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ABSTRACT:How to �nd \best rational approximations" of maximal 
ommutative subgroups of GL(n;R)?In this paper we pose and make �rst steps in the study of this problem. It 
ontains both
lassi
al problems of Diophantine and simultaneous approximations as a parti
ular sub
asesbut in general is mu
h wider. We prove estimates for n = 2 for both totaly real and 
omplex
ases and write the algorithm to 
onstru
t best approximations of a �xed size. In addition weintrodu
e a relation between best approximations and sails of 
ones and interpret the result fortotally real subgroups in geometri
 terms of sails.Key words: Maximal 
ommutative subgroups, 
entralizers, Diophantine approxima-tions, Marko�-Davenport forms, sail of simpli
ial 
ones.
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Introdu
tion:The Problem and its RelationshipsWe pose and investigate a problem of approximation of maximal 
ommutative sub-groups of GL(n;R) by rational subgroups, or more geometri
ally in other words a prob-lem of approximation of arbitrary simpli
ial 
ones in Rn by rational simpli
ial 
ones. Thisproblem is a natural multidimensional generalization of a problem on rational approxima-tions of real numbers that is 
ontained in the 
ase of n = 1. As a parti
ular example it also
ontains a simultaneous approximation problem and 
losely related to multidimensionalgeneralizations of 
ontinued fra
tions. The problem of approximation of real spe
trummaximal 
ommutative subgroups has mu
h in 
ommon with the problem of approxima-tions of nondegenerate simpli
ial 
ones. This in parti
ular allows to use methods dealingwith multidimensional 
ontinued fra
tions.Maximal 
ommutative subgroups. We 
onsider a Cartan subgroup of the groupGL(n;R) or maximal abelian semisimple subgroups of GL(n;R). Some times it is 
onve-nient to 
onsider su
h subgroup as the set of all matri
es, 
ommuting with given semisim-ple element A ∈ GL(n;R), i.e., the 
entralizer CGL(n;R)(A). The 
entralizer is 
ommutativeif and only if A has distin
t eigenvalues. So we work with 
entralizers of \generi
" ma-tri
es. For the �eld of real numbers not all Cartan subgroups are mutually 
onjugate:the general Cartan subgroup in GL(n;R) has k one-dimensional and l two-dimensionalminimal eigenspa
es (where k+2l = n). We will study mainly the Cartan subgroupswith only one-dimensional minimal eigenspa
es, whi
h we 
all "real Cartan subgroup",but all the de�nitions are extended to the general Cartan subgroups of GL(n;R) and 
anbe extended to the 
ase of the Cartan subgroup of GL(n;C) or more general semisimplegroups. In that 
ase all elements of the Cartan subgroup has real eigenvalues.



4 We will use term "maximal 
ommutative subgroup" or shortly MCRF, and denote thespa
e of it as Cn.The spa
e of simpli
ial 
ones. It is 
onvenient to deal with geometri
 analog ofMCRF-subgroups. Let us des
ribe a relation of real maximal 
ommutative subgroupsand nondegenerate simpli
ial 
ones.A nondegenerate simpli
ial 
one in Rn is a 
oni
al 
onvex hull of a set of n unorderedlinearly-independent ve
tors. Further we omit \nondegenerate", sin
e we work only withnondegenerate 
ones. Together with any simpli
ial 
one K one may study its symmetri
with respe
t to origin 
one −K. All further dis
ussions, 
onstru
tions, notions, andstatements are invariant with respe
t to the map x 7→ −x of Rn, and hen
e they all dealwith both 
ones K and its symmetri
 one −K. Therefore, we identify the 
ones K and
−K and de�ne Simpln as a spa
e of pairs of symmetri
 
ones.There exists a natural (2n−1)-folded 
overing of the spa
e Cn of all maximal 
ommutativesubgroups by the spa
e Simpln: Simpln → Cnthe 
ones map to the subalgebras whose eigendire
tions are the extremal rays of the 
ones.So for any element of Simpln we have a maximal 
ommutative subgroups.Therefore, approximation problems, whi
h we dis
uss below and whi
h are lo
al prob-lems, 
an be studied in terms of the groups as well as in terms of simpli
ial 
ones.A spa
e Simpln of all simpli
ial 
ones in Rn 
an be de�ned dire
tly with 
oordinates of
ones generators, nevertheless it is very important to understand this spa
e as a homoge-neous spa
e of the group GL(n;R) in the following way.Consider a group GL(n;R); n > 1 of all linear invertible transformations in Rn with a�xed basis. Take Dn | the subgroup of the diagonal matri
es in the 
hosen basis whi
hhave positive numbers on the diagonal, i.e. a positive part of the 
orresponding Cartansubgroup or 
onne
ted 
omponent of the unity of that subgroup. The elements of thissubgroup leaves invariant ea
h of the 2n of 
oordinate 
ones. The left homogeneous spa
eGL(n;R)=Dn 
an be 
onsidered as a spa
e of all 
onne
ted parts of the Cartan subgroupsof the group GL(n;R). To get a 
one (or a
tually a pair of symmetri
 
ones K and −K)we should add a symmetri
 group of 
oordinate permutations Sn (Weil group) whi
h isalso 
ontained in the normalizer of Dn. Denote by D̂n the skew-produ
t Sn ⋌ Dn of thesymmetri
 group and the subgroup of diagonal matri
es.A homogeneous spa
e GL(n;R)=D̂nof left 
onjuga
y 
lasses in GL(n;R); n > 1 with respe
t to the subgroup D̂n is naturallyidenti�ed with the spa
e of all (pairs of) nondegenerate simpli
ial 
ones Simpln.Indeed, the subgroup of GL(n;R) preserving the positive 
oordinate 
one Rn+ as wellas its re
e
tion 
oin
ides with the group D̂n, and GL(n;R) transitively a
ts on Simpln.Noti
e that it is sometimes 
onvenient to take the group SL(n;R) instead of GL(n;R)(fa
toring the last by the subgroups of positive s
alar matri
es and taking D̂n as the



