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ABSTRACT:How to �nd \best rational approximations" of maximal ommutative subgroups of GL(n;R)?In this paper we pose and make �rst steps in the study of this problem. It ontains bothlassial problems of Diophantine and simultaneous approximations as a partiular subasesbut in general is muh wider. We prove estimates for n = 2 for both totaly real and omplexases and write the algorithm to onstrut best approximations of a �xed size. In addition weintrodue a relation between best approximations and sails of ones and interpret the result fortotally real subgroups in geometri terms of sails.Key words: Maximal ommutative subgroups, entralizers, Diophantine approxima-tions, Marko�-Davenport forms, sail of simpliial ones.
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Introdution:The Problem and its RelationshipsWe pose and investigate a problem of approximation of maximal ommutative sub-groups of GL(n;R) by rational subgroups, or more geometrially in other words a prob-lem of approximation of arbitrary simpliial ones in Rn by rational simpliial ones. Thisproblem is a natural multidimensional generalization of a problem on rational approxima-tions of real numbers that is ontained in the ase of n = 1. As a partiular example it alsoontains a simultaneous approximation problem and losely related to multidimensionalgeneralizations of ontinued frations. The problem of approximation of real spetrummaximal ommutative subgroups has muh in ommon with the problem of approxima-tions of nondegenerate simpliial ones. This in partiular allows to use methods dealingwith multidimensional ontinued frations.Maximal ommutative subgroups. We onsider a Cartan subgroup of the groupGL(n;R) or maximal abelian semisimple subgroups of GL(n;R). Some times it is onve-nient to onsider suh subgroup as the set of all matries, ommuting with given semisim-ple element A ∈ GL(n;R), i.e., the entralizer CGL(n;R)(A). The entralizer is ommutativeif and only if A has distint eigenvalues. So we work with entralizers of \generi" ma-tries. For the �eld of real numbers not all Cartan subgroups are mutually onjugate:the general Cartan subgroup in GL(n;R) has k one-dimensional and l two-dimensionalminimal eigenspaes (where k+2l = n). We will study mainly the Cartan subgroupswith only one-dimensional minimal eigenspaes, whih we all "real Cartan subgroup",but all the de�nitions are extended to the general Cartan subgroups of GL(n;R) and anbe extended to the ase of the Cartan subgroup of GL(n;C) or more general semisimplegroups. In that ase all elements of the Cartan subgroup has real eigenvalues.







4 We will use term "maximal ommutative subgroup" or shortly MCRF, and denote thespae of it as Cn.The spae of simpliial ones. It is onvenient to deal with geometri analog ofMCRF-subgroups. Let us desribe a relation of real maximal ommutative subgroupsand nondegenerate simpliial ones.A nondegenerate simpliial one in Rn is a onial onvex hull of a set of n unorderedlinearly-independent vetors. Further we omit \nondegenerate", sine we work only withnondegenerate ones. Together with any simpliial one K one may study its symmetriwith respet to origin one −K. All further disussions, onstrutions, notions, andstatements are invariant with respet to the map x 7→ −x of Rn, and hene they all dealwith both ones K and its symmetri one −K. Therefore, we identify the ones K and
−K and de�ne Simpln as a spae of pairs of symmetri ones.There exists a natural (2n−1)-folded overing of the spae Cn of all maximal ommutativesubgroups by the spae Simpln: Simpln → Cnthe ones map to the subalgebras whose eigendiretions are the extremal rays of the ones.So for any element of Simpln we have a maximal ommutative subgroups.Therefore, approximation problems, whih we disuss below and whih are loal prob-lems, an be studied in terms of the groups as well as in terms of simpliial ones.A spae Simpln of all simpliial ones in Rn an be de�ned diretly with oordinates ofones generators, nevertheless it is very important to understand this spae as a homoge-neous spae of the group GL(n;R) in the following way.Consider a group GL(n;R); n > 1 of all linear invertible transformations in Rn with a�xed basis. Take Dn | the subgroup of the diagonal matries in the hosen basis whihhave positive numbers on the diagonal, i.e. a positive part of the orresponding Cartansubgroup or onneted omponent of the unity of that subgroup. The elements of thissubgroup leaves invariant eah of the 2n of oordinate ones. The left homogeneous spaeGL(n;R)=Dn an be onsidered as a spae of all onneted parts of the Cartan subgroupsof the group GL(n;R). To get a one (or atually a pair of symmetri ones K and −K)we should add a symmetri group of oordinate permutations Sn (Weil group) whih isalso ontained in the normalizer of Dn. Denote by D̂n the skew-produt Sn ⋌ Dn of thesymmetri group and the subgroup of diagonal matries.A homogeneous spae GL(n;R)=D̂nof left onjugay lasses in GL(n;R); n > 1 with respet to the subgroup D̂n is naturallyidenti�ed with the spae of all (pairs of) nondegenerate simpliial ones Simpln.Indeed, the subgroup of GL(n;R) preserving the positive oordinate one Rn+ as wellas its reetion oinides with the group D̂n, and GL(n;R) transitively ats on Simpln.Notie that it is sometimes onvenient to take the group SL(n;R) instead of GL(n;R)(fatoring the last by the subgroups of positive salar matries and taking D̂n as the







