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ABSTRACT:
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1 Introduction

This paper is a part of the project suggested by A. M. Vershik and the author
and aimed to combine the known results on the representation theory of finite
and infinite symmetric groups and a circle of results related to the quantum
inverse scattering method and Bethe ansatz.

In this first part, we consider the simplest spectral properties of a distin-
guished operator in the group algebra of the symmetric group, which we call
the periodic Coxeter Laplacian. Namely, we study this operator in the two-
row representations of symmetric groups and in the “ferromagnetic” asymp-
totic mode. In subsequent papers, we will consider the analogous problems
for the “antiferromagnetic mode” and for other representations. The im-
portance of this operator is due to its close relation to one of the classical
integrable models of statistical physics, namely, the XXX Heisenberg model
of spins. On the other hand, this is the ordinary Laplace operator for the
Cayley graph of the symmetric group corresponding to the periodic Coxeter
system of generators, i.e, the classical Coxeter generators with one additional
transposition (N, 1) imposed by the periodic conditions.

The importance of studying the spectral properties of the periodic Cox-
eter Laplacian in various representations of the symmetric group, though
obvious enough, became clear quite recently. A significant role in our under-
standing of this connection was played by discussions with P. P. Kulish and
V. O. Tarasov, whom we would like to thank. The author is also grateful to
A. M. Vershik for numerous fruitful discussions of various problems related
to this project.

The paper is organized as follows. In Sec. 2, we recall the basic facts
related to the XXX Heisenberg model and Bethe ansatz, and introduce our
main object of study, the periodic Coxeter Laplacian. Section 3 is devoted
to the description of the quantum inverse scattering method for the model
under consideration and the related subalgebra of the group algebra of the
symmetric group. In Sec. 4, we present some results concerning the spectra
of the periodic Coxeter Laplacian in finite cases. Finally, Sec. 5, which is the
main section of the paper, deals with asymptotic results on the spectrum of
the periodic Coxeter Laplacian in the “ferromagnetic” mode.



2 Bethe Ansatz and the periodic Coxeter Lapla-
cian

The Hamiltonian of the XXX Heisenberg model of spins S,, = (0%, 0%, 0%)
with quantum number s = 1/2 on a one-dimensional lattice of N sites with

periodic boundary conditions Sy,; = S; is given by

N N
1 _ _
H= _JZSn “Sp1 = —JZ |:§(O-1—1|—O-n+1 +0,0001) T 0h0041 |
n=1 n=1

where 0F = 0% + io¥ are spin flip operators and J is a parameter (J > 0

corresponding to the ferromagnetic case, and J < 0 to the antiferromagnetic
one). The operator H acts in the Hilbert space H = (C?)®" of dimension 2V
spanned by the orthogonal basis vectors |e1...ex), where &, =] represents
an up spin and £, =] represents a down spin at site n. The spin commutation
relations are

[02,05] = 0500w, [07,0,] = 2028w

The Bethe ansatz is a method for calculating the eigenvalues and eigen-
functions of H.

Observe that the symmetric group Sy acts in the space H by permuting
the factors in the tensor product (C?)®N. Denote this representation of &y
by 7. By the Schur-Weyl duality, we have

T = @W”@p", (1)

tfnes
where 7# is the irreducible representation of Gy corresponding to a Young
diagram g of size |u| = N and length (number of rows) ¢(x) < 2, and p# is
the irreducible representation of GL(2, C) corresponding to .
Now let sj be the transposition (k, k + 1) (hereafter we always adopt the
convention that N +1 = 1), and put

Ly =Ne—(s1+ ...+ sn),

where e is the identity permutation. Note that the sum contains the N — 1
Coxeter transpositions s, k = 1,..., N — 1, and the additional transposition
sy = (N, 1) imposed by the periodic boundary conditions. We will call Ly
the periodic Coxeter Laplacian for the symmetric group Sy.
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Now fix N and denote by L the operator corresponding to Ly in the
representation 7m: L = 7(Ly). It is easy to check that

H= %(QL— N).

