is proved. [
From

2 12n(z) - z)dS = ) - 2'de =
/an()N()d 2 [ (o) a'ds =0

f

it follows that also
B(n-N) = —w’n(z) - «'. (7.3)

Direct computations show that

/ n1 (2) - N (2)eazsdS = S, / ms() - N (2)123dS = S,

! I (7.4)

/ 01 (z) - N(2)2123dS = / 1a(5) - N(2)3253dS = 0.
g g

Indeed,
/ M (z) - N(x)xozsdS = / m (z) - V(zoxs)dr
g F
= /(63(1}2 — esx3)(esro + exxs)dr = / (m% — x%)dm,
g

F

and other equations are verified in the same way.
As a consequence, we obtain

/nl-NB(nl-N)dS:wQ/xgmgm-NdS:w2S,
g g

which shows that (7.1) is necessary for the positivity of fg pBpdS = §?R(p).
We denote by H the subspace of functions from Lo (G) satisfying (1.6), and we set (f,g) =

Jg f(@)g(z)dS.
Using the relations (7.4), we can easily prove
Proposition 7.2 An arbitrary p € L2(G) can be represented in the form
p(z) = p1(z) + pa(z) (7.5)

where
pr(z) = S7H(my () - N(2)Lr(p) — my(@) - N(2)L(p)),
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I,(p) :/p(x)xgxadS, a=1,2,
g

and po satisfies the orthogonality conditions

/g p2(y)ysy1dS = /g p2(y)y3y2dS = 0. (7.6)
Ifpe H, thenpo € H. If p=mg-N, 8=1,2, then pz = 0.

The equation (7.5) defines a non-orthogonal projection @) on the space (7.6):

Qp=p— 87 (m (@) - N(@)La(p) = o) - N(@)Li(p) ) = po.

and it is easily seen that Qp € H,if p € H.
By (7.3) and (7.4), we have

(Bp,p) = (Bp1,p1) + (Bpa, p2) (7.7)
and

2
(Bpi,p1) =w’S™" Y I (p).

a=1

By (7.1), this quadratic form is positive, whence

(Bp,p) > (Bp2,p2) = (BQp, Qp).

This inequality shows that (BQp, Qp) < 0, if (Bp,p) < 0.

Let H; be a subspace of functions from Lo(G) orthogonal to 1, 21, x9, T3, X321, T3Z2.
We also introduce the space Hy = H; © Ker|y, B, where Ker|g, B is a finite dimensional
space of elements of H; satisfying the equation Bp = 0. Since (BQp, Qp) = (BP2Qp, P2Qp),
where P, is the orthogonal projection on Hj, we see that if the quadratic form (Bp, p) can
take negative values for some p € H, then the same is true for the form (Br,r), r € Hy. This
is equivalent to the fact that the operator B restricted to the space Ho, i.e., the operator
By = P, BP,, has negative eigenvalues.

It is easily seen that only a finite number of such eigenvalues may exist. Indeed, in the case
o > 0 By is a self-adjoint elliptic integro-differential operator with the principal part —cAg,
and its spectrum consists of a countable number of real eigenvalues having an accumulation
point at +oo0.

If 0 = 0, then Bor = b(z)r(x) + [; K(z,y)p(y)dS with b(z) > 0, and with a weakly
singular symmetric kernel K. The operators of this type also have at most a finite number
of negative eigenvalues.

Let H_ be a finite-dimensional subspace of Hs spanned by the eigenfunctions of Bs
corresponding to the negative eigenvalues, and Hy = Hy © H_. Since the elements of H_
are regular functions, p € W4 (G), p € Hy implies Pyp = p — P_p € W}(G), where Py are
projections on Hy. It is clear that (Bayp, p) < 0 for arbitrary non-zero p € H_ and (Bzp,p) > 0
for p € Hy (in the case o > 0 for p € WH(G) N H.).

The quadratic forms +(Bp4, p+) are equivalent to HpiH%/V%(g), if o >0, and to Hpi”%Q(g),

ifo=0.
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Arbitrary r, s € Hy (r,s € Hy N W3 (G), if 0 > 0,) satisfy the relation
(Br,s) = (BPyr,Pys) + (BP_r,P_s).

Now, we pass to the construction of the Lyapunov function. We transform the problem
(1.24)-(1.27). By (1.26),
3

v(a,t) = vl (a,8) + 3 dilp)mi(x),

i=1
where v is a vector field orthogonal to all the vectors of rigid motion n = @ + b x = and
w
di(p) = — N Py, )n;(y) - m3(y)dS.
NillL,F) /6

We introduce the functions

u(z,t) = v(z,t) — ds(p)ns(x), alz,t) = plz,t) — wds(p)la’|?
and write (1.24) in the form

w4 2w(es x u) — vV2u + Vg = —ds(pi)ns(z),

V-u(z,t) =0, ze€F, t>0,

T(u,q)N + NBp =0, (7.8)
pt = N(z) - u(z,t), z€Gg,

u(z,0) = vo(z) — u(z,0) = uo(z), z€F, px,0) =p(z), z€g.

Orthogonality conditions (1.26) remain invariant and (1.27) are converted into

/fu(x,t)dm =0, /fu(x,t) -m3(z)dz =0,

/ u(z,t) - n,(z)ds +w/ p(x,t)ns(z) -n,()dS =0, «a=1,2.
F g

(7.9)

We multiply the first equation in (7.8) by w and integrate over F. Then we integrate by
parts and make use of the boundary conditions. This leads to

1d

2 v 2 _
5@”“(%)“@(?) +(Bp,u- N) + 5 [S()lz,7 =0.

