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AbstratIt is proved that any Shur ring over a Galois ring of oddharateristi is either normal, or of rank 2, or a non-trivial generalizedwreath produt. The normal Shur rings are haraterized as a speialsublass of the ylotomi Shur rings.
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1 IntrodutionIn papers [11, 12℄ K. H. Leung and S. H. Man proved that any Shur ring(S-ring) over a �nite yli group an be onstruted from speial S-ringsby means of two operations: tensor produt and wedge produt (as for abakground of S-rings see Setion 7). This theorem supplemented with thenormality theory from [5℄ enabled to get a series of strong results in algebraiombinatoris [5, 6, 10, 14℄.To generalize the Leung-Man theorem in some way to S-rings over anarbitrary abelian group, the notion of S-ring over a ommutative ring R 1 wasintrodued in [7℄; by de�nition any suh ring is an S-ring over the additivegroup R+ of the ring R that is invariant with respet to its multipliativegroup R×. It should be noted that by the Shur theorem on multipliers anyS-ring over a yli group of order n an be treated as an S-ring over the ring
R = Zn of integers modulo n. We observe that in this ase R is the diretprodut of Galois rings of oprime harateristis with prime residue �elds.Thus it is natural to generalize the Leung-Man theorem to S-rings over theproduts of arbitrary Galois rings of oprime harateristis. In the presentpaper (being the �rst step in the indiated diretion) we do this when R is aGalois ring of odd harateristi: the role of the speial rings play S-rings ofrank 2 and pure ylotomi S-rings de�ned in Setion 2. Only one operation isneeded here: it is the generalized wreath produt also de�ned in that setion.Theorem 1.1 Any S-ring over a Galois ring of odd harateristi is eitherpure ylotomi, or of rank 2, or a non-trivial generalized wreath produt.Theorem 1.1 is an immediate onsequene of Theorems 2.11 and 5.1proved in this paper. Indeed, let A be a non-rank 2 S-ring over a Galois ringof odd harateristi. If A is not a non-trivial generalized wreath produt,then by Theorem 2.11 the hypothesis of Theorem 5.1 is satis�ed. Thus bythe latter theorem the ring A is pure ylotomi.As it was said above the Leung-Man theorem was substantially strengthe-ned in [5℄. The key point there is the notion of a normal S-ring over a group.The analog of normality for S-rings over a ring is introdued in Subsetion 2.3.It should be noted that the 1-1 orrespondene between normal S-rings andnormal Cayley shemes over a group that was de�ned in [5, Subsetion 4.3℄,1All rings are supposed to be �nite rings with identity.3



indues the 1-1 orrespondene between normal (resp. pure) ylotomi S-rings and normal (resp. orresponding to pure groups) ylotomi shemesover a ring de�ned in [8, Setion 1℄.Let A be a normal S-ring over a Galois ring of odd harateristi. Thenby Corollary 2.14 and Theorem 5.1 we onlude that either A is pureylotomi or rk(A) = 2. However, in the latter ase from Theorem 2.12and Corollary 2.3 it follows that A is also ylotomi. Thus using theharaterization of normal ylotomi shemes over a Galois ring of oddharateristi given in [8℄ we obtain the following result.Theorem 1.2 An S-ring A over a Galois ring R of odd harateristi isnormal if and only if A is pure ylotomi, and rk(A) > 2 unless R is a �eldof order 3.The following statement is straightforward from Theorems 1.1 and 1.2.Theorem 1.3 Any S-ring over a Galois ring of odd harateristi is eithernormal, or of rank 2, or a non-trivial generalized wreath produt.Conerning �nite rings and permutation groups we refer to [13℄ and [3℄.To make the paper self-ontained, we ite the bakground on Shur rings andGalois rings in Setion 7 and Setion 3 respetively. In the latter setion wealso study multipliative subgroups in Galois rings. The theory of S-ringsover a ommutative ring is the subjet of Setions 2 and 4. Theorem 6.1 usedin Setion 4 is proved in Setion 6. Finally, Setion 5 ontains Theorem 5.1whih is a key point for Theorem 1.1.Notation. As usual by Z,Q,C we denote the ring of integers, the ringof rationals and the �eld of omplex numbers respetively.For a ommutative ring R with identity we denote by R× and rad(R) themultipliative group of R and the radial of R respetively.The set of all ideals of R is denoted by I(R). Given I ∈ I(R) we denoteby I+ the additive group of I, and by πI the natural epimorphism from Rto R/I.For a set X ⊂ R we denote by IU(X) the smallest ideal of R ontainingXand by IL(X) the largest ideal I of R suh that X + I = X. Also we set
ann(X) = {r ∈ R : rX = {0}}4