That is, the operators H and L have the same eigenfunctions, and the eigen-
values E; of H are related to the eigenvalues \; of L by

J
Ej = 2(2)‘1 - N)a

or, denoting by Ey = —JN/4 the smallest eigenvalue (the ground energy of
the ferromagnetic chain),

E; —Ey = g A
Thus the original problem reduces to finding the eigenvalues and eigenfunc-
tions of the periodic Coxeter Laplacian in the representation .

The very important property of the operators H and L is that they com-
mute with the periodic shift 7" that sends the kth factor in the tensor product
H = (C?)®N to the (k + 1)th one, k = 1,2,..., N (as usual, this means, in
particular, that the Nth factor goes to the first one):

HT =TH, HL=LH.

Obviously, the eigenvalues of the operator T' are the N roots of unity of
degree N:
oy, = >IN k=0,1,...,N —1.

Let Sz = S°N 57 be the total spin operator. We have [H,S%] = 0, so
that the total spin is conserved and we decompose the whole space H into
the sum of subspaces according to the quantum number S% = N/2 —r, where
r is the number of down spins. In the decomposition (1), the parameter r
corresponds to the length of the second row of the diagram .

The case r = 0 corresponds to the identity representation 7 with p =

(N), so that the only eigenvalue of L is 0 and the corresponding eigenvalue
of His Ey=—JN/4.



3 Quantum inverse scattering method

The quantum inverse scattering method for the XXX Heisenberg model pro-
ceeds as follows (see, e.g., [8]).
The local transition matrix is the 2 x 2 operator-valued matrix of the

form . .
_ (MAzon 30m
La(N) = ( %a: MM — %afl ’
where )\ is a spectral parameter. It satisfies the basic relation

R =) (Ln(A) @ Ln(p) = (Ln(p) @ La(X)) R(A = p) (2)

with the R-matrix

10 0 0

0 & 2 0
R()\) — Aj\»z )\g»z

0 %5 =5 0

0 0 0 1

The monodromy matrix is defined as

It satisfies the same relation (2). Set

Av() By(V)
TN(A):(CN(A) DN(A))’

where the matrix elements A,(\), By(A), Cn(A), Dy(A) of the monodromy
matrix act in the quantum space H.
Now set

Tn(A) = Ax(N) + Dy ().
Our goal in this section is to study the algebra ¥ generated by the operators

{Tn(N)}-
First of all, as follows from the quantum inverse scattering method, all
these operators commute:

T (M), T ()] = 0.

Further, each of them also commutes with the action of GL(2, C). Hence, by
the Schur-Weyl duality, it is an element of the group algebra of the symmetric
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group G y. It is more convenient to introduce the parameter y = —i(A —1i/2)
and consider the operators

T () = (=)"T(in+i/2). (3)

Lemma 1. The explicit form of the operators Tn(u) is as follows:

N
Ty(p) = 1w Tws, (4)
k=0
where
Tny = > (iig. . in_g) fork=0,.. ,N—1 (5)
1<i1 <i2<... <IN <N
and
TN,N = 2e.
Proof. Combinatorial argument. O
In particular,
Tno=Tn(0)=(1 2 ... N)=T
is the periodic shift,
Tvy=(1 2 ... N-1)+(1 2 ... N-2 N)+...+(2 3 ... N)
is the sum of N cycles of length N —1 obtained by deleting one element from
the cycle T' = (1 2 ... N). Note that
TN71:T'(81+...+SN), (6)

where s1+...+sy = Ne— Ly is the (periodic) sum of Coxeter transpositions.

Also, we have that
Tyn—z=» (if)
i<j

is the sum of all transpositions in Sy and

TN’Nfl = Ne.