Since (Bp,u - N) = (Bp, p), we obtain the energy relation
1d 2 v 9
5a(llu(.,t)llL2m + (Bp, p)) + S lIS(@)lIZ,z) = 0. (7.10)

From the equation u = v* + 22:1 do(p)n,(z) it follows that

2
)7, = 0t 117, + D dal0)Imall?, r)
a=1
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and

2
lu (D7, + (Bpsp) = [0t (5017, ) + (Borsp) + Y dallnall,
a=1
+(BP4Qp, P+ Qp) + (BP-Qp, P-Qp),
Now, we use the relations
2e3 X 1, =2e,r3 = eqr3 — e3xq + VI3zq, o =12,

and write the first equation in (7.8) in the form

2
v+ 2w(es x v1) — vVl + V(g +w Y datans) = R, (7.11)

a=1

where R is a linear combination of n;.
We multiply (7.11) by the divergence free vector field W € W (F), possessing the fol-

. . 1/2
lowing properties: W - N|g = f(-,t) € WZ/ (G), [g fdS =0,
WDy < ellfllyarzgy IWE DL < el fllng
W, )|y < ellfilloo)
/ W .n,(z)de =0, i=1,2,3.
f

(cf. Proposition 6.1). For the moment, we leave the function f indefinite. Upon integration
by parts we arrive at

— vl-de—/vl-Wtdx+2w/(e3><vl)-de
dt Jr F F
V (7.12)
—i——/S(vl):S(W)dx—i-/ Bp+w2d Jzqxs3) fdS = 0.
2 JF
Now we multiply (7.12) by a small positive v and add to (7.10). This leads to
d
EE(t) + Ei(t) =0 (7.13)
with
B1) = (I (DI, + (B Zd? )limal?
- 2 ) Loy (F) plapl Na La(F

+(BP1Qp, PLQp) + (BP-Qp, P-Qp) +27/]Evl : de),
B = FISwH e~ [ ot Wids 2y [ (e x0) Wi

+?/ S(vt) : S(W)dz +~Jg,
f
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where Jg is the surface integral in (7.12).
Our next objective is the proof of the inequalities

E\(t) = —BE(t), E(0) <0

with an appropriate choice of f. This is done in a different way in the cases 0 > 0 and o = 0.
1. 0 > 0. We choose

f=L(p)n - N —Li(p)ny- N + PrQp— P-Qp (7.14)
and consider the surface integral Jg. By (7.2), (7.5),

2 2
Bp+w Z dor3t, = BQp + w?S™! Z Malo(p)x3za

a=1 a=1
with mq = ||173HL2 Hna||L . It follows that Jg can be written in the form
= w? Z mal7(p) + (BPyQp, PLQp) — (BP-Qp, P-Qp).

(7.15)
> c(z I2(p) + [P Qoliy gy + IP-Qally g )
a=1

We also need to estimate W;. Since

ft = L(p)ny - N — Ii(pi)ny - N + PQpy — P_Qpy

and )
L. N + Z da(P)’?

a=1

we have
12 & 2 1/2 2 1/2
lolaior < e(lo gy + S0 20) " < (IS0 + ZI o) (7.16)
a=1

and

1/2
IWills) < ellfella <c(212 )+ IS0 R ym) (7.17)
Finally, it follows from (7.14) that
L, 1/2
IW ez < ellf gy < e 20 1200 + 1P2Q0l2 ey ) (7.18)
a=1

Estimates (7.15)-(7.18) enable us to show, using the Cauchy-Schwartz inequality, that in
the case of a small ~
‘ —'y/ vt Widz +2w7/ (e3 x v1) - Wdz + H/ S(vt): S(W)dx‘
o F 2 Jr (7.19)
< 0(5 1SN0 +176)
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with 6 € (0, 1), from which it follows that

(1) = (1= 0) (S50 6, +176(1) = el P-Qoly 1 g)- (7.20)

Now we estimate E(t) from below. Since

2 1/2
| /f v Wa| < cllo* [, (D 1200) + 1PQelEy g))
a=1

it is not hard to see that for small
2
E(t) > _prQPHWQl(g)-
Together with (7.20), this inequality implies
Eq(t) = —BE(t), B> 0.
We set z(t) = —E(t) and obtain

dz(t)
dt

= Ei(t) = Bz(1),

hence
2(t) > %42(0). (7.21)

At the initial moment ¢ = 0 we have

2
1
EO) = 5 (1o (0,0 + Boors o) + > d(oo)mall, 5

a=1
+(BP1+Qpo, P+Qpo) + (BP-Qpo, P-Qpo) + 2’7/ - de‘t:o)

v
f
= (BP-Qp,P-Qp)|_ <0,

if v+ (x,0) = 0 and p(z,0) = P_Qp(x,0). Hence z(0) > 0, and (7.21) proves the exponential
growth of the solution of (1.24)-(1.27) with the initial data chosen above.
2. 0 =0. We set

f=Lp)n -N-IL({pn, N+sy+s,
where s € H are solution of the equations
Bsi = Pi(—Ag) ™ Pre, 1= PiQp. (7.22)

Instead of (7.15), we have

2
Jg = w2 Z mOAIon(:O) + (T+5BS+) - (T—a BS+)
o=t (7.23)

2
> C(Z Ié(ﬂ) + ||T+||$/V2—1/2(g) + HT*H?/VQ_Iﬂ(g))'
a=1
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The time derivatives (sy); satisfy the equations
B(s1): = Pe(~Ag) ™2 Prpy;

as a consequence,

2
I5ally1r2 gy + 15 —tllyirzg) < elotllzage) < (ot lna) + 201 T2(0))-

It follows that
fe=Ta(p)n - N — Ii(p)ny - N + 544+ 54

satisfies the same inequality as in the case o > 0:

2 1/2
1fillza@) < ellorlinag) < e 31200 + 1S 2,5)

a=1
moreover, in view of (7.23) inequality (7.19) holds also in the case o = 0. Finally,

Br(t) > ellr— 1, 1z g, > elir- I, ) = ~BE(®),
because r_ is an element of a finite-dimensional space H_. Hence (7.21) is satisfied.
We have obtained the following result.
Theorem 7.1. If (7.1) holds and if the form (Bp,p) can take negative values for some
p satisfying (1.6), then the problem (1.24) has solutions growing exponentially as t — oo.
This means that the corresponding spectral problem has eigenvalues with a positive real
part. This is essential for the proof of instability of solutions of the complete nonlinear

problem (see [18]).
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8 Auxiliary material

1. Sobolev-Slobodetskii spaces

We start with S.L.Sobolev’s definition of generalized derivatives.