5subgroup of positive diagonal matri
es with unit determinant in SL(n;R):Simpln = SL(n;R)={D̂n ∩ SL(n;R)}A homogeneous spa
e Simpln; n > 1 is not 
ompa
t. This spa
e admits a transitiveright a
tion of the whole group GL(n;R) and it possess an essential absolutely 
ontinuousmeasure �n, that is quasihomogeneous with respe
t of the a
tion. This measure is 
alledM�obius measure, it was studied in [18℄. We are mostly interested in the a
tions of SL(n;Z)and SL(n;Q) on the spa
e Simpln but not in the a
tion of the whole group GL(n;R); n >1. These a
tions are ergodi
.De�nition 0.1. Consider a simpli
ial 
one C ∈ Simpln. The boundary of the 
onvexhall of the integer points in this 
one without an origin, i.e.�( 
onv{C ∩ Zn \ (0; : : : ; 0)});is 
alled the sail of the simpli
ial 
one.The spa
e of the simpli
ial 
ones 
ould be identi�ed with the spa
e of the sails ofsimpli
ial 
ones.Remark. Note that one 
an 
onsider the sail for other 
onvex bodies, for instan
e of theinteriors of 
oni
s.For the simplest 
ase of n = 2 a simpli
ial 
one is a 
onvex angle between two rays onthe plane, and the spa
e Simpl2 of all 
ones is a two dimensional torus without a diagonalmodulo the involution: {S1 × S1 r Diag}= ≈, where Diag is the diagonal in S1 × S1and ≈ is a fa
torization: (x; y) ≈ (y; x). Here the points of the 
ir
les S1 are the orientedlines in R2 that 
ontains 
riti
al rays of the angles, and quasiinvariant measure is theLebesque measure. A
tually Simpl2 is a M�obius strip without a boundary or equivalentlya pun
tured proje
tive plane. The geometry of the 
orresponding 
one in
ludes a partof the 
lassi
al theory of 
ontinuous fra
tion. The sail for n = 2 is the boundary ofnon
ompa
t 
onvex polygon. The two-dimensional 
ase is tightly 
onne
ted with 
lassi
al
ontinued fra
tions (see in Se
tion 2).The problem of approximations. The des
ribed relation between simpli
ial 
ones andreal spe
trum (i.e. having real eigenvalues, see further) maximal 
ommutative subgroupsin GL(n;R) preserving the 
orresponding 
ones is a 
overing (up to an identi�
ation ofthe 
one and its 
entral symmetri
al image). Therefore approximations of su
h subgroupsand approximations of simpli
ial 
ones (we speak about this further) are the same up tothe lifting. Re
all that we have �xed a system of 
oordinates in Rn, and hen
e we have aspe
ial 
oordinate simpli
ial 
one K0 = Rn+ (a hypero
tant).De�nition 0.2. A rational simpli
ial 
one (or respe
tively a rational 
ommutative subgroup)is a 
one (a subgroup) whose all extremal rays (eigen-dire
tions) 
ontains points distin
tto the origin with all rational 
oordinates, a
tually this implies the existen
e of pointswith all integer 
oordinates as well.



6 A simpli
ial 
one (maximal 
ommutative subgroup) is 
alled algebrai
 if there exists amatrix g ∈ SL(n;Z) with distin
t eigenvalues whose eigen-dire
tions generates this 
one(respe
tively integer matrix whose 
entralizer in SL(n;R) 
oin
ides with this subgroup).It is 
lear that the rational 
ones form the orbit of the 
oordinate 
one K0 with respe
tto the group SL(n;Q).An example of an algebrai
 simpli
ial 
one is the 
oni
al 
onvex hull of the two eigen-ve
tors of the Fibona

i matrix: g = ( 1 11 0 )De�nition 0.3. Consider some 
one C ∈ Simpln and take nonzero linear forms L1; : : : ; Lnthat annulates the hyperfa
es of the 
one. A Marko�-Davenport form is�C(x) = n
∏k=1 (Lk(x1; : : : ; xn))�(L1; : : : ; Ln)where �(L1; : : : ; Ln) is the volume of the parallelepiped spanned by Lk for k = 1; : : : ; nin the dual spa
e.This form is de�ned by a 
one uniquely up to a sign. Now having Marko�-Davenportform � one 
an de�ne distan
es between two 
ones. For two 
ones C1 and C2 
onsidertwo forms �C1(v) + �C2(v) and �C1(v)− �C2(v):Take the maximal absolute values of the 
oeÆ
ients of these forms separately, the minimalof them would be the distan
e between C1 and C2. Further in Subse
tion 1.1 we de�neMarko�-Davenport form in a more general situation.Now we are ready to formulate the main problem of approximations:For a given simpli
ial 
one (or maximal 
ommutative subgroup of SL(n;R))�nd a rational simpli
ial 
one (rational maximal 
ommutative real subgroup)that for a 
hosen Marko�-Davenport metri
 is the 
losest rational simpli
ial
one (subgroup) in some �xed 
lass of rational 
ones (subgroups).Su
h 
lasses of rational 
ones 
an 
hosen to be �nite 
lasses in
luding only 
ones having�xed \sizes" of integer points on their rays (for more information see below in Se
tion 1).First of all the approximations problem by rational simpli
ial 
ones (subgroup) mustbe 
onsidered for algebrai
 
ones (subgroups). The most intriguing things are 
onne
tedwith generalization of the beautiful theory of Marko�-Lagrange spe
tra [31℄ and Marko�-Davenport n-ary forms [10℄.Relations with theory of multidimensional 
ontinued fra
tions. The problemon approximation of 
ommutative subgroups or simpli
ial 
ones formulated above andstudied in this work is intimately 
onne
ted with the theory of multidimensional 
ontinuedfra
tions but does not redu
e to that.



7The re
ent work by V. I. Arnold [2℄ and the following works by him [4℄, E. I. Korkina [26℄,G. La
haud [29℄, J.-O. Mussa�r [33℄, Karpenkov [14℄, et
., revived the interest to one of
lassi
al generalizations of 
ontinued fra
tions theory, 
onsidered for the �rst time byF. Klein in [23℄. From geometri
al point of view the generalization deals with sails. The
lassi
al theory of ordinary 
ontinued fra
tions i.e. theory of Gauss transformations inalgebro-dynami
al terms related to the 
ase n = 2 was made by R. L. Adler and L. Flattoin [1℄. M. L. Kontsevi
h, Yu. M. Suhov in [24℄ made an improved version admitting anextension to multidimensional 
ase. In the work [24℄ the authors 
onsidered the followingapproa
h to these questions: to study the homogeneous spa
e SL(n;R)=SL(n;Z), i.e.the spa
e of latti
es in SL(n;R), and the a
tion of the Cartan subgroup Dn on it. Forn = 2 this a
tion is redu
ed to the a
tion of the group R1 and as it is known from [1℄ itis a spe
ial suspension over the Gauss automorphism that lies in a de�nition of 
ontinuedfra
tions.One 
an suppose that the solution of the approximation problem redu
ed to the geom-etry of the sails in the following sense: in order to �nd the best approximation of the 
one(equivalently maximal 
ommutative subgroup) one must �nd the appropriate basis of theve
tors whi
h belong to the verti
es of the sail of this 
one or adja
ent 
one. Up to nowthis is an open question. The experiments show that it 
ould be not always the 
ase (seefor instan
e in Example 3.11).Let us show 
onne
tions of our problem with this geometry. First of all the spa
eSimpln as we had mentioned 
an be interpreted as the spa
e of sails of simpli
ial 
ones.Let us 
ompare our approa
h to the geometry of sails with [24℄.One 
an think of dynami
al systems as of triples: (a spa
e, a group a
tion, an invariantor quasiinvariant measure). Then in [24℄ the authors study the dynami
al system
{SL(n;R)=SL(n;Z); Dn; �n}:i.e. in our terms it is multidimensional suspension (time here is a Cartan subgroup) in agiven or an arbitrary 
one.Our approa
h to theory of sails is in some sense dual to the approa
h of [24℄. We
onsider another dynami
al system, namely, the a
tion of a dis
rete (non
ommutative)group SL(n;Z) (or SL(n;Q)) in the spa
e of sails (or equivalently simpli
ial 
ones):