Finally, the periodic Coxeter Laplacian Ly is essentially the logarithmic
derivative of T (u) at pn = 0:

d
d_ulOgTN('u) =Ty, -T]ﬁ) =T -(s1+...+sy5)- T ' =5 +...4 sy,
n=0

so that

(7)

Thus the algebra Ty is the commutative subalgebra of C[Sy]| generated
by the elements e, Tno,Tn, ..., TNy Nn—2. Alternatively, we can consider the
generators

d
Ly = Ne— @IOgTN(M)

pu=0

RN,k:TN,k'T];}]: Z Si1e - Sips kZO,l,...,N—l,
i1<...<ip
where s; = (4,7 + 1) is a Coxeter generator (with sy = (N,1)) and the
inequalities are understood with respect to the cyclic order (which does not
lead to any ambiguity, since nonneighbor Coxeter generators commute).

The algebra Ty was also independently studied in [7].

Now let pyi1n be the canonical projection from the group algebra of
Sy 1 to the group algebra of Gy; recall that for ¢ € Sy the projection
pn+1,89 is obtained by deleting the element N + 1 from the corresponding
cycle of g. The following lemma can be proved directly using the explicit
form of the operators T (j).

Lemma 2. We have

pnp NI () = (L+ )T (i) — pVe. (8)

In other words, if we introduce the operators Ty (1) = T (p) — pNe (taking
T, = € instead of 2e), then

pN+1,NTN+1(,U) = (1+ M)TN(M)-

4 Exact solutions

4.1 The caser=1

Here the problem is to find the eigenvalues of the peridodic Coxeter Laplacian
in the irreducible representation 7# of &y for the Young diagram pu = (N —

8



1,1). It is more convenient to turn to the representation o' of &y induced
from the identity representation of the Young subgroup &; x & y_1, which,
as is well known, is the sum of 7# and the identity representation.

The representation o' is the natural representation of Gy in CV, which
we realize as the space of functions f : {1,...,N} — C, so that the matrix
of L has the form

-2 1 0 0 0 0 1
1 -2 1 0 0 0 0

A AW [0 1 21 000 o)
0 0 0 0 ... 1 -2 1
1 0 0 0 ... 0 1 -2

(an almost Jacobi matrix, with two extra 1’s at the north-east and south-west
corners). The eigenvalues of L can be found in several ways.

The first method is to express the characteristic polynomial Py(z) of the
matrix —A+21 through Chebyshev polynomials Uy of the second kind, using
the well-known formula

2z 1 0 0 ... 0 0 O
1 22 1 0 0 0 O
Un(z) = det o0t 2w b 000 (N x N matrix).
0o 0 0 0 1 2z 1
0 0 0 0 0 1 2]

In this way, we obtain
Py(—x) = Un(2/2) = Un-a(2/2) = 2(=1)" = 2(Tw(2/2) - (-1)"),

where Ty is a Chebyshev polynomial of the first kind, i.e., using the fact
that Ty is odd for odd N and even for even N,

Py(z) = (-1)" - 2(Tn(z/2) — 1).

The roots of Py are thus 2cos(2rk/N), k = 0,1,...,N — 1, and the eigen-
values of L are 2(1 — cos(27k/N)), k =0,1,...,N — 1.

But the easiest way is to use the invariance of L under the shift 7', which
means that CV decomposes into the eigenspaces H, indexed by the eigenval-
ues o of T. If v € H, is an eigenvector from H,, then, denoting f(1) = =z,
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k—1

we have f(k) = o 'z, and the equation for the eigenvalues of L takes the

form

A=2—a—a!

whence

Ak =2(1 —cos(27k/N)), k=0,1,..,N—1. (10)

In particular, we see that all eigenvalues lie in the interval [0, 4] for every
N, and it is easy to show by standard arguments that the limiting distribution
of the eigenvalues on this interval has the density

1

D=L, L
p() = — o

, (11)

which is just a linear transformation of the so-called Chebyshev density % .

ﬁ, x € [—1,1], which is the limiting density of the roots of a large class

of orthogonal polynomials including the Chebyshev ones.