and write ann(r) instead of ann({r}) for r ∈ R.The group ring of a group G over R is denoted by R[G]. For X ⊂ G weset ξ(X) =
∑

x∈X x.The group of all permutations of R of the form x 7→ axσ+b where a ∈ R×,
b ∈ R, σ ∈ Aut(R), is denoted by AΓL1(R). The stabilizer of the point 0 init is denoted by ΓL1(R).For a �nite loal ommutative ringR the Teihm�uller group and the groupof prinipal units are denoted by T and U respetively. Then

R× = T × U ,and the groups T and U = 1 + rad(R) are a yli group of order q − 1and an abelian p-group respetively where q and p are the order and theharateristi of the residue �eld R/ rad(R).2 Shur rings over a ommutative ring2.1 Let R be a �nite ommutative ring with identity. In this paper weonsider the permutation group indued by the ation of the group R× onthe set R by multipliation. It is a subgroup of the group Aut(R+), leavesany ideal of R �xed, and has R× as a regular faithful orbit.Let A be an S-ring over the group R+. The following de�nition is takenfrom [7℄.De�nition 2.1 We say that A is an S-ring over the ring R if it is invariantwith respet to the ation of the group R× on Z[R+] by multipliation.This is equivalent to say that uX ∈ S(A) for all u ∈ R× and X ∈ S(A).The S-ring of rank 2 and the group ring are obvious examples of S-rings overthe ring R. One more example generalizing the latter one is given in thenext paragraph. On the other hand, there is a lot of S-rings over R+ thatare not S-rings over R. For example, if R is a �eld, then any S-ring over
R is ylotomi (Corollary 2.3). Therefore the number of all of them is atmost |R×|, whereas the number of S-rings over the group R+ an be muhlarger (beause R+ is an elementary abelian group in this ase).Let K ≤ R× be a group. Then, obviously, K ats faithfully on the groupring Z[R+] and the set of all K-invariant elements of it forms an S-ring over5



the group R+. It is alled a ylotomi one and is denoted by Cyc(K,R).The basi sets of this ring are exatly the orbits of K on R and hene
Cyc(K,R) = span{ξ(X) : X ∈ Orb(K,R)}.In fat,Cyc(K,R) is an S-ring over the ringR beause the groupR× permutesthe orbits of K. Sine the group K ats semiregularly on R×, the ylotomirings are in 1-1 orrespondene to the subgroups of R×.In the following statement we desribe the struture of a basi set of anS-ring over a ring.Theorem 2.2 Let A be an S-ring over a ommutative ring R and X ∈ S(A).Then there exists a set X0 ⊂ X suh that xR× ∩ yR× = ∅ for all non-equal

x, y ∈ X0, and
X =

⋃

x∈X0

xK (disjoint union) (1)where K = {u ∈ R× : uX = X}.Proof. The set X is obviously K-invariant. So it is the disjoint union ofsome K-orbits. Take an element in eah of them and denote the obtainedset by X0. Then X0 ⊂ X and (1) holds. To omplete the proof suppose that
xR× ∩ yR× 6= ∅ for some x, y ∈ X0, x 6= y. Then ux = y where u ∈ R×. Wenote that uX ∈ S(A) (De�nition 2.1). Sine X ∩ uX 6= ∅, this implies that
X = uX. But then u ∈ K, whih ontradits the hoie of x and y.Corollary 2.3 In the ondition of Theorem 2.2 suppose in addition that
X ⊂ R×. Then X ∈ Orb(K,R). In partiular, any S-ring over a �eld is aylotomi one.For an S-ring A over the ring R set

I(A) = {I ∈ I(R) : I ∈ S∗(A)}.The elements of I(A) are alled A-ideals of R. We say that A is R-primitiveif 0 and R are the only A-ideals of R.Theorem 2.4 [7℄ Let R be a ommutative ring suh that eah primaryomponent of it is loal. Then any R-primitive S-ring is either of rank 2or ylotomi.2 In the latter ase, R is a �eld.2In the onditions of the theorem "R-primitivity" is equivalent to "quasiprimitivity"in sense of [7℄ (see the remark before Theorem 1.3 of that paper).6