{Simpln(= SL(n;R)=D̂n); SL(n;Z); �n}:Roughly speaking the \time" and the subgroup de�ning the homogeneous spa
e has beentransposed.Both approa
hes have their own advantages and limitations. However the main aim ofthe 
urrent work is not in studying of multidimensional sails, their statisti
s and otherproperties, but in their appli
ations to approximations.More about geometry of sails. The geometry of sails is very interesting by itself. Oneof the essential subje
ts here is a statisti
al analysis of their geometri
 
hara
teristi
s withrespe
t to the measure on the spa
e of the sails Simpln. For instan
e, what is the measureof sails with given properties: say with given number of fa
es of some given 
ombinatorialtype (see [24℄, [5℄, [6℄, [15℄, [18℄). This would generalize Gauss-Kuzmin theorem (see



8in [28℄) and some others for ordinary 
ontinued fra
tions. The work in this dire
tion hasjust started and it is not mu
h known now, �rst theorems on this subje
t 
an be foundin [18℄.Fa
es of di�erent dimensions of a sail were studied in [29℄, [33℄, [13℄, [25℄, [17℄. In alge-brai
 
ases all fa
es are polyhedra. It is also natural to 
onsider the sails in the adja
enthypero
tants. The important problem here is to study the 
ondition for a polygonal sur-fa
e to be a sail form some 
one. This problem was posed by V. I. Arnold and was studiedin several papers ([3℄, [4℄, [14℄, [16℄, [17℄, [20℄, [26℄, [27℄ [29℄, [33℄). In [37℄ H. Tsu
hihashishowed the relation between sails of 
ones and 
usp singularities, introdu
ing a new appli-
ation to tori
 geometry. This relation is studied in detail in [19℄ for the two-dimensional
ase.A
tually in the study of Simpln the other multidimensional generalizations of 
ontin-ued fra
tions 
an be useful. This in parti
ular in
ludes the 
onsidered before 
onvex-geometri
 ([23℄, [4℄, [26℄, [29℄, [14℄) lo
al minima type ([32℄, [7℄), Voronoy ([39℄, [9℄), andalgorithmi
([34℄, [35℄) generalizations of 
ontinued fra
tions.Conne
tions with limit shape problems. Another link of the approximation problemis with so 
alled limit shape problems. We want only to emphasize here that the problemslike limit shape problems about Young diagrams or 
onvex latti
e polygons (see [38℄) 
anbe 
onsidered in the simpli
ial 
ones (instead of traditional posing in the hypero
tant Z+n ),and in this 
ase the rational approximation of the 
one be
omes an important argument.We hope to 
onsider this in the appropriate pla
e.Des
ription of obtained results. Let us brie
y des
ribe the results of this work. Ap-parently the problem of approximations of arbitrary 
ommutative subgroups in SL(n;R)was never stated in su
h generality. By the problem of approximation we mean the prob-lem of �nding of best approximation of a simpli
ial 
one by rational 
ones (similar tothe 
lassi
al problem on best approximations of real numbers by rational numbers). Thisproblem is very 
ompli
ated already in the 
ase of n = 2. That is also applied even to thealgebrai
 
ones. We give several estimates that suggest an idea that best approximationsare not always related to sails or to sails of adja
ent 
ones (see also in Example 3.11).First, we show that the 
lassi
al 
ase of approximations of real numbers by rationalnumbers is really one of parti
ular 
ases of the proposed new approximation model. Inaddition we also indi
ate that simultaneous approximations are also 
overed by our ap-proa
h.Further we work in general 
ase of n = 2. We give upper and lower estimates for thedis
repan
y between best approximations and original simpli
ial 
ones in the followingimportant 
ase (Theorem 3.1): let �1; �2 ∈ R both have in�nite 
ontinued fra
tions withbounded elements, 
onsider a simpli
ial 
one bounded by two lines y = �1 and y = �2,then the growth rate of the best approximation of size N is bounded by C1=N2 and C2=N2while N tends to in�nity. Then we translate this statement to the language of sailsand their generalizations (Theorem 3.8) and �nally show an algorithm to 
onstru
t bestapproximations of a �xed size.



9Remark. In this paper we work in a slightly extended way in
luding 
ommutative sub-groups of SL(n;R) having 
omplex 
onjugate eigenve
tors as well. This is the main reasonfor our 
hoi
e to use terminology of 
ommutative subgroups instead of simpli
ial 
ones(that are 
onvenient only for the totally real 
ase).We 
on
lude the paper with several examples of approximations in the three-dimensional
ase, 
oming from simultaneous approximations.The paper is organized as follows. In Se
tion 1 we give basi
 notions and de�nitions ofmaximal subgroup approximation theory. We introdu
e sizes and dis
repan
ies for thesubgroups and de�ne the notion of \best approximations" in our 
ontext. In Se
tion 2we brie
y show how the 
lassi
al theory of Diophantine approximations is embedded intotheory of subgroup approximations.Further we make �rst steps to study a general two-dimensional 
ase. It is rather 
ompli-
ated sin
e we need to approximate an obje
t de�ned by four entries of 2×2 matri
es thatvary. Hen
e this 
ase is 
omparable with a general 
ase of simultaneous approximationsof ve
tors in R4. Nevertheless it is simpler to �nd the best approximations in the 
ase ofsubgroups, espe
ially in spe
ial algebrai
 
ase when a 
ertain periodi
ity of approxima-tions take pla
e. In Se
tion 3 we write estimates for the quality of best approximations forboth hyperboli
 and non-hyperboli
 
ases of rays whose 
ontinued fra
tions has boundedelements. This in parti
ular in
ludes an algebrai
 
ase. We also show geometri
 originsof the bounds in terms of 
ontinued fra
tions for the hyperboli
 algebrai
 
ase.Finally in Se
tion 4 we study in a 
ouple examples the 
ase of simultaneous approxi-mations of ve
tors in R3 in the frames of subgroup approximations. We test two algebrai
examples 
oming from totally real and non-totally real 
ases.1. Rational approximations of MCRF-groupsIn this se
tion we give general de�nitions and formulate basi
 