4.2 The case r =2

As in the previous section, we will consider the representation o? of Gy
induced from the identity representation of the Young subgroup G, x G _o,
which is the sum of 7(N=22) 7(N=LD "and the identity representation 1:

92 — 71_(N72,2) 4 7,‘.(Nfl,l) 1= 71_(N72,2) 4 Ql- (12)

This representation is realized in the linear space H(? with basis consisting
of all (unordered) pairs (kl) of distinct numbers with £, =1,..., N, k # [.
Again this space decomposes into the sum of eigenspaces of T

and we will find the eigenvalues of L in each H,.
First assume for simplicity that N = 2m + 1 is odd, m > 2. Under the
action of the shift 7', the basis of H(? splits into m orbits of length N:

Q- 12 — 23 — —- N-1,N — 1N,
Q, : 13 — 24 — — L,N—-1 — 2N,
Qn: 1m+1 — 22m+2 — ... - m—1,N—1 — mN,
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and for each eigenfunction f € H,, the value of f at the jth element of €2
is equal to a/~1f(1,k+1), k =1,...,m, j = 1,...,N. Writing down the
equations for an eigenvalue A of L, we obtain

Ay = 2z — (1+ a_l)xg,

Moy = —(1+a)vpy +4r, — (L+a Dap, kE=2,...,m—1,

A, = —(14+a)zpmg+@d—a™ —a ™)z,

Thus the eigenvalues of L in H, are the eigenvalues of the m x m three-
diagonal matrix

2 a 0 0 O 0 0 0

b 4 a 0 0 0 0 0

0 b 4 0 0 0 0
Am:Am(CY): )

o 0 0 0 0 ... b 4 a

(00 0 0 0 ... 0 b ¢

where a = —(1+a™1), b=—(1+a),
c=4—a™—a ™ =4-2cos(2rkm/N) = 4—2 cos(2rk(N—1)/(2N)) = 4—2(—1)* cos(rk /N).

Denote by P,,(z) the characteristic polynomial of the matrix A,,. By the
standard methods we can deduce a recurrence relation for Py, (z):

P, (z) = (4 — 2)Pp_1(x) — abPy,_o(x), (13)
where
ab= (1+a ") (1+a)=2(1+ cos(2rk/N)) = 4cos*(7k/N).

Originally, the polynomials P, are defined for m > 2, but we can define them
for m = 0, 1 so as to satisfy the recurrence relation (13). Namely,

Po(z) = 1+2(Ca;4),

P(x) = ¢—2—u=.

For m = 2,3, we have

By(r) = (z—2)(x—c)—ab,
Py(x) = —(z—=2)(z —4)(x —c)+ab(2x — 2 — ¢).

11



It is not difficult to compute, using the recurrence relation (13), the gen-
erating function for P, (x):

1+T—t<—¥x+6—c+%>

Py(z)t* =
g () 1—(4—x)t+t%ab

This allows us to write P, (x) in terms of Chebyshev polynomials of the
second kind:

P, (4 — 2z+/ab) c—6 2(4—c¢)

(ab) = Up(z) + T Upn—1(z) + = Up—a(x)
Since
c—6 _ 1+ (=1)*cos(nk/N) 2(4—c) _ (—1)k
Vab cos(rk/N) ’ ab cos(rk/N)’
we obtain
Pn(4(1 —cosf -z)) k1 1 k+1
@cosf)" = Up(2)+(=1)"""U,,- (x)—@ (Un—1(2) + (=1 Up_a(2))
(14)
where § = 7k /N. Thus
P (4(1 —cosf-x)) {Vm(x) — L Vioi(z), ks even, (15)
(2 cos )™ Wi (x) — ﬁWm_l(x), k is odd,

where Vi (z) and Wj(z) are Chebyshev polynomials of the third and fourth
kind, respectively (see [6]).

Remark. For an odd k, setting x = cost and using the trigonometric
definition of Chebyshev polynomials, we obtain

cos - sin((2m + 1)t/2) — sin((2m — 1)t/2)

=0. 16
sin(t/2) (16)
It is not difficult to transform this equation into
t t
8mD) _ a2(0/9). (17)

12



In a similar way, for an even k we obtain

cos @ - cos((2m + 1)t/2) — cos((2m — 1)t/2)
cos(t/2)

=0, (18)

or

tg(mt) tg(t/2) = — tg2(6/2). (19)

Thus the eigenvalues of the periodic Coxeter Laplacian L in the sector H,
corresponding to an eigenvalue av = e2™*/N of the shift 7" are the solutions
of (17) for even k and the solutions of (19) for odd k. Obviously, the solutions
for £ and —k coincide, so it suffices to consider £ = 0,1, ..., m, keeping in
mind that the eigenvalues obtained for £ = 1,..., m should be counted twice.