Definition 8.1 Let j = (j1,...Jn), Ji > 0, be a multi-indez of the length |j| = j1 + ...jn and
let Q be a domain in R™. The function v € Ly 1o.(?) is said to be a generalized derivative of

; B‘f‘u(:v) . .
ue€ L N:v=Dlu=-""2"L_14inQ, 4
1,loc( ) axit ..ozl if

/u(w)Dj¢($)d$:(—1)j|/v(x)<p($)d$, Vo € C5°(Q).
Q Q

Definition 8.2 W.(Q) is the space of functions belonging to Lo(SY) together with all their
generalized derivatives of order < [l] equipped with the norm

lullwioy & (37 1D7ul20)) ", (8.1)

l71<t

if 1 > 0 is an integer,

def Diu(z) — DIu 1/2
ol 2 (112 g0, + > / [ = D gy 2

l7]=

if =[] + X with A € (0,1).

We introduce special notation for the principal parts of the norms (8.1), (8.2):

i 1/2
lullyirzy = (O~ ID7ul? 0)) ", (8.3)
=
if I > 0 is an integer,
Diu(z) — Diu(y) 1/2
lullyizg o Z/ | ‘x_ = ® doa y)'?, (8.4)
lil=

if 1= [I] + A with X € (0,1).

The spaces W4(Q) with integral [ are introduced and studied by S.L.Sobolev [19] and in
the case of arbitrary [ > 0 by L.N.Slobodetskii [20]. They are Hilbert spaces with the inner
product

(U, U)W%(Q) = Z (Dju, DjU)LQ(Q) .

lil<t

if [ is an integer, and

e M ol e —

lF1<[1] lil=

i1 =[]+ X \e(0,1).
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Now we consider the spaces W4(R"™) more closely.

Proposition 8.1. Every u € Wi(R™) can be approzimated by the functions from C§°(R™).

For the approximation one can use the sequence of regularizations (mollifications) of u(zx)
[19] multiplied by appropriate cut-off functions with expanding supports.

If 2 = R", then the norms (8.1), (8.2) can be expressed in terms of the Fourier transform
of u.

Definition 8.3 [21]. The space S(R™) of rapidly decreasing functions is the set of functions
u € C°(R™) such that
~ C;
|D7u(z)| < 7mm, V4,Ym > 0.
(1 + |z[?)

Definition 8.4 For arbitrary u € Ly (R"), the Fourier transform on u is defined as
(&) :/ e 8y (z)dr = F(u)

Proposition 8.2 [21]. If u € S(R"), then u € S(R™), and u is expressed in terms of U
by the inverse Fourier transform:

u(z)=F o= (2;)n /n e Eq(€)dE.

Moreover, _ ‘ _
FDu(§) = (i€)a(€), Fu(-+2) = e*a(é),
where (i) = (i&1)7" -+~ (i€n)7"; finally,

[ iw@rie = o [ i),

Definition 8.5 For [ >0, H'(R") is the closure of S(R™) in the norm

(Parserval equality).

1
[l e ey = (/Rn(l + [€*) a() )% (8.5)
Proposition 8.3. The norm (8.5) is equivalent to the norms (8.1) or (8.2), i.e

¢l gegny < lullwygny < ellull mgn)- (8.6)

where c is independent of u.
Proof. By the Parseval equality, we have in the case of integral [

1
Il = Ty L HOP X 69

171<t

which implies (8.6). So, for [ a noninteger, we only need to prove
|DIiu(z) — DIiu(y)[? ; .
[ [ P Bl iy = ¢ [ P e .7)
n Jgn |z — y| Rn
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where [ =[I] + X, A € (0,1) and |j| = [I].
It is easy to see that

— Diu(y)|”

|DJu(z /
/n /n ‘x_y’n-ﬂ/\
d A1) G .
(%) | e [ G971 1Place) e

L [ereras [ ol

’n+2/\

( ) ——dz.

dz .
dedy = | ——2 [ |DI
xdy /]R” \z[””/\/Rn‘ u(z + 2)

— Diu(x)|?dz

(8.8)

We make the change of variables 7 = Tz, where T is an orthogonal matrix such that

T¢ =1€/(1,0,---,0)7. Then z- ¢ =Tz - T¢ = 7 |€] and

’ez‘z-g _ 1‘2 B ‘ein\g\ _ 1’2
P dz= | 7|2 dr

dry,

too
— / ‘eiTl‘ﬂ _ 1‘2d7'1 / d7-2
— Rn—1 (712+T22+...

n+2\

i)
dsy,

_ /+oo ’em\g\ _ 1‘2
- o ’T1‘1+2>\
+o00 ‘eisl o 1’2
= 01\5]2/\/ —ds
IR PHIE2)
= C1Gy¢1?,
where we took 7; = |1y|si, 1 = 2,---
equality. Clearly,

dso - - - ds,
Clz/ S9 s
R (1 + 82+ -

Thanks to (8.8) and (8.9), we obtain
‘D]U — Diu(y)|? C1Cy
dzdy =
/ / , y\nm T ey

which completes the proof of the proposition.

dso - - -
dﬁ/ 52
Rnfl(l_i_sg_i_...

+o00 |ei31 o 1|2

C, —
+S2)n+2A’ 2 /OO

n+2\
2

+ s2)

,n in the third equality and s; = 7(|¢| in the fourth

7|31|1+2)\ d81.

/ €912 €2 ale) e

From Propositions 8.1 and 8.3 it follows that the spaces W4(R") and H'(R") coincide.

Proposition 8.4 The norm |||y gy is equivalent to

dz 1/2
2 k 2
(Nl ey + /R NP /R |k @) Pde)

( > (z +jz).

where k > 1, A(2)u = u(z + 2) — u(z) and

k
AF(2)u = AP A => (-1

Jj=1
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Indeed, it is easily seen that (8.10) is equivalent to

1 <112 dz iz-€ 2k |~ (12 76\ 1/2
e il + [ e [ 165 = 1P (o) P

: 7 /
= W(HUH%Q(R@ +C/R” €2 a(e)2dg) 2,

which proves the proposition.
Proposition 8.5 If u € H'(R™) and |j| < I, then Diu € H"III(R") and

D7 ul =151 (my < ellwell e nys
moreover, the following interpolation inequality holds:
-1 -
[ll s ey < € Hlull oy e + ce™ " lull Ly mn), (8.11)

where I; € (0,1) and € is an arbitrary positive (usually small) number.