on
epts of maximal
ommutative subgroups approximations. We re
all a de�nition of a Marko�-Davenportform in Subse
tion 1.1. Further in Subse
tion 1.2 we de�ne rational subgroups and 
hoose\size" for them. We de�ne the distan
e fun
tion (dis
repan
y) between two subgroups inSubse
tion 1.3.As we have already mentioned we will 
ontinue with terminology of maximal 
ommu-tative subgroups. In 
ase when we deal with real spe
tra subgroups the statements 
anbe dire
tly translated to the 
ase of simpli
ial 
ones.1.1. Regular subgroups and Marko�-Davenport forms. Consider a real spa
e Rnand �x some 
oordinate basis in it. A real operator is 
alled regular if all its eigenvaluesare distin
t (but not ne
essary real). A maximal 
ommutative subgroup of GL(n;R) issaid to be regular, or MCRS-group for short, if it 
ontains regular operators.We say that a one-dimensional 
omplex spa
e is an eigenspa
e of an MCRF-group if itis an eigenspa
e of one of its regular operators. A
tually any two regular operators of thesame MCRS-group have the same eigenspa
es, therefore ea
h MCRF-group has exa
tly ndistin
t eigenspa
es.



10 Consider an arbitrary MCRS-group A and denote its eigenspa
es by l1; : : : ; ln. Denoteby Li a nonzero linear form over Cn that attains zero values at all ve
tors of the 
omplexlines lj for j 6= i. Let �(L1; : : : ; Ln) be the determinant of the matrix having in the k-th
olumn the 
oeÆ
ients of the form Lk for k = 1; : : : ; n in the dual basis.De�nition 1.1. We say that the formn
∏k=1 (Lk(x1; : : : ; xn))�(L1; : : : ; Ln)is the Marko�-Davenport form for the MCRS-group A and denote it by �A.Example 1.2. Consider an MCRS-group 
ontaining a Fibona

i operator

( 1 11 0 ) :Fibona

i operator has two eigenlinesy = −�x and y = �−1x;where � is the golden ration 1+√52 . So the Marko�-Davenport form of Fibona

i operatoris (y + �x)(y − �−1x)� − �−1 = 1√5(−x2 + xy + y2):A Marko�-Davenport form is uniquely de�ned by an MCRS-group up to a sign, sin
ethe linear forms Li are uniquely de�ned by the MCRS-group up to multipli
ation by as
alar and permutations. By de�nition any MCRS-group 
ontains a real operator withdistin
t roots, therefore all the 
oeÆ
ients of the Marko�-Davenport form are real.Remark 1.3. The minima of the absolute values of su
h forms on the integer latti
e werestudied by A. Marko� in [31℄ for two-dimensional 
ase, and further by H. Davenport in [10℄,[11℄, and [12℄ for three-dimensional totally real 
ase. A few three-dimensional totally realexamples were exhoustively studied by A. D. Bryuno, V. I. Parusnikov (see for instan
ein [8℄). The �rst steps in general multidimensional 
ase were made in paper [21℄.1.2. Rational subgroups and their sizes. We start with the following de�nition.De�nition 1.4. An MCRS-group A is 
alled rational if all its eigenspa
es 
ontain Gauss-ian ve
tors, i. e. ve
tors whose 
oordinates are of type a+ Ib for integers a and b, whereI2 = −1. Denote the set of all rational MCRS-groups of dimension n by Ratn.Example 1.5. The following two operators
( 0 −11 0 ) with eigenve
tors (I; 1) and (−I; 1);
( 1 14 1 ) with eigenve
tors (1; 2) and (1;−2)



11represents rational MCRS-groups (denote them by Ai and Aii) with real and 
omplex
onjugate eigen-dire
tions.For a 
omplex ve
tor v = (a1+Ib1; : : : ; an+Ibn) denote by |v| the normmaxi=1;:::;n(

√a2i + b2i) :A Gaussian ve
tor is said to be primitive if all its 
oordinates are relatively prime.Suppose that a 
omplex one-dimensional spa
e has Gaussian ve
tors, then the minimalvalue of the norm | ∗ | for the Gaussian ve
tors is attained at primitive Gaussian ve
tors.De�nition 1.6. Consider a rational MCRS-group A. Let l1; : : : ; ln be the eigenspa
es of
A. The size of A is a real numbermaxi=1;:::;n{

|vi|∣∣vi { is a primitive Gaussian ve
tor in li};we denote it by �(A).The sizes of operators in Example 1.5 are 1 and 2 respe
tively.1.3. Dis
repan
y fun
tional and approximation model. We are fo
used mostly onthe following approximation problem: how to approximate an MCRS-group by rationalMCRS-groups (or even by a 
ertain subset of rational MCRS-groups)?Let us �rst de�ne a natural distan
e between MCRF-groups. Let A1 and A2 be twoMCRS-groups. Consider the following two symmetri
 bilinear forms�A1(v) + �A2(v) and �A1(v)− �A2(v)for ve
tors in Rn. Take the maximal absolute values of the 
oeÆ
ients of these forms(separately). The minimal of these two maximal values we 
onsider as a distan
e between
A1 and A2, we 
all it dis
repan
y and denote by �(A1;A2).Let us 
al
ulate the dis
repan
y between the MCRS-groups of Example 1.5. We have

∣

∣�Ai(v)± �Aii(v)∣∣ = ∣

∣

∣

∣

I x2 + y22 ± y2 − 4x24 ∣

∣

∣

∣therefore �(Ai;Aii) = √32 .De�nition 1.7. Let 
 ⊂ Ratn for a �xed n. The problem of best approximations of anMCRS-group A by MCRS-groups in 
 is as follows. For a given positive integer N �nda rational MCRS-group AN in 
 with size not ex
eeding N su
h that�(A;AN) = min{�(A;A′)∣∣A′ ∈ 
; �(A′) ≤ N}:Remark 1.8. There are another important 
lasses of MCRS-groups that 
ontain matri
es ofGL(n;Z) and GL(n;Q) respe
tively. The MCRS-group is said to be algebrai
 if it 
ontainsregular operators of GL(n;Z). It is natural to 
onsider approximations of MCRS-groupsby algebrai
 MCRS-groups, and approximations of algebrai
 MCRS-groups by rationalMCRS-groups.