Example. Consider the simplest case of £k = 0, i.e., a = 1. In this case,
a = b = c =2, so that we obtain that the characteristic polynomial P,,(x)
of the matrix A,,(0) is a multiple of the Chebyshev polynomial:

Pp(z) = —2" 20U, <1 - %) .

The corresponding eigenvalues of L are

0 and 4(1—cos7r—j), j=1,....m—1.
m

Example. Since the representation g? contains o' (see (12)), the eigenvalues
of L in H® must contain, in particular, the eigenvalues (10). More precisely,
A\r must be an eigenvalue of L in the sector H, with o = e*™*/N_ Let us
check that \; is indeed a root of P, given by (14) for § = 7k/N. From the
equation 4 — 4cosf - x = 2 — 2cos 20 we obtain x = cosf, so that in (17)
and (19) we have ¢t = 0 and these equations are easy to verify.

Since V; and W; form families of orthogonal polynomials on the interval
[—1, 1], we easily obtain from the properties of roots of orthogonal polyno-
mials that the right-hand side of (15) has m — 1 roots inside the interval
[—1, 1] and one root lying outside this interval. More precisely, if &k is odd
and cosf > 0, there is a root of the right-hand side of (15) between the jth
root x; = (:os”(mifrl of Wy, and the jth root y; = (:os7rm D of W1,

m+1/2 —1/2
j=1,...,m—1, and similarly in the other cases.
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Using all these facts and the properties of orthogonal polynomials, with
some tedious calculations one can obtain the limiting density of eigenvalues
of the Coxeter Laplacian in the representation o*:

P (u) = #K’ (1 - %) . uelo,s, (20)

where K'(v) = K(v/1 — v?) is the complete elliptic integral of the first kind.
It is not difficult to check that the “two-magnon” limiting density p(® (u)
is the convolution of two “one-magnon” densities p() (u):

In the next section we will prove that this convolution formula holds for all r,
that is, the limiting density of eigenvalues of the periodic Coxeter Laplacian
in the representation induced from the identity representation of &, x Gy_,
is the r-fold convolution of p(V).

5 Asymptotic results. Ferromagnetic case

In this section, we find the limiting distribution of eigenvalues of the peri-
odic Coxeter Laplacian Ly in the representation induced from the identity
representation of &, x Gy_, when r is fixed and N goes to infinity. In the
framework of the XXX Heisenberg model, this asymptotic mode corresponds
to considering excitations of the ferromagnetic chain (J > 0).

5.1 Some facts on the limiting distribution of eigenval-
ues

Given an n x n matrix A = {a;;}, denote by || A its spectral norm

[A]} = max || Az||

ll]l=1

(here ||z|| is the Euclidean norm of a vector z) and by |A| its normalized
Frobenius (Hilbert-Schmidt) norm

AP =2 375 ay P

i=1 j=1
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Recall the useful inequality

IAIl < VI All1][Allse, (21)

where [|Ally = max; 317, |ay| and [| Al = max; >0, ;).

Denote by A\¢(A) the kth largest eigenvalue of A.

Now, let C,, and D, be n x n matrices. Let us say that the sequences
{C,} and {D,}, n = 1,2,..., are equivalent if the following two conditions
hold:

JM < oo such that Vn, [|Cy]], || Dyl < M; (22)
lim |C,, — Dy| = 0. (23)

We denote this fact by {C},} ~ {D,}. Note that (22) implies that the spectra
of all the matrices C),, and D,, are uniformly bounded, i.e., there exists a
bounded interval [m, M] such that \x(C), \i(Dy) € [m, M] for all n, k.