Both estimates follow from algebraic inequalities [¢7|2(1 + |£]2) 11 < ¢(1 4 |¢€]?)" and
(L4 [Pl < 0L+ JgP) + e 2,

Now we start analysis of the properties of the functions from H'(R™) on hyperplanes of
lower dimensions. The following proposition is referred to as the trace theorem.

Proposition 8.6 If [ > %, then there exists a continuous restriction operator R :
HY(R™) — HI=3(R*1).

Proof. We consider the restriction to the plane z, = 0. Let u(¢’,z,) be the Fourier
transform of v € S(R™) with respect to ' = (z1, ..., z—1. Obviously,

+oo
'&(glaxn) = %/ e'nén i (5 §n)d§n7

and .
a(¢',0)] < %/:ﬁ (1+ ¢ |2+§n)é|a(£,£n)l(1+’;‘ifg)%
< 5 :o HIEP +E)1(6 &) Pan) ([ ; * - ‘g’fﬁ 53)05
< QL /Oo 1+|§’|2+§2)l|a(§,§n)|2d§n)% W/Jroo . %’

from which we obtain

Jula’, 012, = [ Al o pag

by

IN

400
112 AVAP 2 /
o[ ] IR @) g Pgut

< CH“H%{l(Rn)-

Since S(R") is dense in H'(R™), the proposition is proved. |
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There holds also the inverse trace theorem:

Proposition 8.7 There exists a continuous linear extension operator T : Hl_%(Rnfl) —
HY(R™) such that T(p)(z',0) =

Proof. We assume that ¢ € S(R"!) and we define T'(¢) = u by

a(glaxn) = (ﬁ(gl)(b(xn V 1 + ‘5,’2)3

where ® € C§°(R), ®(¢t) = 1 for |t| <ty (by @, as above, we mean the Fourier transform of u
with respect to the tangential variables ' = (z1,...,z,_1)). Hence

/ 1 ix & et / /
u(', z,) = @y /Rn_l e G(END (2 /1 + |€1]2)dE,
1

u(z’,0) = W

[ e e = ola)
Rn—1

moreover,

+oo
(e &) = /_ &G (¢ ) dr

+oo )
—5(¢) / o8 g /T P
+o0 (8.12)
IV gy
\/1+\£ VITER )
VIR VTP
It follows that
~ +OO
Nal2de = [p(€ 7 2 12)lde,
[asienyorae = [ g [ \5\2)‘ (1+ 1€ + eal?)'d
= [ ePa+ier “%/ 1+ 2)ide
Rn—l
= o212 @y 1130y
i.e,
lull ey = Noli1/2 n1) 16110 )
so the proposition is proved. |

Corollary 8.1 If [ —
R Hl(]R") Hlfi(Rm); moreover, there exists a continuous extension operator T :

= (R™) — H'(R").

Corollary 8.2 If [ — |j| — m(Diu) € H'ZU="5" (R™) and
HRm(D]U) - n—2m (]Rm) S CHUHHl(]Rn)
In particular, if 5 = (1, ,jn) With jm = - = jn = 0, then DIR,,(u) = Ry (D'u).
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Proposition 8.8. Given ¢; € Hlfifé(Rn_l),i =0,1,--- ,k < [ —1/2, there exists
u € H (R™) such that

o / / .
ax%u(l',()):soi(x), z:(),l’,,,’k’
and
k
Il ey < C D2 161l ecicg sy
=0

Proof. Without loss of generality we may assume that ¢; € S(R™). We set

u Q;(xy 1+§/2
S il (zn v/ ||)’

i—0 (VI+ P

5,’1:”:

where ¢g(t) = 1, if |t| < o, and

This implies

dJ
5 0(0) = 3. (8.13)
Repeating the calculation in (8.12), we obtain
S s &
(¢, &) = Z Oy(—=——). (8.14)
T T

Since | 2% 22 < (k+1) 328, |22, we have

|pi (&' +°° . ol
k+12/n1 1+|§/ z+1§/ |§,|2)| (1+|§|)d§n

-I—oo
2(1 4 €2 “"df/ (1 + ) dt

IN

||UH%{I(Rn)

AN
??‘
+
- 1=
\

IN

(k+1) ZH%HHI b gy [Pl ey

Now we calculate the derivative %ﬂ(f ' xn), 7 < k, and take the inverse Fourier transform

with respect to &', which gives

aa_;n“(ﬂ” o) = (zﬁinl mZ / e”’f’sbm@')%mmmg'
By (8.13), ‘
38—;%“(96 0) = (2@% /R €Tp(eN)dE = g(a).
Thus, the proposition is proved. -
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Corollary 8.3 Let m <n, k <[ —"5™. Given @, = (R™) numbered by multi-

indices o = (0,...,0,Qp_mi1y-y Onom) with |a| < k, there exists u € H'(R™) such that
Dau|xn_m+1:0,...,zn_m:0 = Pa and

lellimqey < 37 eall yicjar-ngm g
la|<k

The next proposition concerns the extension of the functions u € W4(R") in the whole
space R™ with preservation of class.

Proposition 8.9. For arbitrary u € W%(R’_T_) there exists an extension of u denoted by
u*, such that u* € WL(R"), ulry =u and

HU*HWg(Rn) < C“U”Wg(ﬂeg)-

Proof. We define u* by

Y (fL‘) - Z Aku(xla _%)7 Ty < 07 (815)

where A1, .-+, Ay, are found as a solution of the algebraic system

N |
> k]Ak_l j=0,---,m—1, m>1.
k=1

It can be easily verified by direct computation that u* has generalized derivatives in R" up
to the order [I] and _ ‘
[D?u™|| Ly ey < cllD?ullp,rn ),

if |5] < [I]. Let v = DJu with |j| = [I]. Then
U((L‘), Ty > 0;
m

v (x) - Zﬂ’kv(x/a _%)7 Tn < 07

with py satisfying the condition )", ur = 1. We need to prove that

2
v
L L et weef |, e ey (510
We have

v*(z W)l
- ]m— ynm oy = - \x— \nm o =g ey
[v*(z / / [v*(z) — v*(y)|?
d d 2 dxd
/n /n |$_y|n+2>\ yr2f |x_y|n+2/\ ray
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If z,y € R™, then

v (z) — v*(y) Z;uk(v(w’, - =o', =)
Since . y
e L W S A CAY P 2
(@, =) = (v, =" < |z — |
we obtain

v* (s (2, —Zn) — vy, —22)[?
<
// |z— |n+2A e mz“k w Jan z—y|2 F 2o — oty oW

’2
<C/n/n \x— \"m To -y W

In the case z € R}, y € R” we have

(8.18)