12 2. Diophantine approximations and MCRS-group approximationsA 
lassi
al problem of approximating real numbers by rational numbers is a parti
ular
ase of the problem of best approximations of MCRS-groups.For a real � denote by A[�℄ an MCRS-group of GL(2;R) de�ned by the two spa
esx = 0 and y = �x. Consider any two MCRS-groups A[�1℄ and A[�2℄ with positive �1 and�2 and 
al
ulate a dis
repan
y between them.�A[�1℄ − �A[�2℄ = x(y − �1x)1 − x(y − �2x)1 = (�2 − �1)x2�A[�1℄ + �A[�2℄ = x(y − �1x)1 + x(y − �2x)1 = 2xy − (�2 + �1)x2Sin
e �1 > 0 and �2 > 0 we have�(A[�1℄;A[�2℄) = |�1 − �2|:Denote by 
Q[0;1℄ a subset of all A[�℄ for rational � in the segment [0; 1℄.For any 
ouple of relatively prime integers (m;n) satisfying 0 ≤ mn ≤ 1 we have�(A[mn ]) = n:A 
lassi
al problem of approximations of real numbers by rational numbers havingbounded denominators in our terminology is as follows.Theorem 2.1. Consider a real number �, 0 ≤ � ≤ 1. Let [0; a1; : : :℄ (or [0; a1; : : : ; ak℄)be an ordinary in�nite (�nite) 
ontinued fra
tion for �. Then the set of best approx-imations 
onsists of MCRS-groups A[m=n℄ for m=n = [0; a1; : : : ; al−1; al℄ where l =1; 2; : : : (In 
ase of �nite 
ontinued fra
tion we additionally have A[m=n℄ for m=n =[0; a1; : : : ; ak−1; ak−1℄). �3. General approximations in two-dimensional 
aseIn this se
tion we prove estimates on the quality of best approximations for MCRS-groups whose eigen-dire
tions are expressed by 
ontinued fra
tions with bounded denom-inators. We study separately the 
ases of hyperboli
 and non-hyperboli
 MCRS-groups.Espe
ially we study geometri
 interpretation of the bounds in turms of geometri
 
ontin-ued fra
tions for the algebrai
 hyperboli
 MCRS-groups.3.1. Hyperboli
 
ase. An MCRS-group is 
alled hyperboli
 if it 
ontains a hyperboli
operator (whose all eigenvalues are all real and pairwise distin
t).3.1.1. Lagrange estimates for a spe
ial 
ase. In this subse
tion we prove an analog ofLagrange theorem on the approximation rate for an MCRS-groups that has eigenspa
esde�ned by y = �1x and y = �2x with bounded elements of the 
ontinued fra
tions for �1and �2. In parti
ular this in
ludes all algebrai
 MCRS-groups. Here we do not 
onsiderthe 
ase when one of the eigenspa
es is x = 0, this 
ase was partially studied in Se
tion 2.



13Theorem 3.1. Let �1 and �2 be real numbers having in�nite 
ontinued fra
tions withbounded elements. Consider an MCRS-group A with eigenspa
es y = �1x and y = �2x.Then there exist positive 
onstants C1 and C2 su
h that for any positive integer N the bestapproximation AN in 
 satis�es C1N2 < �(A;AN) < C2N2 :We will start the proof with the following two lemmas.Denote by AÆ1;Æ2 the MCRS-group de�ned by the lines y = (�i + Æi)x for i = 1; 2.Lemma 3.2. Consider a positive real number "1 su
h than "1 < 1=|�1 − �2|. Supposethat �(A;AÆ1;Æ2) < "1 then
|Æ1| < (1+|�1|)(�1−�2)2

|�2|(1−"1|�1−�2|)"1 and |Æ2| < (1+|�2|)(�1−�2)2
|�1|(1−"1|�1−�2|)"1:Proof. Let us remind that the Marko�-Davenport form of AÆ1;Æ2 is�AÆ1;Æ2(x; y) = (y − (�1 + Æ1)x)(y − (�2 + Æ2)x)(�2 + Æ2)− (�1 + Æ1) :Consider the absolute values of the 
oeÆ
ients at y2 and at xy for the di�eren
e ofMarko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2. By the 
onditions of thelemma these 
oeÆ
ients are less then "1:

∣

∣

∣

∣

Æ2 − Æ1(�1 − �2)(�1 − �2 + Æ1 − Æ2) ∣∣∣∣ < "1 and ∣

∣

∣

∣

�1Æ2 − �2Æ1(�1 − �2)(�1 − �2 + Æ1 − Æ2) ∣∣∣∣ < "1:From the �rst inequality we have:
|Æ1 − Æ2| < (�1 − �2)21− "1|�1 − �2|"1:The se
ond inequality implies:

|Æ1| < |(�1 − �2)(�1 − �2 + Æ1 − Æ2)|"1 + |�1(Æ1 − Æ2)|
|�2| ;and therefore

|Æ1| < |�1 − �2|(|�1 − �2|+ (�1−�2)21−"1|�1−�2|"1)"1 + |�1| (�1−�2)21−"1|�1−�2|"1
|�2| = (1 + |�1|)(�1 − �2)2

|�2|(1− "1|�1 − �2|)"1:The inequality for Æ2 is obtained in the same way. �Lemma 3.3. Let "2 be a positive real number. Suppose |Æ1| < "2 and |Æ2| < "2, then�(A;AÆ1;Æ2) < max(2; 2(|�1|+ |�2|); �21+�22 + |�1−�2|"2)(|�1 − �2|)(|�1 − �2|+ 2"2) "2:Proof. The statement of lemma follows dire
tly form the estimate of the 
oeÆ
ients forthe di�eren
e of Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2 . �



14 Proof of Theorem 3.1. Let us start with the �rst inequality. Let �1 = [a0; a1; : : :℄, andmi=ni = [a0; a1; : : : ; ai℄. Without loss of generality we assume that N > a0. Suppose k isthe maximal positive integer for whi
h mk ≤ N and nk ≤ N . Then we havemin(

∣

∣

∣
�1 − mn ∣

∣

∣

∣

∣

∣

∣

|m|≤N; |n|≤N)

≥
∣

∣

∣

∣

�1 − mk+1nk+1 ∣

∣

∣

∣

≥ 1nk+1(nk+1 + nk+2) ≥1(ak+1 + 1)nk((ak+1 + 1)nk + (ak+1 + 1)(ak+2 + 1)nk) ≥ 1(ak+1 + 1)2(ak+2 + 2) · 1N2 :For the se
ond and the third inequalities we refer to [22℄.The same 
al
ulations are valid for �2. Hen
e we get C1 from Lemma 3.2.Now we prove the se
ond inequality.
∣

∣

∣

∣

�1 − mknk ∣

∣

∣

∣

< 1nknk+1 < ak+1 + 1n2k+1 < (ak+1 + 1)N2 max (1; (�1 + 1)2):The �rst inequality is 
lassi
al and 
an be found in [22℄. We take maximum in the lastinequality for the 
ase of mk+1 > N and nk+1 < N . From 
onditions of the theorem theset of ai's is bounded. Therefore, there exists a 
onstant C ′2;1 su
h that for any N thereexists an approximation of �1 of quality smaller than C ′2;1=N2.The same holds for �2. Therefore, we 
an apply Lemma 3.3 in order to obtain the
onstant C2. �Let us say a few words about the 
ase of unbounded elements of 
ontinued fra
tions for�i. Take any positive ". If the elements of a 
ontinued fra
tion (say for �1) are growingfast enough than there exists a sequen
e Ni for whi
h the approximations ANi are of aquality C(Ni)1+" . We show this in the following example.Example 3.4. Let M be a positive integer. Consider �1 = [a0; a1; : : :℄, su
h that a0 = 1,an = (nk−1)M−1. Denote mknk = [a0; : : : ; ak℄. Let �2 = 0. Take Nk = nk+nk+12 . Then thereexists a positive 
onstant C su
h that for any integer i we have�(A;ANi) ≥ CN1+1=Mi :Proof. For any i we have ni+1 ≥ aini = nM−1i ni = nMi :Therefore, the best approximation with denominator and numerator less than Nk is notbetter than
∣