5subgroup of positive diagonal matries with unit determinant in SL(n;R):Simpln = SL(n;R)={D̂n ∩ SL(n;R)}A homogeneous spae Simpln; n > 1 is not ompat. This spae admits a transitiveright ation of the whole group GL(n;R) and it possess an essential absolutely ontinuousmeasure �n, that is quasihomogeneous with respet of the ation. This measure is alledM�obius measure, it was studied in [18℄. We are mostly interested in the ations of SL(n;Z)and SL(n;Q) on the spae Simpln but not in the ation of the whole group GL(n;R); n >1. These ations are ergodi.De�nition 0.1. Consider a simpliial one C ∈ Simpln. The boundary of the onvexhall of the integer points in this one without an origin, i.e.�( onv{C ∩ Zn \ (0; : : : ; 0)});is alled the sail of the simpliial one.The spae of the simpliial ones ould be identi�ed with the spae of the sails ofsimpliial ones.Remark. Note that one an onsider the sail for other onvex bodies, for instane of theinteriors of onis.For the simplest ase of n = 2 a simpliial one is a onvex angle between two rays onthe plane, and the spae Simpl2 of all ones is a two dimensional torus without a diagonalmodulo the involution: {S1 × S1 r Diag}= ≈, where Diag is the diagonal in S1 × S1and ≈ is a fatorization: (x; y) ≈ (y; x). Here the points of the irles S1 are the orientedlines in R2 that ontains ritial rays of the angles, and quasiinvariant measure is theLebesque measure. Atually Simpl2 is a M�obius strip without a boundary or equivalentlya puntured projetive plane. The geometry of the orresponding one inludes a partof the lassial theory of ontinuous fration. The sail for n = 2 is the boundary ofnonompat onvex polygon. The two-dimensional ase is tightly onneted with lassialontinued frations (see in Setion 2).The problem of approximations. The desribed relation between simpliial ones andreal spetrum (i.e. having real eigenvalues, see further) maximal ommutative subgroupsin GL(n;R) preserving the orresponding ones is a overing (up to an identi�ation ofthe one and its entral symmetrial image). Therefore approximations of suh subgroupsand approximations of simpliial ones (we speak about this further) are the same up tothe lifting. Reall that we have �xed a system of oordinates in Rn, and hene we have aspeial oordinate simpliial one K0 = Rn+ (a hyperotant).De�nition 0.2. A rational simpliial one (or respetively a rational ommutative subgroup)is a one (a subgroup) whose all extremal rays (eigen-diretions) ontains points distintto the origin with all rational oordinates, atually this implies the existene of pointswith all integer oordinates as well.







6 A simpliial one (maximal ommutative subgroup) is alled algebrai if there exists amatrix g ∈ SL(n;Z) with distint eigenvalues whose eigen-diretions generates this one(respetively integer matrix whose entralizer in SL(n;R) oinides with this subgroup).It is lear that the rational ones form the orbit of the oordinate one K0 with respetto the group SL(n;Q).An example of an algebrai simpliial one is the onial onvex hull of the two eigen-vetors of the Fibonai matrix: g = ( 1 11 0 )De�nition 0.3. Consider some one C ∈ Simpln and take nonzero linear forms L1; : : : ; Lnthat annulates the hyperfaes of the one. A Marko�-Davenport form is�C(x) = n
∏k=1 (Lk(x1; : : : ; xn))�(L1; : : : ; Ln)where �(L1; : : : ; Ln) is the volume of the parallelepiped spanned by Lk for k = 1; : : : ; nin the dual spae.This form is de�ned by a one uniquely up to a sign. Now having Marko�-Davenportform � one an de�ne distanes between two ones. For two ones C1 and C2 onsidertwo forms �C1(v) + �C2(v) and �C1(v)− �C2(v):Take the maximal absolute values of the oeÆients of these forms separately, the minimalof them would be the distane between C1 and C2. Further in Subsetion 1.1 we de�neMarko�-Davenport form in a more general situation.Now we are ready to formulate the main problem of approximations:For a given simpliial one (or maximal ommutative subgroup of SL(n;R))�nd a rational simpliial one (rational maximal ommutative real subgroup)that for a hosen Marko�-Davenport metri is the losest rational simpliialone (subgroup) in some �xed lass of rational ones (subgroups).Suh lasses of rational ones an hosen to be �nite lasses inluding only ones having�xed \sizes" of integer points on their rays (for more information see below in Setion 1).First of all the approximations problem by rational simpliial ones (subgroup) mustbe onsidered for algebrai ones (subgroups). The most intriguing things are onnetedwith generalization of the beautiful theory of Marko�-Lagrange spetra [31℄ and Marko�-Davenport n-ary forms [10℄.Relations with theory of multidimensional ontinued frations. The problemon approximation of ommutative subgroups or simpliial ones formulated above andstudied in this work is intimately onneted with the theory of multidimensional ontinuedfrations but does not redue to that.







7The reent work by V. I. Arnold [2℄ and the following works by him [4℄, E. I. Korkina [26℄,G. Lahaud [29℄, J.-O. Mussa�r [33℄, Karpenkov [14℄, et., revived the interest to one oflassial generalizations of ontinued frations theory, onsidered for the �rst time byF. Klein in [23℄. From geometrial point of view the generalization deals with sails. Thelassial theory of ordinary ontinued frations i.e. theory of Gauss transformations inalgebro-dynamial terms related to the ase n = 2 was made by R. L. Adler and L. Flattoin [1℄. M. L. Kontsevih, Yu. M. Suhov in [24℄ made an improved version admitting anextension to multidimensional ase. In the work [24℄ the authors onsidered the followingapproah to these questions: to study the homogeneous spae SL(n;R)=SL(n;Z), i.e.the spae of latties in SL(n;R), and the ation of the Cartan subgroup Dn on it. Forn = 2 this ation is redued to the ation of the group R1 and as it is known from [1℄ itis a speial suspension over the Gauss automorphism that lies in a de�nition of ontinuedfrations.One an suppose that the solution of the approximation problem redued to the geom-etry of the sails in the following sense: in order to �nd the best approximation of the one(equivalently maximal ommutative subgroup) one must �nd the appropriate basis of thevetors whih belong to the verties of the sail of this one or adjaent one. Up to nowthis is an open question. The experiments show that it ould be not always the ase (seefor instane in Example 3.11).Let us show onnetions of our problem with this geometry. First of all the spaeSimpln as we had mentioned an be interpreted as the spae of sails of simpliial ones.Let us ompare our approah to the geometry of sails with [24℄.One an think of dynamial systems as of triples: (a spae, a group ation, an invariantor quasiinvariant measure). Then in [24℄ the authors study the dynamial system
{SL(n;R)=SL(n;Z); Dn; �n}:i.e. in our terms it is multidimensional suspension (time here is a Cartan subgroup) in agiven or an arbitrary one.Our approah to theory of sails is in some sense dual to the approah of [24℄. Weonsider another dynamial system, namely, the ation of a disrete (nonommutative)group SL(n;Z) (or SL(n;Q)) in the spae of sails (or equivalently simpliial ones):