The following result borrowed from [4] essentially relies on the well-known
Wielandt—Hoffman theorem (see, e.g., [11]).

Lemma 3. Let {C,} and {D,} be two equivalent sequences of Hermitian
matrices. Then the sequences of their eigenvalues are asymptotically abso-

lutely equally distributed, i.e., for an arbitrary continuous function f(x) on
[m, M],

lim = 37 FOW(C) — FOW(D,)| =0

In particular, it follows that if either of the limits exists separately, then
.1 1
lim =" f(A(Cn)) = lim = > f(Au(Dn)). (24)

5.2 The r =1 case

Now consider the 7 = 1 case, i.e., the representation o' of Gy induced from
the identity representation of the Young subgroup &; x Gx_;. Note that the
matrix (9) of the Coxeter Laplacian L in this representation is almost a three-
diagonal Toeplitz matrix, namely, differs from the three-diagonal Toeplitz
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matrix

2 -1 0 0 0 0 0
-1 2 -1 0 0 0 0

Be_ |0 "1 2 -1 .. 0 0 0 (25)
0 0 0 0 .. -1 2 -1
(0 0 0 0 ... 0 -1 2]

only by two extra minus ones in the north-east and south-west corners. How-
ever, as long as we are interested in the limiting distribution of eigenvalues,
this small difference is irrelevant, because it is easy to check that the se-
quences of real symmetric matrices {Ay} and {By} are equivalent (indeed,
(22) easily follows from the inequality (21), and, obviously, |[Ay —By|? < 2).
Thus Lemma 3 applies, and we deduce that these sequences of matrices
have the same limiting distribution of eigenvalues. But for By this distri-
bution is given by a well-known result from the theory of Toeplitz matrices.
Namely, given a sequence {t;} (for our purposes, it suffices to consider only
finite sequences, ty = 0 for |k| > m, corresponding to banded Toeplitz ma-
trices), consider a sequence of Toeplitz matrices T,, = (tj_k)k,j=1,..n- Let
a(A) = >pr tre™ be the corresponding symbol. If a is real, ie., the
matrices T, = T,,(a) are symmetric, then for any continuous function f,

n
1 2w

lim =37 FOWT) = 5 [ faO)dr (26)
In our case, By = Tx(a), where

a(A) =2 — 2cos \, (27)

so that applying (26) and making an appropriate change of variables, we
recover the Chebyshev density (11).

5.3 General case

For clarity, consider first the r = 2 case, i.e., the representation ¢?> of Gy
induced from the identity representation of the Young subgroup G x Gx_s.
Denote by ey, 1 < k < [ < N, the natural basis of the space H® of this
representation. It is easy to see that the action of the periodic Coxeter
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Laplacian L in terms of this basis reads as follows (with N + 1 = 1):

Lew — deg; — €k—1] — €k41] — €ki—1 — Chit1, | Fk+1,
K=
2€k k41 = Ch—1k+1 — Ch k42, l=k+1.

Denote the corresponding matrix by AS\Q,).
Let H(") be the space of the representation o', consider the space H =
H® @ H®, and the operator B = AV @ I+ T ® AV in this space.

Clearly, the eigenvalues of B](VZ) are exactly the sums A+ p, where A, i are the

eigenvalues of A%), so that the limiting distribution of eigenvalues of B](?) as

N — oo is the convolution of two copies of p(1).

Now we may assume that H® is the subspace of H spanned by ey with
k < [. We may also extend the action of L to the whole 'H putt~in§ Ley, = Ley.
for £ > [ and Ley; = 0. Denote the corresponding matrix by AS\Z, . Obviously,

the limiting distribution of eigenvalues for AS\Z,) is the same as for A%).

Lemma 4. The sequences of matrices {flg\%)} and {B](\?)} are equivalent, i.e.,
satisfy the conditions of Lemma 3.