∣

∣

∣

�1 − mknk ∣

∣

∣

∣

≥ 1nk(nk+1 + nk) ≥ 1nMk+1(nk+1 + nk) ≥ 21+1=MN1+1=Mk :Now we apply Lemma 3.2 to 
omplete the proof. �We suspe
t the existen
e of badly approximable MCRS-group A and a 
onstant C su
hthat there are only �nitely many solutions N of the following equation�(A;AN) ≤ CN ;



15like in the 
ase of simultaneous approximations of ve
tors in R3 (see for instan
e in [30℄).3.1.2. Periodi
 sails and best approximations in algebrai
 
ase. Let us show one relationbetween 
lassi
al geometry of numbers (for example see in [4℄) and best simultaneousapproximations.First we re
all the notion of sails. Consider an arbitrary 
one C in R2 with vertex atthe origin and boundary rays r1 and r2. We also suppose that the angle between r1 andr2 is non-zero and less than �. Denote the set of all integer points in the 
losure of the
one ex
ept the origin by Ir1;r2. The sail of this 
one is the boundary of the 
onvex hullof Ir1;r2. It is homeomorphi
 to a line and 
ontains rays in 
ase of ri has an integer pointdistin
t to the origin.De�nition 3.5. De�ne indu
tively the n-sail for the 
one C.| let 1-sail be the sail of C.| suppose all k-sails for k < k0 are de�ned then let k0-sail be�( 
onv (Ir1;r2 \ k0−1
⋃k=1 k-sail));where 
onv(M) denote the 
onvex hull of M .The k-sails have the following interesting property.Proposition 3.6. Consider a 
one C. The k-sail of C is homotheti
 to the 1-sail of Cand the 
oeÆ
ient of homothety is k. �Now 
onsider an arbitrary MCRS-group. Let l1 and l2 be the two eigenlines for all theoperators of MCRS-group. The union of all four k-sails for the 
ones de�ned by the linesl1 and l2 is a k-geometri
 
ontinued fra
tion of the MCRS-group.Further we pro
eed with an algebrai
 
ase. So a hyperboli
 MCRS-group A 
ontains anGL(2;Z)-operator with distin
t eigenvalues. In this 
ase the mentioned operator a
ts ona k-geometri
 
ontinued fra
tion (for any k) as a transitive shift. In addition the valuesof the fun
tion �A(m;n); for m;n ∈ Z,are 
ontained in the set �Z where the value � is attained at some point of the 1-geometri

ontinued fra
tion. The value � = �(A) is an essential 
hara
teristi
 of A, it is sometimes
alled Marko� minima of the form �A.Lemma 3.7. Let an integer point (m;n) be in the k-geometri
 
ontinued fra
tion of A.Then

|�A(m;n)| ≥ k�:Proof. We use indu
tion.The statement 
learly holds for k = 1.Suppose the statement holds for k = k0 let us prove it for k = k0 + 1. From thestep of indu
tion we have the following: for any 
one the 
onvex hull of real points
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|�A(a; b)| = k0� 
ontains the k0-sail of the 
one. From the other hand all integer pointswith |�A(m;n)| = k0� (if any) are on the boundary of this 
onvex hull. Hen
e all of themare in k0-sail, and thus they are not 
ontained in (k0+1)-sail. �Theorem 3.8. Let A be an algebrai
 MCRS-group. Then there exists a positive 
onstantsC su
h that for any positive integer N the following holds. Let the best approximation
AN ∈ 
 be de�ned by primitive ve
tors v1 and v2 
ontained in k1- and k2-geometri

ontinued fra
tions respe
tively, then k1; k2 < C.Proof. By Lemma 3.7 it is suÆ
ient to prove that the set of values of |�A(vi)| is bounded.Let A has eigenlines y = �ix, i = 1; 2. Noti
e that

|�A(m;n)| = ∣

∣

∣

∣

(m− �1n)(m− �2n)�1 − �2 ∣

∣

∣

∣

= ∣

∣

∣

mn − �1∣∣∣ · ∣∣∣
∣

m− �2n�1 − �2 n∣

∣

∣

∣Let v1 = (x1; y1). By Lemma 3.2 (without loss of generality we suppose that v1 
orrespondsto Æ1 in the lemma) the �rst multipli
ative is bounded by ~C=N2 for some 
onstant ~C thatdoes not depend on N .Hen
e,
|�A(x1; y1)| ≤ ~C ∣

∣

∣

∣

y21N2 ·
x1y1 − �2�1 − �2 ∣∣∣∣ ≤ ~C ∣

∣

∣

∣

x1y1 − �2�1 − �2 ∣∣∣∣Finally, the last expression is uniformly bounded. The same holds for v2.Therefore, the set of values of |�A(vi)| is bounded. �Conje
ture 1. We 
onje
ture that for almost all N the ve
tors v1 and v2 de�ning ANare in 1-geometri
 
ontinued fra
tion.3.1.3. Te
hnique of 
al
ulation of best approximations in the hyperboli
 
ase. In this sub-se
tion we show a general te
hnique of 
al
ulation of best approximations for an arbitraryMCRS-group A with eigenspa
es y = �1x and y = �2x for distin
t real numbers �1 and�2.Proposition 3.9. Let m and n be two integers. Suppose |�1 − mn | < "3 (or |�2 − mn | < "3respe
tively), then the following holds:
∣

∣

∣
�1 − mn ∣

∣

∣
> |�1 − �2|

|�1 − �2|+ "3 |�A(m;n)|n2 (

∣

∣

∣
�2 − mn ∣

∣

∣
> 1

|�1 − �2|+ "3 |�A(m;n)|n2 ) :Proof. We have
∣

∣�1 − mn ∣

∣ = 1n |m− �1n| = 1n |m−�1n|(m−�2n)m−�2n = |�A(m;n)|n2 |�1−�2|
|�1−�2+(mn −�1)| > |�1−�2|

|�1−�2|+"3 |�A(m;n)|n2 :The same holds for the 
ase of the approximations of �2. �Pro
edure of best approximation 
al
ulation.1). Find best Diophantine approximations of �1 and �2 using 
ontinued fra
tions inthe square N × N . Suppose for �i it is mi=ni, and the following best approximation ism′i=n′i.