{Simpln(= SL(n;R)=D̂n); SL(n;Z); �n}:Roughly speaking the \time" and the subgroup de�ning the homogeneous spae has beentransposed.Both approahes have their own advantages and limitations. However the main aim ofthe urrent work is not in studying of multidimensional sails, their statistis and otherproperties, but in their appliations to approximations.More about geometry of sails. The geometry of sails is very interesting by itself. Oneof the essential subjets here is a statistial analysis of their geometri harateristis withrespet to the measure on the spae of the sails Simpln. For instane, what is the measureof sails with given properties: say with given number of faes of some given ombinatorialtype (see [24℄, [5℄, [6℄, [15℄, [18℄). This would generalize Gauss-Kuzmin theorem (see







8in [28℄) and some others for ordinary ontinued frations. The work in this diretion hasjust started and it is not muh known now, �rst theorems on this subjet an be foundin [18℄.Faes of di�erent dimensions of a sail were studied in [29℄, [33℄, [13℄, [25℄, [17℄. In alge-brai ases all faes are polyhedra. It is also natural to onsider the sails in the adjaenthyperotants. The important problem here is to study the ondition for a polygonal sur-fae to be a sail form some one. This problem was posed by V. I. Arnold and was studiedin several papers ([3℄, [4℄, [14℄, [16℄, [17℄, [20℄, [26℄, [27℄ [29℄, [33℄). In [37℄ H. Tsuhihashishowed the relation between sails of ones and usp singularities, introduing a new appli-ation to tori geometry. This relation is studied in detail in [19℄ for the two-dimensionalase.Atually in the study of Simpln the other multidimensional generalizations of ontin-ued frations an be useful. This in partiular inludes the onsidered before onvex-geometri ([23℄, [4℄, [26℄, [29℄, [14℄) loal minima type ([32℄, [7℄), Voronoy ([39℄, [9℄), andalgorithmi([34℄, [35℄) generalizations of ontinued frations.Connetions with limit shape problems. Another link of the approximation problemis with so alled limit shape problems. We want only to emphasize here that the problemslike limit shape problems about Young diagrams or onvex lattie polygons (see [38℄) anbe onsidered in the simpliial ones (instead of traditional posing in the hyperotant Z+n ),and in this ase the rational approximation of the one beomes an important argument.We hope to onsider this in the appropriate plae.Desription of obtained results. Let us briey desribe the results of this work. Ap-parently the problem of approximations of arbitrary ommutative subgroups in SL(n;R)was never stated in suh generality. By the problem of approximation we mean the prob-lem of �nding of best approximation of a simpliial one by rational ones (similar tothe lassial problem on best approximations of real numbers by rational numbers). Thisproblem is very ompliated already in the ase of n = 2. That is also applied even to thealgebrai ones. We give several estimates that suggest an idea that best approximationsare not always related to sails or to sails of adjaent ones (see also in Example 3.11).First, we show that the lassial ase of approximations of real numbers by rationalnumbers is really one of partiular ases of the proposed new approximation model. Inaddition we also indiate that simultaneous approximations are also overed by our ap-proah.Further we work in general ase of n = 2. We give upper and lower estimates for thedisrepany between best approximations and original simpliial ones in the followingimportant ase (Theorem 3.1): let �1; �2 ∈ R both have in�nite ontinued frations withbounded elements, onsider a simpliial one bounded by two lines y = �1 and y = �2,then the growth rate of the best approximation of size N is bounded by C1=N2 and C2=N2while N tends to in�nity. Then we translate this statement to the language of sailsand their generalizations (Theorem 3.8) and �nally show an algorithm to onstrut bestapproximations of a �xed size.







9Remark. In this paper we work in a slightly extended way inluding ommutative sub-groups of SL(n;R) having omplex onjugate eigenvetors as well. This is the main reasonfor our hoie to use terminology of ommutative subgroups instead of simpliial ones(that are onvenient only for the totally real ase).We onlude the paper with several examples of approximations in the three-dimensionalase, oming from simultaneous approximations.The paper is organized as follows. In Setion 1 we give basi notions and de�nitions ofmaximal subgroup approximation theory. We introdue sizes and disrepanies for thesubgroups and de�ne the notion of \best approximations" in our ontext. In Setion 2we briey show how the lassial theory of Diophantine approximations is embedded intotheory of subgroup approximations.Further we make �rst steps to study a general two-dimensional ase. It is rather ompli-ated sine we need to approximate an objet de�ned by four entries of 2×2 matries thatvary. Hene this ase is omparable with a general ase of simultaneous approximationsof vetors in R4. Nevertheless it is simpler to �nd the best approximations in the ase ofsubgroups, espeially in speial algebrai ase when a ertain periodiity of approxima-tions take plae. In Setion 3 we write estimates for the quality of best approximations forboth hyperboli and non-hyperboli ases of rays whose ontinued frations has boundedelements. This in partiular inludes an algebrai ase. We also show geometri originsof the bounds in terms of ontinued frations for the hyperboli algebrai ase.Finally in Setion 4 we study in a ouple examples the ase of simultaneous approxi-mations of vetors in R3 in the frames of subgroup approximations. We test two algebraiexamples oming from totally real and non-totally real ases.1. Rational approximations of MCRF-groupsIn this setion we give general de�nitions and formulate basi onepts of maximalommutative subgroups approximations. We reall a de�nition of a Marko�-Davenportform in Subsetion 1.1. Further in Subsetion 1.2 we de�ne rational subgroups and hoose\size" for them. We de�ne the distane funtion (disrepany) between two subgroups inSubsetion 1.3.As we have already mentioned we will ontinue with terminology of maximal ommu-tative subgroups. In ase when we deal with real spetra subgroups the statements anbe diretly translated to the ase of simpliial ones.1.1. Regular subgroups and Marko�-Davenport forms. Consider a real spae Rnand �x some oordinate basis in it. A real operator is alled regular if all its eigenvaluesare distint (but not neessary real). A maximal ommutative subgroup of GL(n;R) issaid to be regular, or MCRS-group for short, if it ontains regular operators.We say that a one-dimensional omplex spae is an eigenspae of an MCRF-group if itis an eigenspae of one of its regular operators. Atually any two regular operators of thesame MCRS-group have the same eigenspaes, therefore eah MCRF-group has exatly ndistint eigenspaes.