* * Yn
V@) =0 () = 3 (0l ) 0l ~2)
k=1
and y
(@) = (4~ ) < o — P,
hence

0 (@) — v ) 0(a, 20) = 0y, )P
// oy |n+2A dmdy<mz“’“ o Jon T — P+ (o + b T2y

‘2
<0 [, f e

Inequalities (8.17), (8.18), (8.19), imply (8.16). The proposition is proved. [

(8.19)

Now, we turn our attention to the functions given in a domain  C R"™ and on the
boundary S of 2. We assume that S is a compact sufficiently regular manifold. The space
Wi(S) is usually defined with the help of local charts and partition of unity. Let {Si} be a
covering of S and {¢} be the partition of unity subordinated to this covering. We assume
that on every S a mapping Ty : Sy — Qi C R* 1 is defined and we set up = upy. We say
that u € Wi(S) if uk (T, ' (y)) € Wi(Q), for all k, and we set

def
HUII{@ Z [k (T, HWz (%)’

In the same way the spaces W4(T') are defined on more general manifolds.
Proposition 8.10 Arbitrary u € WZl(Q) can be extended from Q into R™ in such a way
that the extended function u* belongs to € WE(R™), u*|q = u and

lw* sy < Cllullwyey. (8.20)
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The idea of the proof is the following: we cover by {Qx}1_, with Qy = Q, Q; N IQ #
0, VE > 1. Let {¢r} be the partition of unity subordinated to this covering. We assume that
Qo is a strictly interior subdomain of © and in every Q, k& > 0, the mapping y = Tyx is
defined that ”rectifies” the part S N Qy of S. We have u = Zivzo ur where up = ug,. The
function uo can be extended in the whole space R" by zero, and ugx (T} 'y) (k > 1) can be
extended in the way explained in Theorem 2.5. The norm of u* is estimated by the sum of
the norms of uy, which yields (8.20).

Using Propositions 8.6-8.8, we can prove the trace theorem:
1

Proposition 8.11 1. If | > £, u € W(Q), then uls € WQFE(S) and

Jull -3 g, < Cllulgoy (5.21)

. =2
Moreover, D7u| € Wl il °(9),if 1 — |J| > 5
2. Let | > 1. For arbitrary ¢ € W2 5(5’) there exists u € WL(Q) such that u|ls = ¢ and

lellwyey < Clell, 1y, 8.2
_1 _3 g1

Moreover, if I—k > 1, and if p € W2l 2(9), p1 € W2l 2(8),-- 0k € W2l g 2(S) are given,

then there exists u € Wi(Q) such that

M
uls = po, s = @j,
onJ

and

lellwia <CZH<P;H ; (8.23)

where n is the unit outward normal to S.

Proposition 8.12 (Sobolev imbedding) If I — § +520,p2=22uc W(Q), then
u € Ly(Q); ifl—%-i—% >0, p>2, m<nandn—m<2l, then u € L,(Sp,), where S,,, C Q
is an m-dimensional manifold.

Now we introduce the anisotropic Sobolev-Slobodetskii spaces. We restrict ourselves with

the spaces WZZ’Z/ 2(DT) of functions given in a cylindrical domain D7 = Q x (0,7T). They are
widely used in the analysis of parabolic problems. The standard definition is

W32 (Dr) = Lo(0,T; W() N1 Wy/*(0,T; L (52)),

and the norm in ng,l/ 2(DT) is defined by

T
Il g2 ) = / 821 gt + / S IDJul 12, 0t
(D) 0 0
0<5<l/2
if [/2 is an integral number, and

T
sy = [ IOt + [ S DI Oy

0 o<i<i/2)
Todh (T e 1/2
i /0 L /h 1Dt = h) = DM )|, o dt,
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ifl1/2=11/2]+p, 0<p <L
In the space WQU/ 2(R"“) one can introduce an equivalent norm expressed in terms of the
Fourier transform of the elements of this space,

u(&, &) = / / e~ Tty (¢ t)dxdt = Fu.

The inverse transformation is given by

1 e ; . 1~
M%ﬂZQEEj/ /f%“@%@&MM®EF1w
We define H"//2(R"*1) as the closure of S(R"*!) in the norm

_ 1/2
lullnareosny = ([ (+16P + lol) e, 0 Pgo.)

Rn+1

The following propositions are proved essentially in the same way as in the isotropic case.

Proposition 8.13 The norms [lul|,;1./2 and |[ul gri/2gnsry are equivalent.
2

(Rn+1)
Proposition 8.14 If j € N", k € N and | — |j| — 2k > 0, then for arbitrary u €
I—|jl—2k,4 - Ul

W2 (R4 DIDEu € W, (R"*+1) and
i Mk
IDEDE a1 gy < Ol g sy
moreover,

o0

2
|uli/grmnt < C/

— 00

(1-+ 16 dso [ (1+1€R)dE < elllBnnncrnyaunrsy
Proposition 8.15 There exist continuous restriction operators

! 1
R, : WH @R o W, 22 IR, if 1> 1/2,

and
Ri: Wy (R — W R"), if 1> 1,
where Ry, (u) = ulg,—0 and Ri(u) = uli—o.
Proof. Let u(&,t) be the Fourier transform of u with respect to the space variables .
We estimate

+00
mmzi/ (€, o) déo

2 J_

as in Proposition 8.6:

N 2 1 e 2 I~ 2 oo d€o
UEOP < o [ O+l e ol [ e
1 +oo ) - 5 1 +oo dt
< (2w)2b/l” (1+ €2 + &) a6, &) dfO(l-%|sF>llb/ln T

s OlByr-soy = [ (1+1ERY € 0P < Ol
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Thus, R; : Wl Y 2(R"“) — WL H(R™) is continuous. Similarly, we can prove that R,

llll

W2l,l/2(Rn+1) — W, ?’? *(R") is continuous. u

Proposition 8.16 Given @; € H=I=V22=2=/4R™)  j = 0,..,k < [ — 1/2, there
exists u € HYY2(R") such that

o .
—u(z,1) =pi(a,t), <k,
Tn In=
and
k1
ull gras2@nsry < € N9l i-i-1/202-3r2-1/4 gny -
7=0