172). Consider now the MCRS-group A with invariant lines y = mini x. By Lemma 3.3 weget an upper bound for �(A;A) (where "2 = max(1=(n1n′1); 1=(n2n′2))).3). Now having the estimate for dis
repan
y we use Lemma 3.2 to get estimates C1and C2 for ∣

∣�1 − p1q1 ∣∣ and ∣

∣�2 − p2q2 ∣∣ for the best approximation of A with rays y = p1q1x andy = p2q2x.4). By Proposition 3.9 we write an estimate for �A(pi;qi)q2i for i = 1; 2.5). Finally we 
ompare the dis
repan
ies for all MCRS-groups that satis�es the esti-mates for �A(ki;li)l2i obtained in 4).Example 3.10. Consider an MCRS-group 
ontaining Fibona

i matrix:
( 0 11 1 ) :Denote by Fn the n-th Fibona

i number.Consider any integer N ≥ 100.1). Consider a positive integer k su
h that Fk ≤ N < Fk+1 and 
hoose an approximation

A with eigenspa
es Fk−1y − Fkx = 0 and Fky + Fk−1x = 0. Then
∣

∣

∣

∣

�1 − FkFk−1 ∣∣∣∣ ≤ 1=(Fk−1Fk); ∣

∣

∣

∣

�1 + Fk−1Fk ∣

∣

∣

∣

≤ 1=(FkFk+1)2). So, "2 = 1=(Fk−1Fk) < 1=(55 · 89). Therefore,�(A;AÆ1;Æ2) < max(2; 2√5; 3 +√5=4895)5 + 2√54895 1Fk−1Fk < 2√55 + 2√54895 (89=55)3N2 < 3:79N2 :3). Hen
e, by Lemma 3.2 we get ("1 < 3:79=1002):
|Æ1| < 80:35N2 and |Æ2| < 18:97N2 :4). The estimates for �A(p1;q1)q21 and �A(p2;q2)q22 for the 
orresponding rays of best approxi-mation are as follows.

|�A(m1; n1)|n21 < 80:65N2 ; |�A(m2; n2)|n22 < 18:99N2 :5). Noti
e that the number of approximations whose dis
repan
ies we 
ompare inthis step is bounded by some 
onstant not depending on N . We have 
ompleted the
omputations for N = 106, the answer in this 
ase is the matrix with eigenspa
es: F29y−F30x = 0 and F30y + F29x = 0.We 
onje
ture that for the Fibona

i matrix we always get the best approximation witheigenspa
es Fk−1y − Fkx = 0 and Fky + Fk−1x = 0.We 
on
lude this subse
tion with an example showing that the 
ontinued fra
tions donot always give best approximations.



18Example 3.11. Consider an operator A with eigenve
tors:v1 = (1; 2) and v2 = (2; 3);and the 
orresponding maximal subgroup A. Then there are four di�erent best approxi-mations of size 1, they have invariant lines de�ned by the following 
ouples of ve
tors:
(w1 = (1; 0); w2 = (1; 1)); (w1 = (1; 0); w2 = (1;−1));

(w1 = (1; 0); w2 = (0; 1)); and (w1 = (0; 1); w2 = (1; 1)):(the dis
repan
y between A and any of them equals 6). The 
ontinued fra
tion (or theunion of sails) of A 
ontains only four integer points(1; 2); (2; 3); (−1;−2); and (−2;−3):Therefore the invariant lines of all four best approximations do not 
ontain ve
tors of thesail of A.Remark 3.12. A
tually, for a generi
 MCRS-group the best approximation of any sizeN > 0 is unique. In the previous example we have four best approximations sin
e we areapproximating MCRS-group de�ned by ve
tors with integer 
oeÆ
ients.3.2. Non-hyperboli
 
ase. Now we prove similar statements for the 
omplex 
ase.3.2.1. Lagrange estimates for a spe
ial 
ase. In this subse
tion we prove an analog ofLagrange theorem on the approximation rate for an MCRS-groups that has 
omplex
onjugate eigenspa
es de�ned by y = (�+I�)x and y = (�−I�)x with bounded elementsof the 
ontinued fra
tions for � and �. In parti
ular this in
ludes all 
omplex algebrai
MCRS-groups.Theorem 3.13. Let � and � be real numbers having in�nite 
ontinued fra
tions withbounded elements. Consider an MCRS-group A with eigenspa
es y = (� + I�)x andy = (� − I�)x. Then there exist positive 
onstants C1 and C2 su
h that for any positiveinteger N the best approximation AN in 
 satis�esC1N2 < �(A;AN) < C2N2 :We will start the proof with the following two lemmas.Denote by AÆ1;Æ2 the MCRS-group de�ned by the lines y = ((�+ Æ1)± I(� + Æ2))x fori = 1; 2.Lemma 3.14. Consider a positive real number "1 su
h than "1 < 12(1+|�|) . Suppose that�(A;AÆ1;Æ2) < "1 then
|Æ1| < 2|�−�|�2

|�−�|−2"1|�|(1+|�|)"1 and |Æ2| < 2(1+|�|+|�−�|)�2
|�−�|−2"1|�|(1+|�|)"1:



19Proof. Consider the absolute values of the 
oeÆ
ients at y2 and at xy for the di�eren
eof Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2. By the 
onditions of thelemma these 
oeÆ
ients are less then "1:
∣

∣

∣

∣

Æ2 − Æ12�(� + Æ2) ∣∣∣∣ < "1 and ∣

∣

∣

∣

�Æ2 − �Æ12�(� + Æ2)∣∣∣∣ < "1:Hen
e we have
∣

∣

∣

∣

(�− �)Æ22�(� + Æ2) ∣∣∣∣ ≤ + ∣

∣

∣

∣

�Æ2 − �Æ12�(� + Æ2) ∣∣∣∣ + |�| ∣∣∣
∣

Æ2 − Æ12�(� + Æ2) ∣∣∣∣ < (1 + |�|)"1:This gives us the estimate for Æ2.For Æ1 we have
|Æ1| < 2|�| ∣∣

∣
|�|+ 2(1+|�|)�2

|�−�|−2"1|�|(1+|�|)"1∣∣∣ "1 + 2(1+|�|)�2
|�−�|−2"1|�|(1+|�|)"1 = 2(1+|�|+|�−�|)�2

|�−�|−2"1|�|(1+|�|)"1:The proof is 
ompleted. �Lemma 3.15. Let "2 be a positive real number. Suppose |Æ1| < "2 and |Æ2| < "2, then�(A;AÆ1;Æ2) < max(2; 2(|�|+ |�|); |�2−�2|+ 2|��|+ 2|�|"2)
|�|(|�|+ "2) "2:Proof. The statement of lemma follows dire
tly form the estimate of the 
oeÆ
ients forthe di�eren
e of Marko�-Davenport forms for the MCRS-groups A and AÆ1;Æ2 . �Proof of Theorem 3.13. The remaining part of the proof almost 
ompletely repeats theend of the proof of Theorem 3.1, so we omit it here. �3.2.2. Te
hnique of 
al
ulation of best approximations in the hyperboli
 
ase. Here we showa general te
hnique of 
al
ulation of best approximations for an arbitrary MCRS-group