10 Consider an arbitrary MCRS-group A and denote its eigenspaes by l1; : : : ; ln. Denoteby Li a nonzero linear form over Cn that attains zero values at all vetors of the omplexlines lj for j 6= i. Let �(L1; : : : ; Ln) be the determinant of the matrix having in the k-tholumn the oeÆients of the form Lk for k = 1; : : : ; n in the dual basis.De�nition 1.1. We say that the formn
∏k=1 (Lk(x1; : : : ; xn))�(L1; : : : ; Ln)is the Marko�-Davenport form for the MCRS-group A and denote it by �A.Example 1.2. Consider an MCRS-group ontaining a Fibonai operator


( 1 11 0 ) :Fibonai operator has two eigenlinesy = −�x and y = �−1x;where � is the golden ration 1+√52 . So the Marko�-Davenport form of Fibonai operatoris (y + �x)(y − �−1x)� − �−1 = 1√5(−x2 + xy + y2):A Marko�-Davenport form is uniquely de�ned by an MCRS-group up to a sign, sinethe linear forms Li are uniquely de�ned by the MCRS-group up to multipliation by asalar and permutations. By de�nition any MCRS-group ontains a real operator withdistint roots, therefore all the oeÆients of the Marko�-Davenport form are real.Remark 1.3. The minima of the absolute values of suh forms on the integer lattie werestudied by A. Marko� in [31℄ for two-dimensional ase, and further by H. Davenport in [10℄,[11℄, and [12℄ for three-dimensional totally real ase. A few three-dimensional totally realexamples were exhoustively studied by A. D. Bryuno, V. I. Parusnikov (see for instanein [8℄). The �rst steps in general multidimensional ase were made in paper [21℄.1.2. Rational subgroups and their sizes. We start with the following de�nition.De�nition 1.4. An MCRS-group A is alled rational if all its eigenspaes ontain Gauss-ian vetors, i. e. vetors whose oordinates are of type a+ Ib for integers a and b, whereI2 = −1. Denote the set of all rational MCRS-groups of dimension n by Ratn.Example 1.5. The following two operators
( 0 −11 0 ) with eigenvetors (I; 1) and (−I; 1);
( 1 14 1 ) with eigenvetors (1; 2) and (1;−2)







11represents rational MCRS-groups (denote them by Ai and Aii) with real and omplexonjugate eigen-diretions.For a omplex vetor v = (a1+Ib1; : : : ; an+Ibn) denote by |v| the normmaxi=1;:::;n(


√a2i + b2i) :A Gaussian vetor is said to be primitive if all its oordinates are relatively prime.Suppose that a omplex one-dimensional spae has Gaussian vetors, then the minimalvalue of the norm | ∗ | for the Gaussian vetors is attained at primitive Gaussian vetors.De�nition 1.6. Consider a rational MCRS-group A. Let l1; : : : ; ln be the eigenspaes of
A. The size of A is a real numbermaxi=1;:::;n{


|vi|∣∣vi { is a primitive Gaussian vetor in li};we denote it by �(A).The sizes of operators in Example 1.5 are 1 and 2 respetively.1.3. Disrepany funtional and approximation model. We are foused mostly onthe following approximation problem: how to approximate an MCRS-group by rationalMCRS-groups (or even by a ertain subset of rational MCRS-groups)?Let us �rst de�ne a natural distane between MCRF-groups. Let A1 and A2 be twoMCRS-groups. Consider the following two symmetri bilinear forms�A1(v) + �A2(v) and �A1(v)− �A2(v)for vetors in Rn. Take the maximal absolute values of the oeÆients of these forms(separately). The minimal of these two maximal values we onsider as a distane between
A1 and A2, we all it disrepany and denote by �(A1;A2).Let us alulate the disrepany between the MCRS-groups of Example 1.5. We have


∣


∣�Ai(v)± �Aii(v)∣∣ = ∣


∣


∣


∣


I x2 + y22 ± y2 − 4x24 ∣


∣


∣


∣therefore �(Ai;Aii) = √32 .De�nition 1.7. Let 
 ⊂ Ratn for a �xed n. The problem of best approximations of anMCRS-group A by MCRS-groups in 
 is as follows. For a given positive integer N �nda rational MCRS-group AN in 
 with size not exeeding N suh that�(A;AN) = min{�(A;A′)∣∣A′ ∈ 
; �(A′) ≤ N}:Remark 1.8. There are another important lasses of MCRS-groups that ontain matries ofGL(n;Z) and GL(n;Q) respetively. The MCRS-group is said to be algebrai if it ontainsregular operators of GL(n;Z). It is natural to onsider approximations of MCRS-groupsby algebrai MCRS-groups, and approximations of algebrai MCRS-groups by rationalMCRS-groups.







12 2. Diophantine approximations and MCRS-group approximationsA lassial problem of approximating real numbers by rational numbers is a partiularase of the problem of best approximations of MCRS-groups.For a real � denote by A[�℄ an MCRS-group of GL(2;R) de�ned by the two spaesx = 0 and y = �x. Consider any two MCRS-groups A[�1℄ and A[�2℄ with positive �1 and�2 and alulate a disrepany between them.�A[�1℄ − �A[�2℄ = x(y − �1x)1 − x(y − �2x)1 = (�2 − �1)x2�A[�1℄ + �A[�2℄ = x(y − �1x)1 + x(y − �2x)1 = 2xy − (�2 + �1)x2Sine �1 > 0 and �2 > 0 we have�(A[�1℄;A[�2℄) = |�1 − �2|:Denote by 
Q[0;1℄ a subset of all A[�℄ for rational � in the segment [0; 1℄.For any ouple of relatively prime integers (m;n) satisfying 0 ≤ mn ≤ 1 we have�(A[mn ]) = n:A lassial problem of approximations of real numbers by rational numbers havingbounded denominators in our terminology is as follows.Theorem 2.1. Consider a real number �, 0 ≤ � ≤ 1. Let [0; a1; : : :℄ (or [0; a1; : : : ; ak℄)be an ordinary in�nite (�nite) ontinued fration for �. Then the set of best approx-imations onsists of MCRS-groups A[m=n℄ for m=n = [0; a1; : : : ; al−1; al℄ where l =1; 2; : : : (In ase of �nite ontinued fration we additionally have A[m=n℄ for m=n =[0; a1; : : : ; ak−1; ak−1℄). �3. General approximations in two-dimensional aseIn this setion we prove estimates on the quality of best approximations for MCRS-groups whose eigen-diretions are expressed by ontinued frations with bounded denom-inators. We study separately the ases of hyperboli and non-hyperboli MCRS-groups.Espeially we study geometri interpretation of the bounds in turms of geometri ontin-ued frations for the algebrai hyperboli MCRS-groups.3.1. Hyperboli ase. An MCRS-group is alled hyperboli if it ontains a hyperbolioperator (whose all eigenvalues are all real and pairwise distint).3.1.1. Lagrange estimates for a speial ase. In this subsetion we prove an analog ofLagrange theorem on the approximation rate for an MCRS-groups that has eigenspaesde�ned by y = �1x and y = �2x with bounded elements of the ontinued frations for �1and �2. In partiular this inludes all algebrai MCRS-groups. Here we do not onsiderthe ase when one of the eigenspaes is x = 0, this ase was partially studied in Setion 2.