Proposition 8.17 Given ¢; € HSI7Y R, § = 0,...,k < I — 1, there exists v €
HUZ(RHYY such that

0@ d)| =@, i<k,

and

k1
[oll gy < €3 Nsllmssam

j=0

The functions u(z,t) and v(z,t) can be defined by

k
T/ 14 €2 + &)
a(¢ zn, &) = Z:: 550 ( i) (8.24)

j(1L+ €7 + %))
Zcbjf ) 1+5'2+|5 v (8:25)

where ®;(z,) and ¥;(t) are functions with compact supports satisfying the conditions

o
# =0y, =0,k
.’,En Tn=
AU (t .
dt]( )‘t:() = 51']" 1,] = 0, ...,k.

By @ we mean a partial Fourier transform of u (with respect to z/,¢ in (8.24) and with respect
to z in (8.25)).

The proof of Propositions 8.13, 8.14, 8.16, 8.17 is left to the reader.

Remark. If, instead of the functions ¢;(x), we have solenoidal vector fields ¢;(z) in
(8.25), then this formula defines a vector field v(z,t), that is also solenoidal.

As in the case of isotropic spaces, the results presented above enable one to prove the trace
and extension theorems for the functions given in a cylinder D7. Moreover, by Proposition
8.14,

[elijo,0p < ellullyenaenrz
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The proofs are omitted; we restrict ourselves with the following extension theorem that is
fundamental for the analysis of the problem (3.1):
Proposition 8.18. Let S be a closed regular surface. For arbitrary py € WQHQ(S) and

p1L € WZZH/Z(S') there exists p(z,t), given on the cylindrical manifold ¥ = S x (0,T) and
such that

p(,0) = po(z), pi(x,0) = pi(z)

and
Pllyy5r20 5,y + Mol yyiearniosars s, s+ [oliy25/2, 50

< c(llpollirags) + lorlins) )

Proof. By Proposition 8.11, we can construct r; € WZHE)/Z(ZT) such that ri(z,0) =
po(x), ri¢(x,0) = 0 and
Il ez g5,y < ellpollyieas)-

By Proposition 8.17, there exists ry € W27

p1(z) and

/2+l,7/4+l/2(2T) such that 712(1"0) = 0, T‘Qt(J?,O) =

lrallggerrz iz sy < ellprllypiee -

It is easily verified that p = r1 + ry possesses all the necessary properties. The proposition is
proved.

2. Auxiliary inequalities and estimates for solutions of the Dirichlet and Neu-
mann problems.

We recall classical results on the solvability of the Dirichlet and Neumann problems.
Proposition 8.19. Let Q be a bounded domain in R™ with a reqular boundary S. If
fewl), pc WQHS/Q(S), [ >0, then the Dirichlet problem

Vu(z) = f(z), z€Q, ulz)=¢x), z€s (8.26)

has a unique solution u € Wit(Q), and
lullzsaqay < e(Iflwagoy + lellyrrarzg, )-
For arbitrary f € W(Q) and + € W2l+1/2(5), satisfying the compatibility conditions

/Qf(x)dx:/sz/)(m)dS

the Neumann problem

has a unique, up to the constant, solution v € WQH'Q(Q), and
I9llyzesy < e(I1f lwgcay + lbllyrnrzgg, )-
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The proof (of a more general result) can be found in [22]. As for the regularity of S, the
condition S € C"*2, I, > [ is sufficient (for integral I, one can require I; > 1).
For the model problems in the half-space R} = {z,, > 0}
Viu(z) = f(z), = €RY, u(r,0)=p(),

Vhn(a) = [(a), weRL A=)

(with f, ¢, 9 sufficiently rapidly decaying at infinity) the estimates involving only principal
parts of the norms hold:

lullyen gy < (1 Iiggany + I ltsggnsy )

Il ny < (1 gy + 1910172 g )-
Proposition 8.20. For the solution of the Dirichlet problem (8.26) with f =V - F(x)
the estimate
ullyzes oy < (I Flwacay + Ielyires))
holds with | > 0.
In Sec. 3 we have used the Weyl orthogonal decomposition of arbitrary v € Lo(2):

v(z) = w(z) + Vu(z), =z e,

where w is a solenoidal vector field and u is a function from W, () vanishing on S. It satisfies
the relations (8.26) with f = V- w and ¢ = 0 (in general, in a weak sense). If v € W(Q),
then, by Proposition 8.20,

el i1 + @y < ellvllwye-

Our next objective is proof of the Korn inequality.
Proposition 8.21. Arbitrary vector field u € W(2), Q@ C R3, such that

/ u(z)dz =0, / u(z) -n(x)de =0, =123, (8.27)
Q Q

satisfies the inequality
lullwg o) < cllS(W)llLa@), (8.28)

where
8ui au]' )
+ .
Or;  0x;/ij=123
The proof of (8.28) relies on some auxiliary propositions.
Proposition 8.22. [23] Let f € Ly(Q) satisfy the condition [, f(x)dz = 0. There exists
a vector field v € W}(Q) such that

S(u) = Vu + (Vu)' = (

Vev(z) = f(z), v(z)ls=0 (8.29)

and
[vllwi) < el fllra@)- (8.30)
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The relation between f and v is linear.
Proof. We shall give the proof for the case  C R? and S € C?. Then v may be taken
in the form

v(z) = V®(z) + rotA(z),

where @ is a solution of the Neumann problem

0
Vi) = f(), weQ S| =0
By Proposition 8.19,
IVellwi) < cllfllra0)- (8.31)

The vector field rotA should satisfy the boundary condition
0P

’I“OtA|S =-Vo+4+n—| = —VS(I)|5,
onls
then v|g = V® + rotAlg = 0.
We assume that
A=0 0A _ Vo x (8.32)
=0, o-= n .

on S. In this case

rotAlsg =n x (Z_A =-nx(Vdxn)=-Vd+n(n -VP)=-Vsd.
n

We make use of the inverse trace theorem and define A as the element of W2(Q) satisfying
the boundary conditions (8.32) and the inequality