Corollary 2.5 Let R be a loal ommutative ring other than a �eld. Thenany R-primitive S-ring is of rank 2.Let R be an arbitrary ommutative ring and I ∈ I(A). Then the S-ring
AR+/I+ is an S-ring over the group (R/I)+ = R+/I+. Sine the ring A is
R×-invariant, the latter S-ring is (R/I)×-invariant. Thus it is an S-ring overthe quotient ring R/I; we will denote it by AR/I .2.2 Let A be an S-ring over a ring R and X ∈ S∗(A). It is well knownfrom the elementary theory of S-rings over abelian groups, that the smallestgroup U0 ≤ R+ for whih X ⊂ U0, and the largest group L0 ≤ R+ for whih
L0 +X = X, are A-subgroups. By De�nition 2.1 this implies that the groups

U =
⋂

u∈R×

uU0, L =
∑

u∈R×

uL0belong to the set H(A). Clearly, U ≤ IU(X), L ≥ IL(X) and R×U = U ,
R×L = L. On the other hand, suppose that the ring R is generated by theunits. Then any R×-invariant subgroup of R+ is an ideal of R. Thus in thisase IU(X) = U and IL(X) = L, and hene IU(X) and IL(X) are A-idealsof R. This proves the following statement.Theorem 2.6 Let A be an S-ring over a ommutative ring R. Suppose that
R is generated by the units. Then IU(X), IL(X) ∈ I(A) for all X ∈ S∗(A).Corollary 2.7 Let A be an S-ring over a loal ommutative ring. Then
IU(X), IL(X) ∈ I(A) for all X ∈ S∗(A).Proof. Follows from Theorem 2.6 beause eah element of the radial of aloal ommutative ring is the di�erene of two units.It is easily seen that given X ⊂ R we have

IL(X) = IL(uX), u ∈ R×. (2)Therefore from De�nition 2.1 it follows that the ideal IL(X) does not dependon the set X ∈ S(A) suh that X ∩R× 6= ∅. We denote this ideal by IL(A).Theorem 2.8 Let A be an S-ring over a loal ommutative ring R. Then
IL(A) 6= 0 if and only if there exist proper ideals I, J ∈ I(A) suh that

J ⊂ IL(X) ∩ I, X ∈ S(A), X ⊂ R \ I. (3)7



Proof. The su�ieny immediately follows from the de�nitions. To prove theneessity suppose that IL(A) 6= 0. Set J = IL(A) and I a maximal elementin the set {I ′ ∈ I(A) : J ⊂ I ′ 6= R}. Clearly, J ⊂ I. Take X ∈ S(A) suhthat X ⊂ R \ I. Then X ∩ R× 6= ∅, for otherwise the ideal generated by
X and I is ontained in rad(R) and belongs to I(A) (Corollary 2.7), whihontradits the maximality of I. So IL(X) = J by the de�nition of IL(A).Thus (3) holds. Sine J = IL(A) 6= 0 and I 6= R, we are done.If (3) holds for some ideals I, J ∈ I(A), we say that A is a generalizedwreath produt or that A satis�es the I/J-ondition. Clearly, it is truewhenever I = R or J = 0. Theorem 2.8 shows that IL(A) 6= 0 if andonly if the S-ring A is a non-trivial generalized wreath produt in the senseof the following de�nition the seond part of whih is a speial ase of [5,De�nition 5.2℄.De�nition 2.9 We say that A is a non-trivial generalized wreath produt ifthere exist proper ideals I, J ∈ I(A) suh that (3) holds. In this ase we alsosay that A satis�es the I/J-ondition non-trivially.It should be noted that in the sense of [4℄ the S-ring A satisfying the I/J-ondition is the (standard) generalized wreath produt of the S-rings AI and
AR/J over the groups I+ and (R/J)+ respetively. Moreover, the latter S-ringan be treated as an S-ring over the ring R/J whereas the former one when
I is a prinipal ideal an be treated as an S-ring over the ring R/ ann(I).2.3 Following [8℄ a non-empty set X ⊂ R is alled pure if IL(X) = 0. Thismeans that the only ideal I for whih X + I = X, is the zero one. Due to (2)the sets X and uX are pure or not simultaneously. Therefore any subset ofa pure orbit of a subgroup of R× is also pure. It should be noted that if X issuh a pure orbit the set πI(X) where I is an ideal of R, is not neessarilypure. However, if I = IL(X), the set πI(X) is pure for all X ⊂ R.De�nition 2.10 The S-ring A is alled pure if IL(A) = 0.It follows that A is pure if and only if some (and hene any) X ∈ S(A),
X ∩R× 6= ∅, is pure. S-rings of rank 2 and ylotomi rings Cyc(K,R) withpure groups K ≤ R×, are obvious examples of pure S-rings. Non-pure S-ringsover a loal ring an be haraterized by means of Theorem 2.8 as follows.Theorem 2.11 An S-ring over a loal ommutative ring is not pure if andonly if it is a non-trivial generalized wreath produt.8