13Theorem 3.1. Let �1 and �2 be real numbers having in�nite ontinued frations withbounded elements. Consider an MCRS-group A with eigenspaes y = �1x and y = �2x.Then there exist positive onstants C1 and C2 suh that for any positive integer N the bestapproximation AN in 
 satis�es C1N2 < �(A;AN) < C2N2 :We will start the proof with the following two lemmas.Denote by AÆ1;Æ2 the MCRS-group de�ned by the lines y = (�i + Æi)x for i = 1; 2.Lemma 3.2. Consider a positive real number "1 suh than "1 < 1=|�1 − �2|. Supposethat �(A;AÆ1;Æ2) < "1 then
|Æ1| < (1+|�1|)(�1−�2)2


|�2|(1−"1|�1−�2|)"1 and |Æ2| < (1+|�2|)(�1−�2)2
|�1|(1−"1|�1−�2|)"1:Proof. Let us remind that the Marko�-Davenport form of AÆ1;Æ2 is�AÆ1;Æ2(x; y) = (y − (�1 + Æ1)x)(y − (�2 + Æ2)x)(�2 + Æ2)− (�1 + Æ1) :Consider the absolute values of the oeÆients at y2 and at xy for the di�erene ofMarko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2. By the onditions of thelemma these oeÆients are less then "1:


∣


∣


∣


∣


Æ2 − Æ1(�1 − �2)(�1 − �2 + Æ1 − Æ2) ∣∣∣∣ < "1 and ∣


∣


∣


∣


�1Æ2 − �2Æ1(�1 − �2)(�1 − �2 + Æ1 − Æ2) ∣∣∣∣ < "1:From the �rst inequality we have:
|Æ1 − Æ2| < (�1 − �2)21− "1|�1 − �2|"1:The seond inequality implies:


|Æ1| < |(�1 − �2)(�1 − �2 + Æ1 − Æ2)|"1 + |�1(Æ1 − Æ2)|
|�2| ;and therefore


|Æ1| < |�1 − �2|(|�1 − �2|+ (�1−�2)21−"1|�1−�2|"1)"1 + |�1| (�1−�2)21−"1|�1−�2|"1
|�2| = (1 + |�1|)(�1 − �2)2


|�2|(1− "1|�1 − �2|)"1:The inequality for Æ2 is obtained in the same way. �Lemma 3.3. Let "2 be a positive real number. Suppose |Æ1| < "2 and |Æ2| < "2, then�(A;AÆ1;Æ2) < max(2; 2(|�1|+ |�2|); �21+�22 + |�1−�2|"2)(|�1 − �2|)(|�1 − �2|+ 2"2) "2:Proof. The statement of lemma follows diretly form the estimate of the oeÆients forthe di�erene of Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2 . �







14 Proof of Theorem 3.1. Let us start with the �rst inequality. Let �1 = [a0; a1; : : :℄, andmi=ni = [a0; a1; : : : ; ai℄. Without loss of generality we assume that N > a0. Suppose k isthe maximal positive integer for whih mk ≤ N and nk ≤ N . Then we havemin(


∣


∣


∣
�1 − mn ∣


∣


∣


∣


∣


∣


∣


|m|≤N; |n|≤N)


≥
∣


∣


∣


∣


�1 − mk+1nk+1 ∣


∣


∣


∣


≥ 1nk+1(nk+1 + nk+2) ≥1(ak+1 + 1)nk((ak+1 + 1)nk + (ak+1 + 1)(ak+2 + 1)nk) ≥ 1(ak+1 + 1)2(ak+2 + 2) · 1N2 :For the seond and the third inequalities we refer to [22℄.The same alulations are valid for �2. Hene we get C1 from Lemma 3.2.Now we prove the seond inequality.
∣


∣


∣


∣


�1 − mknk ∣


∣


∣


∣


< 1nknk+1 < ak+1 + 1n2k+1 < (ak+1 + 1)N2 max (1; (�1 + 1)2):The �rst inequality is lassial and an be found in [22℄. We take maximum in the lastinequality for the ase of mk+1 > N and nk+1 < N . From onditions of the theorem theset of ai's is bounded. Therefore, there exists a onstant C ′2;1 suh that for any N thereexists an approximation of �1 of quality smaller than C ′2;1=N2.The same holds for �2. Therefore, we an apply Lemma 3.3 in order to obtain theonstant C2. �Let us say a few words about the ase of unbounded elements of ontinued frations for�i. Take any positive ". If the elements of a ontinued fration (say for �1) are growingfast enough than there exists a sequene Ni for whih the approximations ANi are of aquality C(Ni)1+" . We show this in the following example.Example 3.4. Let M be a positive integer. Consider �1 = [a0; a1; : : :℄, suh that a0 = 1,an = (nk−1)M−1. Denote mknk = [a0; : : : ; ak℄. Let �2 = 0. Take Nk = nk+nk+12 . Then thereexists a positive onstant C suh that for any integer i we have�(A;ANi) ≥ CN1+1=Mi :Proof. For any i we have ni+1 ≥ aini = nM−1i ni = nMi :Therefore, the best approximation with denominator and numerator less than Nk is notbetter than
∣