1Allwz @) < cllVs®lly g < cl®llwz) < cllflizao)-

Together with (8.31), this estimate implies (8.30). The proposition is proved. |

Proposition 8.23. Let p(x) be the function in W (Q) satisfying the condition Jop(z)ds =
0 and the equation
Vp(z) =V - F(x), (8.33)

3  O0F;
where F = (Fij)i j—123 and V- F = (Zi:l W:)jzlg,g' Then

P/l 0) < ellF . 0)- (8.34)

Proof. We multiply (8.33) by the vector field v satisfying (8.29) and (8.30) with f = p,
and integrate over 2. This leads to

/QPZ(x)dﬂ: = /QF(QJ) :Vo(z)de < [|F Ly Vol < [IFlly@llpl.w)

which proves (8.34). [

Proof of the Korn inequality.
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We present the proof given in [24]. Without restriction of generality we may assume that
/ rider =0, i=1,2,3. (8.35)
Q
At first we prove (8.28) for arbitrary v € W2(Q) satisfying the conditions
/ v(z)dz =0, / rotv(z)dzr = 0. (8.36)
Q Q
We start with the estimate of ||Vv||1,q). Since
1 7y, 1 T
Vo = g(Vv +(Vo)') + E(Vv — (Vv)"),
it suffices to estimate ||rotv||r,q). We make use of the relations

0 (81}2 81)1) 0 (81}2 81}1> ) g Ovy _ 0S12  0Sn

Oz \Oz,  Omy)  Omy \Omy | Ozy) 0wy dm  Oxy 0wy
i(% _ %) _95n 95
8:52 8931 a’L‘Q N 8:51 a’L‘Q ’
i(% _ %) _ 95 95
3273 81‘1 81‘2 N 3271 81‘2 '
In view of Proposition 8.23, these relations imply
81)2 8’01

Ha—m - 8—x2HL2(Q) < c|S() L)

In the same way other components of rotv are estimated and we obtain

VL, < cllS()] L, @) (8.37)

The Lo-norm of v can be estimated by the Poincaré inequality, so as a result we arrive at
(8.28) for the vector field v.
Now we take arbitrary u satisfying (8.27) and set

3
v(z) = u(z) = ) cpmy(z) (8.38)
k=1

with
1

cp, = ——ey - | rotu(x)dx.
s, roruto

Then rotv = rotu — 2 Zzzl crer and, as a consequence, fQ rotv(z)dxz = 0. Moreover, in view
of (8.35), [ v(z)dz =0, so v satisfies (8.27). On the other hand, we can express ¢ in terms
of v. Since

| wa) - mtayz =0,
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we have ,
[ 0@ miads =3 Suc
Q k=1

where S, = fQ n;(z) - M (z)dz. The matrix S = (Sjk)i k=123 is non-degenerate, hence

3

ck = Z Skm/ v(x) - n,,(z)dz, (8.39)

m=1 Q

where S¥™ are elements of S~'. By (8.38) and (8.39),

3
lullwi@) < C(HU||W21(Q) + ICkI) < c||S() |z, (0) = cllS(W)llLy(0),
k=1

g.e.d. |

Corollary. Arbitrary vector field v € W} (Q) satisfies the inequality

vy < (1@ sao) + | [ vle)da] +i\ JRCRACIE)
i=1

< (IS0 + [0l1a0) )

(8.40)

Indeed, we can represent v in the form

3 3

v=uv"+ Zciei + Zc;ni.
i=1 i=1
The constants ¢;, ¢, are easily found from the conditions

/vl-ejdx:(), /vl-njdm:(), 73=1,2,3;
Q Q

they are estimated by

3
c( /Qv(m)dm‘—i—zzzl‘/ﬂv(x)nl(m)dm‘)

Since
o s ) < ellS@ )l a@) = cllS@) Ly,

we obtain (8.40).

3. Calculation of variations of some functionals.

We have often used the transformation z = e,(y) defined in (1.15). We assume that this
transformation establishes one-to-one correspondence between F and the domain = Q(p).
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Concerning N* and p* we assume that these functions satisfy the conditions formulated in
Sec.5 (see (5.12)), in particular, that |N*| = 1 in the neighborhood of G and
op*
ON

0N
¢ = ON

(8.41)

g =
We are going to compute the first and the second variations of some functions and functionals

depending on p, when p = 0. The standard definition is

2 _ d2f(3,0)
s:O’ 5 f(p) - d82

s:O.

It follows that

1 s 1 2 s
1o =10 = [ Pas—sp)+ [a-9TEas

ds
1 2f(s 2f(s
= 0f(p) + %62f(p) +/0 (1- S)(d gzp) - g?p)

s:0>d8’

which gives the representation of the difference f(p) — f(0) in the form of the sum of linear,
quadratic terms with respect to p and of a remainder. In this formula f may be a function
or a functional depending also on the derivatives of p.

As usual, we mean by L(y, p) the Jacobi matrix of the transformation (1.15); it has the

elements 5
lij = i + a—ysz'* (y)p*(y)-

We set L(y,p) = detL, L = LL~'. We denote by % the elements of £~ and by Eij the
elements of £. We shall often deal with the function

Aly,p) = N(y) - L (y, p) N (y),

defined for y € G. We follow the arguments in [25].
Proposition 8.24. For arbitrary continuously differentiable function f(x) given in F
and in a certain neighborhood of F the relation

1
/Q f(@)da /f f(y)dy = /0 ds /g ()M, $p) f (esp(4))dS (8.42)

holds.
Proof. It is clear that

[tz = [ seiay = [ sty [ i

= /01ds/F%(f(esp(y))L(y,SP))dy

By the formula for the derivative of the determinant, we have

_SL(yasp) - Z - L]Z(ya 310)7 (843)



hence

/f(x)dm— f(y)dy
Q

F

1
_ /0 ds | (Vf(esp() - N*p*Lly,5p) + Flesp() Y- Z5E2

f

Now we integrate by parts in the second term and use the identity
3
0 ~
Z: 3—L i(y,sp) =0,

which leads to (8.42). The proposition is proved. |
Our next objective is to calculate A(y, p). It is a second degree polynomial with respect
to p and the first derivatives of p and A(y,0) = 1. Hence
1
Ay, p) =1+ 0A(y, p) + 50" A(y, p)-