We say that an S-ring A over a ommutative ring R is normal if
Aut(A) ≤ ΓL1(R). (4)Suppose that rk(A) = 2. Then obviously T Aut(A) = Sym(R) where T is thegroup of all translations of R; in partiular, the group T Aut(A) is primitive.On the other hand, if the ring R is loal, then rad(R) is a blok of the group

AΓL1(R) ≤ Sym(R). Sine any blok of a primitive group is trivial, we ometo the following statement.Theorem 2.12 Let A be a normal S-ring over a loal ommutative ring R.If rk(A) = 2, then R is a �eld.The following statement provides a neessity ondition for a ylotomiS-ring over a Galois ring to be normal (f. [8, Theorem 1.4℄).Theorem 2.13 Let A be a normal S-ring over a loal ommutative ring Rwith the residue �eld of order q. Suppose that A satis�es the I/J-onditionnon-trivially for some I, J ∈ I(R). Then q = 2 and J ⊂ ann((2, rad(R)2)).Proof. By the theorem hypothesis we have I ⊂ rad(R) and J 6= 0. Sothe S-ring A satis�es the rad(R)/J-ondition non-trivially. Therefore fromTheorem 7.2 it follows that given a ∈ J the permutation fa ∈ Sym(R) de�nedby
xfa =

{
x+ a, if x ∈ U ;
x, otherwise,belongs to Aut(A). On the other hand, from the normality of A it followsthat xfa = bxσ for some b ∈ R× and σ ∈ Aut(R), and all x ∈ R. Sine

1fa = a+ 1, we onlude that b = a+ 1. Thus,
xσ = x/(1 + a), x ∈ R \ U . (5)This implies that σ leaves �xed eah set x + rad(R). Sine T σ = T and

|T ∩ (x + rad(R))| = 1 for x ∈ R×, we see that σ leaves �xed eah elementof T . Therefore t = tσ = t/(1 + a) for all t ∈ T \ {1}. If q > 2, then thelatter set is not empty whene it follows that a = 0. Thus in this ase J = 0.Contradition. This proves that q = 2. But then 2 ∈ rad(R), and hene due9



to (5) we have 2 = 2/(1+ a). So 2a = 0 and J ⊂ ann(2). On the other hand,given x, y ∈ rad(R) we have
xy/(1 + a) = (xy)σ = xσyσ = xy/(1 + a)2,whene it follows that axy = 0. Therefore J ⊂ ann(rad(R)2).Corollary 2.14 Any normal S-ring over a Galois ring of odd harateristiis pure.Proof. Follows from Theorems 2.13 and 2.11.3 Multipliative subgroups in Galois rings3.1 A loal ring R is alled Galois if rad(R) = pR where p is a prime.3Given positive integers n, d there exists a unique (up to isomorphism) Galoisring of harateristi pn with the residue �eld of order q = pd; it is denotedby GR(pn, d). We observe that
GR(p, d) ∼= GF(pd), GR(pn, 1) ∼= Zpn.Eah ideal of the Galois ring GR(pn, d) = R other than R is of the form piR,

i = 1, . . . , n, and the orresponding quotient ring is isomorphi to GR(pi, d).It is known that R+ is a homoyli p-group of rank d and exponent pn, i.e.it is isomorphi to a diret produt of d yli p-groups of order pn. If p isodd, then the group U = 1 + pR is homoyli of rank d and exponent pn−1;the set of its elements of order dividing pn−i equals Ui = 1+piR, i = 1, . . . , n.In this subsetion we dedue several onsequenes from the followingstatement proved in [8, Theorem 6.6℄.Lemma 3.1 Let R be a Galois ring of odd harateristi, K ≤ R× a groupand I ∈ I(R). Then the group πI(K) is pure whenever so is K.The following general lemma will be used in proving Theorem 3.3 below.3This is one of the equivalent de�nitions given in [13℄.
10