∣


∣


∣


�1 − mknk ∣


∣


∣


∣


≥ 1nk(nk+1 + nk) ≥ 1nMk+1(nk+1 + nk) ≥ 21+1=MN1+1=Mk :Now we apply Lemma 3.2 to omplete the proof. �We suspet the existene of badly approximable MCRS-group A and a onstant C suhthat there are only �nitely many solutions N of the following equation�(A;AN) ≤ CN ;







15like in the ase of simultaneous approximations of vetors in R3 (see for instane in [30℄).3.1.2. Periodi sails and best approximations in algebrai ase. Let us show one relationbetween lassial geometry of numbers (for example see in [4℄) and best simultaneousapproximations.First we reall the notion of sails. Consider an arbitrary one C in R2 with vertex atthe origin and boundary rays r1 and r2. We also suppose that the angle between r1 andr2 is non-zero and less than �. Denote the set of all integer points in the losure of theone exept the origin by Ir1;r2. The sail of this one is the boundary of the onvex hullof Ir1;r2. It is homeomorphi to a line and ontains rays in ase of ri has an integer pointdistint to the origin.De�nition 3.5. De�ne indutively the n-sail for the one C.| let 1-sail be the sail of C.| suppose all k-sails for k < k0 are de�ned then let k0-sail be�( onv (Ir1;r2 \ k0−1
⋃k=1 k-sail));where onv(M) denote the onvex hull of M .The k-sails have the following interesting property.Proposition 3.6. Consider a one C. The k-sail of C is homotheti to the 1-sail of Cand the oeÆient of homothety is k. �Now onsider an arbitrary MCRS-group. Let l1 and l2 be the two eigenlines for all theoperators of MCRS-group. The union of all four k-sails for the ones de�ned by the linesl1 and l2 is a k-geometri ontinued fration of the MCRS-group.Further we proeed with an algebrai ase. So a hyperboli MCRS-group A ontains anGL(2;Z)-operator with distint eigenvalues. In this ase the mentioned operator ats ona k-geometri ontinued fration (for any k) as a transitive shift. In addition the valuesof the funtion �A(m;n); for m;n ∈ Z,are ontained in the set �Z where the value � is attained at some point of the 1-geometriontinued fration. The value � = �(A) is an essential harateristi of A, it is sometimesalled Marko� minima of the form �A.Lemma 3.7. Let an integer point (m;n) be in the k-geometri ontinued fration of A.Then


|�A(m;n)| ≥ k�:Proof. We use indution.The statement learly holds for k = 1.Suppose the statement holds for k = k0 let us prove it for k = k0 + 1. From thestep of indution we have the following: for any one the onvex hull of real points







16
|�A(a; b)| = k0� ontains the k0-sail of the one. From the other hand all integer pointswith |�A(m;n)| = k0� (if any) are on the boundary of this onvex hull. Hene all of themare in k0-sail, and thus they are not ontained in (k0+1)-sail. �Theorem 3.8. Let A be an algebrai MCRS-group. Then there exists a positive onstantsC suh that for any positive integer N the following holds. Let the best approximation
AN ∈ 
 be de�ned by primitive vetors v1 and v2 ontained in k1- and k2-geometriontinued frations respetively, then k1; k2 < C.Proof. By Lemma 3.7 it is suÆient to prove that the set of values of |�A(vi)| is bounded.Let A has eigenlines y = �ix, i = 1; 2. Notie that


|�A(m;n)| = ∣


∣


∣


∣


(m− �1n)(m− �2n)�1 − �2 ∣


∣


∣


∣


= ∣


∣


∣


mn − �1∣∣∣ · ∣∣∣
∣


m− �2n�1 − �2 n∣


∣


∣


∣Let v1 = (x1; y1). By Lemma 3.2 (without loss of generality we suppose that v1 orrespondsto Æ1 in the lemma) the �rst multipliative is bounded by ~C=N2 for some onstant ~C thatdoes not depend on N .Hene,
|�A(x1; y1)| ≤ ~C ∣


∣


∣


∣


y21N2 ·
x1y1 − �2�1 − �2 ∣∣∣∣ ≤ ~C ∣


∣


∣


∣


x1y1 − �2�1 − �2 ∣∣∣∣Finally, the last expression is uniformly bounded. The same holds for v2.Therefore, the set of values of |�A(vi)| is bounded. �Conjeture 1. We onjeture that for almost all N the vetors v1 and v2 de�ning ANare in 1-geometri ontinued fration.3.1.3. Tehnique of alulation of best approximations in the hyperboli ase. In this sub-setion we show a general tehnique of alulation of best approximations for an arbitraryMCRS-group A with eigenspaes y = �1x and y = �2x for distint real numbers �1 and�2.Proposition 3.9. Let m and n be two integers. Suppose |�1 − mn | < "3 (or |�2 − mn | < "3respetively), then the following holds:
∣


∣


∣
�1 − mn ∣


∣


∣
> |�1 − �2|


|�1 − �2|+ "3 |�A(m;n)|n2 (


∣


∣


∣
�2 − mn ∣


∣


∣
> 1


|�1 − �2|+ "3 |�A(m;n)|n2 ) :Proof. We have
∣


∣�1 − mn ∣


∣ = 1n |m− �1n| = 1n |m−�1n|(m−�2n)m−�2n = |�A(m;n)|n2 |�1−�2|
|�1−�2+(mn −�1)| > |�1−�2|


|�1−�2|+"3 |�A(m;n)|n2 :The same holds for the ase of the approximations of �2. �Proedure of best approximation alulation.1). Find best Diophantine approximations of �1 and �2 using ontinued frations inthe square N × N . Suppose for �i it is mi=ni, and the following best approximation ism′i=n′i.