Proof. Obviously, and || AP || < (J[AP ]| A¥||-)'/ < 8 and a similar bound
holds for B](VZ), so that the first condition of equivalence is satisfied. Now, the
order of these matrices is N? and

0, Il — k| >1,
(B](\?) — A%))em = g 2ep — exr, — ey, l=Fk=+1,

depy — €p—1k — Chilk — Chh—1 — Cht1, | =K,

so that B](?) - 14153) has at most O(N) nonzero entries, each being O(1). It
follows that |B](3) - AS\Z,)| =5 -O(N)-O(1) — 0 as N — o0, and the second
condition is also satisfied. O

Corollary 1. The limiting density p® of eigenvalues of the periodic Cozeter
Laplacian L in the r = 2 sector is the convolution of two copies of the limiting
density ptV) of the eigenvalues of L in the r = 1 sector:

p(2)(u) = (p(l) *p(l))(u), u € [0, 8].

In exactly the same way one can prove the following general result.
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Theorem 1. The limiting density p™®) of eigenvalues of the periodic Cozeter
Laplacian L in the representation 0% induced from the identity representation
of the Young subgroup Gy x Sy_y. is the convolution of k copies of the limiting
density pt") of the eigenvalues of L in the representation o':

PP (w) = (P .. .x pM)(u), u € [0, 4k]. (28)

Corollary 2. For a fized k = 1,2,..., the limiting distribution of eigenval-
ues of the periodic Coxeter Laplacian Ly in the irreducible representation
corresponding to the two-row Young diagram pf = (N — k, k) as N — oo is
equal to (28).

Proof. Follows from the fact that the relative dimension of 1%, in ¢* tends to
1las N — oco:
dimpl, NN —2k+1) k(N -k N-—2k+1

_ - 1.
dimo* KN —k+1)! NI N—k+1

O

Remarks. 1. In terms of the XXX Heisenberg model, the result of The-
orem 1 means that in the limit under consideration, only eigenvalues cor-
responding to “independent magnons” survive. The number of eigenvalues
corresponding to “bound magnons” is asymptotically negligible and does not
affect the limiting density.

2. As follows from the proof, the limiting density of eigenvalues for the

periodic Coxeter Laplacian is the same as for the ordinary Coxeter Laplacian
Ne—(1,2)—(2,3)—...— (N —1,N).

Taking into account the convolution formula (28), it is natural to use
the Fourier transform for finding the limiting density p*). Let F(t) be the
Fourier transform of p(!). Then p*) is the inverse Fourier transform of F(¢)*.
But (see, e.g., [3, 3.387.2])

1 4 e itx
= — ——dx
T Jo x(4— 1)

where .Jy is the Bessel function of the first kind. Thus we are interested in the
inverse Fourier transforms of powers of Bessel functions. For k& = 2, using the

F(t) = e 2 Jy(—21),
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known formulas for integral transforms of the product of tho Bessel functions,
we can recover the density (20). Unfortunately, for £ > 2, the corresponding
integrals are not known. For Taylor series expansions of powers of Bessel
functions, see [2].

5.4 Limiting operators

Denote by levg) the representation of the symmetric group Gy induced from

the identity representation of the Young subgroup &, x Gy _i, and by AS{;)
the operator of the Coxeter Laplacian L in this representation. The inductive
limit of the representations QS\I;) as N — oo is the irreducible representation
p¥) of the infinite symmetric group &, induced from the Young subgroup

S,hy X Sphgiht2,.) (see [9]).

Lemma 5. The operators AS'\;) weakly converge as N — oo to some operator
A®) in the space H® of the representation p®). In particular, A = T(a)
is the infinite Toeplitz matriz with the symbol a(p) = 2 — 2 cosp.

Proof. The space of the representation p¥) is L?(TI;), where I} is the set of
k-tuples of distinct positive integers, with the counting measure. Denote by
H,, C L?(I1},) the subset of functions supported by k-tuples of integers < m.
Then the set UX_, H,, is dense in L?*(II;), and it suffices to check that the
limits limNHoo(A(Nk)f, g) exist for f, g € H,, for all m. But it is obvious that
for such f, g we have ((k,k+1)f,g) = (f,g) for k >m and ((1,N)f, g) = 0.
Thus the required limits exist, and we see that the operators AS'\;) weakly
converge to some operator A%®) such that for f € H,,,

ARf = (m+1DE - ((1,2) +...+ (mym + 1)) f.