Lemma 3.2 Let R be a ommutative ring. Then given r ∈ R and X ⊂ Rwe have
rπ−1(IL(π(X))) = IL(rX)where π = πI with I = ann(r).Proof. Denote by f the R-module endomorphism x 7→ rx of R. Then

ker(f) = ann(r) and im(f) = rR. Therefore f indues an R-moduleisomorphism g : R/I → rR. Clearly, g indues a bijetion from the set
{J ∈ I(R) : J ⊃ I} onto the set {J ∈ I(R) : J ⊂ rR}. So

g(IL(Y )) = IL(g(Y )), Y ⊂ R/I. (6)(Here IL(Y ) ∈ I(R/I) and IL(g(Y )) ∈ I(R), see Notation.) Besides, ker(π) =
ker(g) where π = πI . So g(Y ) = f(π−1(Y )) for all Y ⊂ R/I. Thus from (6)we obtain that

rπ−1(IL(π(X))) = f(π−1(IL(π(X)))) = IL(f(X)) = IL(rX)for all X ⊂ R.Theorem 3.3 Let R = GR(pn, d) with p odd, and K ≤ R×. Then given
i ∈ {0, . . . , n} we have(1) IL(π(K)) = π(IL(K)) where π = πpn−iR,(2) IL(X) = piIL(K) for all X ∈ Orb(K, piR×).Proof. Let us prove statement (1). From Lemma 3.1 it follows that thisstatement is true when the group K is pure. Suppose that IL(K) 6= 0. Byindution without loss of generality we an assume that i = n− 1. However,in this ase IL(K) ⊃ pn−1R and hene the equality IL(π(K)) = π(IL(K)) isobvious. To prove statement (2) let X = xK where x = piu with u ∈ R×.Then by statement (1) and Lemma 3.2 with r = x and X = K we have

IL(X) = IL(xK) = xπ−1IL(π(K)) = xπ−1(π(IL(K))) =

xIL(K) = piuIL(K) = piIL(K).Corollary 3.4 Any orbit of a pure multipliative subgroup in a Galois ringof odd harateristi, is pure. 11



The following useful statement is another onsequene of Lemma 3.1. Itan also be easily dedued from the homoyliity of the group U (in theodd harateristi ase) by means of the theorem on a basis of a p-group [1,p.105, Proposition 23.1℄.Lemma 3.5 Let R = GR(pn, d) with p odd, K ≤ U and Ki = K ∩ Ui where
i = 1, . . . , n. Then for any i ∈ {1, . . . , n − 1} we have [Ki : Ki+1] ≤ pd withthe equality attained if and only if Ki = Ui.Proof. Clearly, [Ki : Ki+1] ≤ [Ui : Ui+1] = pd for all i. If Ki = Ui for some i,then Ki+1 = Ui+1 and hene [Ki : Ki+1] = pd. Let us prove the onversestatement by indution on n − i. It is easily seen that if i = n − 1, then
Ki+1 = Ui+1 = {1} and hene |Ki| = pd = |Ui|. Sine Ki ≤ Ui, this showsthat Ki = Ui. Suppose that i < n − 1. Then Ki+1 ∩ Un−1 = Ki ∩ Un−1, andhene

[π(Ki) : π(Ki+1)] = [Ki/(Ki ∩ Un−1) : Ki+1/(Ki+1 ∩ Un−1)] =

[Ki/(Ki ∩ Un−1) : Ki+1/(Ki ∩ Un−1)] = [Ki : Ki+1] = pdwhere π = πpn−1R. On the other hand, obviously π(Ki) = π(K)i and
π(Ki+1) = π(K)i+1. Then by the indution hypothesis (applied to thering π(R) = GR(pn−1, d), the group π(K) and i) we have π(Ki) = π(Ui).However, IL(Ki) 6= 0, for otherwise IL(π(Ki)) = 0 by Lemma 3.1 and then
π(Ui) = π(Un) whih is impossible beause i < n − 1. Therefore Un−1 ≤ Kiand hene Ki = π−1(π(Ki) = π−1(π(Ui)) = Ui.3.2 In this subsetion basing on the properties of multipliative subgroupsin a Galois ring we prove Theorem 3.7 whih will be used in Setion 5. Weneed the following lemma. Below for a ring R, a set X ⊂ R and an ideal
I ∈ I(R) we set XI,x = X ∩ (x+ I) for all x ∈ R.Lemma 3.6 Let R = GR(pn, d) with p odd, K a subgroup of R× with
IL(K) ≤ pn−lR where l ≥ 1, and J = pmR an ideal of R with m ≤ n.Suppose that for some y ∈ pl−1R×, z ∈ plR× we have