172). Consider now the MCRS-group A with invariant lines y = mini x. By Lemma 3.3 weget an upper bound for �(A;A) (where "2 = max(1=(n1n′1); 1=(n2n′2))).3). Now having the estimate for disrepany we use Lemma 3.2 to get estimates C1and C2 for ∣


∣�1 − p1q1 ∣∣ and ∣


∣�2 − p2q2 ∣∣ for the best approximation of A with rays y = p1q1x andy = p2q2x.4). By Proposition 3.9 we write an estimate for �A(pi;qi)q2i for i = 1; 2.5). Finally we ompare the disrepanies for all MCRS-groups that satis�es the esti-mates for �A(ki;li)l2i obtained in 4).Example 3.10. Consider an MCRS-group ontaining Fibonai matrix:
( 0 11 1 ) :Denote by Fn the n-th Fibonai number.Consider any integer N ≥ 100.1). Consider a positive integer k suh that Fk ≤ N < Fk+1 and hoose an approximation


A with eigenspaes Fk−1y − Fkx = 0 and Fky + Fk−1x = 0. Then
∣


∣


∣


∣


�1 − FkFk−1 ∣∣∣∣ ≤ 1=(Fk−1Fk); ∣


∣


∣


∣


�1 + Fk−1Fk ∣


∣


∣


∣


≤ 1=(FkFk+1)2). So, "2 = 1=(Fk−1Fk) < 1=(55 · 89). Therefore,�(A;AÆ1;Æ2) < max(2; 2√5; 3 +√5=4895)5 + 2√54895 1Fk−1Fk < 2√55 + 2√54895 (89=55)3N2 < 3:79N2 :3). Hene, by Lemma 3.2 we get ("1 < 3:79=1002):
|Æ1| < 80:35N2 and |Æ2| < 18:97N2 :4). The estimates for �A(p1;q1)q21 and �A(p2;q2)q22 for the orresponding rays of best approxi-mation are as follows.


|�A(m1; n1)|n21 < 80:65N2 ; |�A(m2; n2)|n22 < 18:99N2 :5). Notie that the number of approximations whose disrepanies we ompare inthis step is bounded by some onstant not depending on N . We have ompleted theomputations for N = 106, the answer in this ase is the matrix with eigenspaes: F29y−F30x = 0 and F30y + F29x = 0.We onjeture that for the Fibonai matrix we always get the best approximation witheigenspaes Fk−1y − Fkx = 0 and Fky + Fk−1x = 0.We onlude this subsetion with an example showing that the ontinued frations donot always give best approximations.







18Example 3.11. Consider an operator A with eigenvetors:v1 = (1; 2) and v2 = (2; 3);and the orresponding maximal subgroup A. Then there are four di�erent best approxi-mations of size 1, they have invariant lines de�ned by the following ouples of vetors:
(w1 = (1; 0); w2 = (1; 1)); (w1 = (1; 0); w2 = (1;−1));


(w1 = (1; 0); w2 = (0; 1)); and (w1 = (0; 1); w2 = (1; 1)):(the disrepany between A and any of them equals 6). The ontinued fration (or theunion of sails) of A ontains only four integer points(1; 2); (2; 3); (−1;−2); and (−2;−3):Therefore the invariant lines of all four best approximations do not ontain vetors of thesail of A.Remark 3.12. Atually, for a generi MCRS-group the best approximation of any sizeN > 0 is unique. In the previous example we have four best approximations sine we areapproximating MCRS-group de�ned by vetors with integer oeÆients.3.2. Non-hyperboli ase. Now we prove similar statements for the omplex ase.3.2.1. Lagrange estimates for a speial ase. In this subsetion we prove an analog ofLagrange theorem on the approximation rate for an MCRS-groups that has omplexonjugate eigenspaes de�ned by y = (�+I�)x and y = (�−I�)x with bounded elementsof the ontinued frations for � and �. In partiular this inludes all omplex algebraiMCRS-groups.Theorem 3.13. Let � and � be real numbers having in�nite ontinued frations withbounded elements. Consider an MCRS-group A with eigenspaes y = (� + I�)x andy = (� − I�)x. Then there exist positive onstants C1 and C2 suh that for any positiveinteger N the best approximation AN in 
 satis�esC1N2 < �(A;AN) < C2N2 :We will start the proof with the following two lemmas.Denote by AÆ1;Æ2 the MCRS-group de�ned by the lines y = ((�+ Æ1)± I(� + Æ2))x fori = 1; 2.Lemma 3.14. Consider a positive real number "1 suh than "1 < 12(1+|�|) . Suppose that�(A;AÆ1;Æ2) < "1 then
|Æ1| < 2|�−�|�2


|�−�|−2"1|�|(1+|�|)"1 and |Æ2| < 2(1+|�|+|�−�|)�2
|�−�|−2"1|�|(1+|�|)"1:







19Proof. Consider the absolute values of the oeÆients at y2 and at xy for the di�ereneof Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2. By the onditions of thelemma these oeÆients are less then "1:
∣


∣


∣


∣


Æ2 − Æ12�(� + Æ2) ∣∣∣∣ < "1 and ∣


∣


∣


∣


�Æ2 − �Æ12�(� + Æ2)∣∣∣∣ < "1:Hene we have
∣


∣


∣


∣


(�− �)Æ22�(� + Æ2) ∣∣∣∣ ≤ + ∣


∣


∣


∣


�Æ2 − �Æ12�(� + Æ2) ∣∣∣∣ + |�| ∣∣∣
∣


Æ2 − Æ12�(� + Æ2) ∣∣∣∣ < (1 + |�|)"1:This gives us the estimate for Æ2.For Æ1 we have
|Æ1| < 2|�| ∣∣


∣
|�|+ 2(1+|�|)�2


|�−�|−2"1|�|(1+|�|)"1∣∣∣ "1 + 2(1+|�|)�2
|�−�|−2"1|�|(1+|�|)"1 = 2(1+|�|+|�−�|)�2


|�−�|−2"1|�|(1+|�|)"1:The proof is ompleted. �Lemma 3.15. Let "2 be a positive real number. Suppose |Æ1| < "2 and |Æ2| < "2, then�(A;AÆ1;Æ2) < max(2; 2(|�|+ |�|); |�2−�2|+ 2|��|+ 2|�|"2)
|�|(|�|+ "2) "2:Proof. The statement of lemma follows diretly form the estimate of the oeÆients forthe di�erene of Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2 . �Proof of Theorem 3.13. The remaining part of the proof almost ompletely repeats theend of the proof of Theorem 3.1, so we omit it here. �3.2.2. Tehnique of alulation of best approximations in the hyperboli ase. Here we showa general tehnique of alulation of best approximations for an arbitrary MCRS-group