A with eigenspa
es y = (�± I�)x for real number � and positive real �.Proposition 3.16. Let a satisfy |� + I�| < "3, then the following holds:
|(� + I�)− a| > 2�|�A(1; a)|2� + "3 :Proof. We have |(� + I�)− a| = |(�+I�)−a|((�−I�)−a)(�−I�)−a = 2�|�A(1;a)|

|((�+I�)−a)−2I�| > 2�|�A(1;a)|2�+"3 : �Pro
edure of best approximation 
al
ulation.1). Find best Diophantine approximations of � and � using 
ontinued fra
tions inthe square N × N . Suppose for � and � it are m1=n1, and m2=n2, and the next bestapproximation are m′1=n′1, and m′2=n′2.2). Consider the MCRS-group A with invariant lines y = (m1n1 ±I m2n2 )x. By Lemma 3.15we get an upper bound for �(A;A) (where "2 = max(1=(n1n′1); 1=(n2n′2))).3). Now having the estimate on dis
repan
y we use Lemma 3.14 to get estimates C1and C2 for the best approximation of A: ∣

∣�− p1q1 ∣∣ and ∣

∣� − p2q2 ∣∣ respe
tively.4). By Proposition 3.16 we write an estimate for ∣

∣�A
(1; p1q1 + I p2q2 )∣∣.



20 5). Finally we 
ompare the dis
repan
ies for all MCRS-groups that satis�es the esti-mates obtained in 4).4. Simultaneous approximations in R3 and MCRS-group approximationsTheory of simultaneous approximation of a real ve
tor by ve
tors with rational 
oeÆ-
ients 
an be 
onsidered as a spe
ial 
ase of MCRS-group approximations similarly to theDiophantine 
ase. In this se
tion we study several examples of simultaneous approxima-tions in frames of MCRS-group approximations. The �rst example is an eigen-dire
tionof a hyperboli
 operator (see in Subse
tion 3.2) and the se
ond is an eigen-dire
tion of anonhyperboli
 operator (see in Subse
tion 3.3).4.1. General 
onstru
tion. Let [a; b; 
℄ be a ve
tor in R3. Consider the maximal 
om-mutative subgroup A[a; b; 
℄ de�ned by three ve
tors(a; b; 
); (0; 1; I); (0; 1;−I):The problem of approximation here is in approximation of the subgroup A[a; b; 
℄ by
A[a′; b′; 
′℄ for integer ve
tors (a′; b′; 
′). For this 
ase we have:�A[a;b;
℄(x; y; z) = I (

−b2 + 
22a2 x3 + bax2y + 
ax2z − 12xy2 − 12xz2) :Therefore,�(A[a; b; 
℄;A[a′; b′; 
′℄) = min(max(

∣

∣

ba − b′a′ ∣∣ ; ∣∣ 
a − 
′a′ ∣∣ ; ∣∣∣ b2+
22a2 − b′2+
′22a′2 ∣

∣

∣

) ;max(

∣

∣

ba + b′a′ ∣∣ ; ∣∣ 
a + 
′a′ ∣∣ ; ∣∣∣b2+
22a2 + b′2+
′22a′2 ∣

∣

∣

)) :4.2. A ray of non-hyperboli
 operator. Consider the non-hyperboli
 algebrai
 ope-rator B = 



0 1 10 0 11 0 0 

 :This operator is in some sense the simplest non-hyperboli
 operator we 
an have (see formore information [21℄).Denote the eigenvalues of E1 by �1, �2, and �3 su
h that �1 is real, �2 and �3 are 
omplex
onjugate. Noti
e also that
|�1| > |�2| = |�3|:We approximate the eigenspa
e 
orresponding to �1. Let v�1 be the ve
tor in thiseigenspa
e having the �rst 
oordinate equal to 1. Note that�1 ≈ 1:3247179573 and v�1 ≈ (1; :5698402911; :7548776662):The set of best approximations AN with N ≤ 106 
ontains of 48 elements. Theseelements are of type Bni(1; 0; 0) where n1 = 4, and for 2 ≤ i ≤ 48 we have ni = i+4. We
onje
ture that all the set of best approximations 
oin
ide with the set of points Bk(1; 0; 0)where k = 4, or k ≥ 6, the approximation rate in this 
ase is CN−3=2.



214.3. Two-dimensional golden ratio. Let us 
onsider an algebrai
 operatorG = 



3 2 12 2 11 1 1 

 :This operator is usually 
alled two-dimensional golden ratio. It is the simplest hyperboli
operator from many points of view, his two-dimensional 
ontinued fra
tion in the senseof Klein was studied in details by E. I. Korkina in [26℄ and [27℄.The group of all integer operators of GL(3;Z) 
ommuting with G is generated by thefollowing two operators:E1 = 



1 1 11 1 01 0 0 

 and E2 = 



0 1 11 0 01 0 −1 

 :Note that G = E21 and E2 = (E1 − Id)−1, where Id is an identity operator. Operator E1is a three-dimensional Fibona

i operator.Denote the eigenvalues of E1 by �1, �2, and �3 in su
h a way that the following holds:
|�1| > |�2| > |�3|:Let us approximate the eigenspa
e 
orresponding to �1. Denote by v�1 the ve
tor ofthis eigenspa
e having the last 
oordinate equal to 1. Note that�1 ≈ 2:2469796037 and v�1 ≈ (2:2469796037; 1:8019377358; 1):The set of best approximations AN with N ≤ 106 
ontains 40 elements. These elementsare in the set

{Em1 En2 (1; 0; 0)∣∣∣m;n ∈ Z

}:All the points of the sequen
e 
an be found from the next table. In the 
olumn 
 weget m = m
, n = n
 for the approximation Em
1 En
2 (1; 0; 0).i 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22m 1 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 10 10 11 11n 1 1 2 1 2 1 3 2 3 2 1 3 2 3 2 4 3 4 3 5 4i 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41m 11 12 12 13 13 14 14 15 15 15 16 16 17 17 18 18 19 19 19n 3 4 3 5 4 5 4 6 5 4 5 4 6 5 6 5 7 6 5In addition to this table we have A3 = (3; 2; 1) as best approximation.We 
onje
ture that all the set of best approximations ex
ept A3 is 
ontained in the setof all points of type Em1 En2 (1; 0; 0), the approximation rate in this 
ase is CN−3=2.
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