5.5 Antiferromagnetic case

We may also consider another asymptotic mode, namely, assuming for sim-
plicity that N = 2n is even, consider the operator L in the representation
0% induced from the identity representation of &, x &, as N — oo and
in the irreducible representation 7,, with diagram gy = (n,n). This mode
corresponds to considering the antiferromagnetic XXX chain. The results for
this case will be presented in the next paper.
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5.6 Applications: characters of the symmetric groups

Let 7 be a representation of the symmetric group Sy (and its group algebra),
X be its character, and M = dim 7 be its dimension. Let Ay,..., Ays be the
eigenvalues of the periodic Coxeter Laplacian in the representation 7m. Then
it follows from the results of [1] that for every positive integer k&

SN =SS (e ) e ) )

Jj1i=1 Je=1

Combining (29) with the results on the limiting densities of eigenvalues
obtained in the previous sections, we can derive some interesting asymptotic
formulas.

First let m be the representation o' of &y induced from the identity
representation of the Young subgroup &; x Gy_;. It is easy to see that
its dimension is equal to N and the value of its character at a permutation
g € 6y equals the number 7(g) of fixed points of g. On the other hand,
from the results of Section 4.1 we have

— ko 2°(2k — )N
LW Z A / \/7_35 Ko
Thus for every positive integer k

N N

lim iZ...Zrl((e—Ujl)...(e—ajk)) :w (30)

J1=1 Jrk=1

Examples. Let £ = 1. Then ri(e — o) = ri(e) —ri(0) =n—(n—2) = 2,
and the left-hand side of (30) equals + - N - 2 = 2, which is the right-hand
side for k = 1.

Now let k = 2. Then r((e — 0j,)(e — 0j,)) = ri(e) — 2r1(0) + r1(0j,05,).
But ry(0j,0;,) is equal to N if j; = js, equal to N — 4 if the (periodic)
distance between j; and j5 is at least two, and equal to N — 3 if j; and
are neighbors, whence the left-hand side of (30) equals

1

¥ [N?*(N —2(N —2)) + N? + N(N = 3)(N — 4) + 2N(N - 3)] =6,

again in accordance with the right-hand side for £ = 2.
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Consider now the representation p? of Gy induced from the identity rep-
resentation of the Young subgroup G, x G y_5. In this case, the dimension is
equal to N(N —1)/2 and the value of its character at a permutation g € Sy
equals (”ég)) + r2(g) where r1(g) and ry(g) are the number of fixed points of
g and the number of cycles of length 2 in g, respectively. On the other hand,
from the results of Section 4.2 we have

2 I 2.4k !
lim ————» M=— [ "K'(1-z/4)dz = 1—y)* K’ (y) dy.
NE%ON(N_DJ_ZI i o2 o' K'(1-x/4) dx 2 /1( y)"K'(y) dy
(31)
Examples. Let k = 1. Then the integral in the right-handside of (31) equals

/_l (1 -y)K'(y)dy = /_11 K'(y) dy — /11 yK'(y) dy,

1 —

the first summand being equal to 72/2 by [3, 6.141.2] and the second one
vanishing since K'(y) is an even function of y. That is, the right-hand side
is equal to 4. Now the left-hand side equals

For k = 2, using again the evenness of K’, we have
1 ! ! 72 7
/ 1-y)’K'(y)dy= [ K'(y) dy+/ v K'(y)dy = 5 +

where the second integral was find using [3, 6.147 and 6.148.2]. Thus the
right-hand side of (31) is equal to 20. Now the left-hand side equals

2 [N?N(N-1) o ((N=2)(N-3) N(N = 1)
N(N—1)l 2 _QN( 5 +1)+N'72
+N(N_3)((N—4)2(N—5)+2)+N.2'(N—3)2(N—4)]

20N — 48
:m—)%).
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