A with eigenspaes y = (�± I�)x for real number � and positive real �.Proposition 3.16. Let a satisfy |� + I�| < "3, then the following holds:
|(� + I�)− a| > 2�|�A(1; a)|2� + "3 :Proof. We have |(� + I�)− a| = |(�+I�)−a|((�−I�)−a)(�−I�)−a = 2�|�A(1;a)|


|((�+I�)−a)−2I�| > 2�|�A(1;a)|2�+"3 : �Proedure of best approximation alulation.1). Find best Diophantine approximations of � and � using ontinued frations inthe square N × N . Suppose for � and � it are m1=n1, and m2=n2, and the next bestapproximation are m′1=n′1, and m′2=n′2.2). Consider the MCRS-group A with invariant lines y = (m1n1 ±I m2n2 )x. By Lemma 3.15we get an upper bound for �(A;A) (where "2 = max(1=(n1n′1); 1=(n2n′2))).3). Now having the estimate on disrepany we use Lemma 3.14 to get estimates C1and C2 for the best approximation of A: ∣


∣�− p1q1 ∣∣ and ∣


∣� − p2q2 ∣∣ respetively.4). By Proposition 3.16 we write an estimate for ∣


∣�A
(1; p1q1 + I p2q2 )∣∣.







20 5). Finally we ompare the disrepanies for all MCRS-groups that satis�es the esti-mates obtained in 4).4. Simultaneous approximations in R3 and MCRS-group approximationsTheory of simultaneous approximation of a real vetor by vetors with rational oeÆ-ients an be onsidered as a speial ase of MCRS-group approximations similarly to theDiophantine ase. In this setion we study several examples of simultaneous approxima-tions in frames of MCRS-group approximations. The �rst example is an eigen-diretionof a hyperboli operator (see in Subsetion 3.2) and the seond is an eigen-diretion of anonhyperboli operator (see in Subsetion 3.3).4.1. General onstrution. Let [a; b; ℄ be a vetor in R3. Consider the maximal om-mutative subgroup A[a; b; ℄ de�ned by three vetors(a; b; ); (0; 1; I); (0; 1;−I):The problem of approximation here is in approximation of the subgroup A[a; b; ℄ by
A[a′; b′; ′℄ for integer vetors (a′; b′; ′). For this ase we have:�A[a;b;℄(x; y; z) = I (


−b2 + 22a2 x3 + bax2y + ax2z − 12xy2 − 12xz2) :Therefore,�(A[a; b; ℄;A[a′; b′; ′℄) = min(max(


∣


∣


ba − b′a′ ∣∣ ; ∣∣ a − ′a′ ∣∣ ; ∣∣∣ b2+22a2 − b′2+′22a′2 ∣


∣


∣


) ;max(


∣


∣


ba + b′a′ ∣∣ ; ∣∣ a + ′a′ ∣∣ ; ∣∣∣b2+22a2 + b′2+′22a′2 ∣


∣


∣


)) :4.2. A ray of non-hyperboli operator. Consider the non-hyperboli algebrai ope-rator B = 





0 1 10 0 11 0 0 


 :This operator is in some sense the simplest non-hyperboli operator we an have (see formore information [21℄).Denote the eigenvalues of E1 by �1, �2, and �3 suh that �1 is real, �2 and �3 are omplexonjugate. Notie also that
|�1| > |�2| = |�3|:We approximate the eigenspae orresponding to �1. Let v�1 be the vetor in thiseigenspae having the �rst oordinate equal to 1. Note that�1 ≈ 1:3247179573 and v�1 ≈ (1; :5698402911; :7548776662):The set of best approximations AN with N ≤ 106 ontains of 48 elements. Theseelements are of type Bni(1; 0; 0) where n1 = 4, and for 2 ≤ i ≤ 48 we have ni = i+4. Weonjeture that all the set of best approximations oinide with the set of points Bk(1; 0; 0)where k = 4, or k ≥ 6, the approximation rate in this ase is CN−3=2.







214.3. Two-dimensional golden ratio. Let us onsider an algebrai operatorG = 





3 2 12 2 11 1 1 


 :This operator is usually alled two-dimensional golden ratio. It is the simplest hyperbolioperator from many points of view, his two-dimensional ontinued fration in the senseof Klein was studied in details by E. I. Korkina in [26℄ and [27℄.The group of all integer operators of GL(3;Z) ommuting with G is generated by thefollowing two operators:E1 = 





1 1 11 1 01 0 0 


 and E2 = 





0 1 11 0 01 0 −1 


 :Note that G = E21 and E2 = (E1 − Id)−1, where Id is an identity operator. Operator E1is a three-dimensional Fibonai operator.Denote the eigenvalues of E1 by �1, �2, and �3 in suh a way that the following holds:
|�1| > |�2| > |�3|:Let us approximate the eigenspae orresponding to �1. Denote by v�1 the vetor ofthis eigenspae having the last oordinate equal to 1. Note that�1 ≈ 2:2469796037 and v�1 ≈ (2:2469796037; 1:8019377358; 1):The set of best approximations AN with N ≤ 106 ontains 40 elements. These elementsare in the set


{Em1 En2 (1; 0; 0)∣∣∣m;n ∈ Z


}:All the points of the sequene an be found from the next table. In the olumn  weget m = m, n = n for the approximation Em1 En2 (1; 0; 0).i 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22m 1 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 10 10 11 11n 1 1 2 1 2 1 3 2 3 2 1 3 2 3 2 4 3 4 3 5 4i 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41m 11 12 12 13 13 14 14 15 15 15 16 16 17 17 18 18 19 19 19n 3 4 3 5 4 5 4 6 5 4 5 4 6 5 6 5 7 6 5In addition to this table we have A3 = (3; 2; 1) as best approximation.We onjeture that all the set of best approximations exept A3 is ontained in the setof all points of type Em1 En2 (1; 0; 0), the approximation rate in this ase is CN−3=2.
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