The calculation of §A and §2A reduces to the calculation of the variations of £. First we
compute dsl” (y, sp), using the relation £~'£ = I. Since

d 0
Elkm(y,é’p) = 8y—me (y)p*,

we have

d i _ zkaNklO m]
17 (y,5p) = k%zlz 8yml (8.44)

Taking (8.43) into account, we obtain

3

d ~ _ zkaNkp z]aNl:p*A
=Lyl s0) = Y ( T v Lmk>. (8.45)
k,m=1
It follows that
3
d ik ON ,0 j aNkIO
—Aosp)= Y (—l Ny £ Lo N + + I NN, 5y Lm ) (8.46)
i,5,k,m=
In view of (8.41),
3
N
SA = aa -
= Dy

When we differentiate (8.46) with respect to s once more and take account of (8.44), (8.45),
we obtain

aN 3. ONyp ON,
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Thus,
A(y,p) =1 - pH(y) + p*K(y), (8.47)

and (8.42) takes the form
[ stz = [ seay - / ds / (1= spHy) + 522K W) Fesp(y))dS.  (8.48)

Setting f = 1 and f = z; in this formula, we justify (1.17). In addition, (8.48) implies

i [ o= /g p)ds. o [ oo = /g o)y dS, (8.49)
52/ dz = —/p2H(y)dS, 52/ |$’|2d$:2/p2y'~N’dS—/|y’|2p2HdS. (8.50)
Q g Q g g

Now, we pass to the calculation of variations of |I'|, where I' is the boundary of Q.

Proposition 8.25. Let z = T'(y) be a continuously differentiable invertible mapping of
a bounded domain Q C R™ with the boundary S on the domain Q' C R™ with 0 = S’, and
let L be the Jacobi matriz of the transformation T, L = det L, L=LL'= (ka)k,mzl,...,n-
Arbitrary function f(y) given in Q satisfies the relation

/ F@)ETn(y)|ds, = / ST (@))dS, (8.51)
S S’

where n is the exterior normal to S.
Proof Let w’(z) be a vector field given in Q' such that f(T'(z)) = w’ - n’ where n/ is
the exterior normal to S’; it is connected with n by

/ L ”(y)
(T(y)) ZTn(y)|

We set w(y) = w'(T(y)) and obtain

f(T'2)dS, = / V- w'dz = Z / Owi Oy . Ldy= Y / Wi Lk dS)
5 % kym=1"5

OYm 83719

= [ wl) v (T @)IE nlas —/f (4)1dS,.

The proposition is proved. n

The formula (8.51) justifies the appearance of the factor |Ang||LTN|~! in (5.17). In
addition, it implies
1= [ 1E"N s

Making use of (8.45), it is possible to prove that

30| = — / pHdS, (8.52)
g
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52| = /g(yvgpy2 + 2Kp%)dS. (8.53)

1 2
d“Hg
so+/0 (1—38)—5 752 ®ds,

where Hy is the doubled mean curvature of the surface I'* = {w = e,,(y), y € G}. It may
defined by Hs = —Vrs - n®, where Vrs is the surface gradient on I'* and n® is the exterior
normal to I'*. It is connected with IN by

In Sec.5 we have used the formula

dH,
ds

Hep(y)) —H(y) =

L7 (y,5p)N (y)
L

n’(esp(y)) = T(y,sp)N (y)|

which shows that n? is defined in a certain neighborhood of G. Since n? - aiyjns = 0, we have
3 o~
. Lyii(y, sp)N,
Hs:_v,nsz_ Z lmz(y’sp) 0 k (,?i Sp) k(y)
k,m=1 aym |‘CTN(y)|

and, as a consequence,

00 1o~ - 1
Z 5lmz ;8_%<;6L“Nk+Ni67\ETN(y)\>'

m,i=1

With the help of (8.44), (8.45) and of the formulas

> ) (Z

m=1 m=1

2. 9N, (y) ON
) 3 (y) ONk(y)

8ym oy~ OYym

m,k=1
one can show that 6 = Agp + (H? — 2K)p; hence

3

1 & - 0 Lui(y, sp)Ni(y)
H—H=Agp+ (H?-2K —/ 1—s 1™ (y, s L ds. (8.54
G+ o= | Agg D Mg - E s (854

k,m,i=1

Now we pass to the calculation of variations of the Newtonian potential U(x) and of the

integral J(p) = [, U(
Proposﬂzlon 8. 26 The following formulas hold:
U (y) / p(z,t)dS;
oU = ——p(y,t) + | ———, 8.55
o P 0+ [ P (8.55)
dJ
57 = =2 / Uy (8.56)

ON

/ / dS ds,
+2
-zl
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PI() = —2 / Py MU (y)dS +2 / 2w) P as
g (8.57)




Proof. We have

_ L(y, sp)dy
Ulewti) = |
hence,
i (e (9N* Gk Z,8 dz
ds Sp / Z B P i ,0)| Sp(z) - 6Sp(y)|

z]l

- [ sl esp(y)‘esp(“") (N ()0 (5. 1) — N*(2)p* (2, 1))

’esp(z) - esp(y) 3

The integration by parts leads to

i e _ 4.8 esp(y)_esp(z) . N* "
FUCuw) = = [ Hean) o = N () 01
dsS

(8.58)
+/g,0(z,t)A(z,sp) o) esp(y)|.

Setting s = 0, we obtain (8.55).
Now we calculate

S | B Lt s ennlw)y +

ij=1 0yj

A(z,sp)p(2)dS, KON E (N
x(/g oo e T (y)p* (y)

Integrating by parts in the first term we get

L(Z S,O) esﬂ(z) — es'o(y)’?)dz).

dJaE:’P) _9 /g A(2, 5p)p(2)U (ep(2))dS, (8.59)

which implies (8.56).

When we differentiate this formula with respect to s and take (8.58) into account, we
obtain (8.57). The proposition is proved.

Now we can compute the variations of R and of M. From (8.49), (8.56), (8.52), (1.3) it
follows that dR(p) = 0. The formulas (8.53), (8.50), (8.57), (1.3) imply (1.4). Finally, the
equation 0M = —Byp used in Sec. 5 follows from (8.54), (8.55).
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