|YJ,y| = |ZJ,z|where Y = yK, Z = zK. Then m = n whenever l ≤ m− 1.12



Proof. Suppose that l ≤ m−1. Let x ∈ X ∈ Orb(K, pjR×) where 0 ≤ j ≤ l.Then
XJ,x = X ∩ (x+ J) = x(K ∩ Um−j) = xKm−jwhere for any i = 1, . . . , n we set Ki = K∩Ui. Besides, Un−j ≤ Um−j beause

m ≤ n, and Un−j ≤ K beause j ≤ l. Therefore, Km−j ≥ Un−j. Sine thepoint stabilizer (R×)x of x in R× equals Un−j, it follows that (Km−j)x = Un−jand hene |(Km−j)x| = |pn−jR| = pjd. Thus,
|XJ,x| = [Km−j : (Km−j)x] = |Km−j |/p

jd.By the lemma hypothesis this implies that
|Km−l+1|/p

(l−1)d = |YJ,y| = |ZJ,z| = |Km−l|/p
ldwhene [Km−l : Km−l+1] = pd. By Lemma 3.5 we have Km−l = Um−l, andhene Um−l ≤ K. Therefore pn−lR ≥ IL(K) ≥ pm−lR. Sine m ≤ n, it followsthat m = n.Theorem 3.7 Let A be a pure S-ring over a Galois ring R of odd harate-risti pn. If rk(A) > 2, then rad(R) is an A-ideal of R.Proof. Take X ∈ S(A) suh that X ∩R× 6= ∅, and set

J = max{I ∈ I(A) : X ⊂ R \ I}.It su�es to show that J = rad(R). Suppose that this is not true. Then
J = pmR where 2 ≤ m ≤ n. First, we observe that the set Xi = X ∩ piR× isnon-empty for i = 0, . . . ,m− 1, or equivalently that tr(X) = R \ J where

tr(X) =
⋃

u∈R×

uX.Indeed, tr(X) is an A-subset of R suh that R× ⊂ tr(X) ⊂ R \ J . Therefore,if tr(X) 6= R\J , then one an �nd a set Y ∈ S(A) suh that Y ⊂ rad(R)\J .This implies that J ( IU(Y ) ⊂ rad(R) whih ontradits the de�nition of Jby Corollary 2.7. Thus all the Xi's are non-empty and
|(Xi)J,y| = |XJ,y| = |XJ,z| = |(Xj)J,z|, y ∈ Xi, z ∈ Xj , i, j = 0, . . . ,m−1(7)13



(see equality (20)).Next, set K = {u ∈ R× : uX = X}. Then by Theorem 2.2 we have
Xi ∈ Orb(K, piR×), i = 0, . . . ,m− 1. (8)Let us de�ne a non-negative integer l by the ondition IL(K) = pn−lR. Sine

m ≥ 2, there exists x ∈ X ∩ rad(R). Then obviously (1 + I0){x} = {x}where I0 = pn−1R. This implies that (1 + I0)X = X and hene 1 + I0 ≤ K.Therefore I0 ⊂ IL(K) whene it follows that l ≥ 1. On the other hand, dueto (8) from statement (2) of Theorem 3.3 it follows that
IL(Xi) = pn−l+iR, i = 0, . . . ,m− 1. (9)Thus, l ≤ m−1, for otherwise I0 ⊂ IL(X) whih ontradits the purity of X.Therefore due to (7) the hypothesis of Lemma 3.6 is satis�ed for all y ∈ Xl−1and z ∈ Xl. So by this lemma m = n and hene J = 0. Next, from thede�nition of J it follows that the S-ring A is R-primitive. So by Corollary 2.5we have rk(A) = 2. Contradition. Thus J = rad(R).4 Duality4.1 Let R be a Galois ring of harateristi pn and R̂ = R̂+ the group dualto the group R+ (see Subsetion 7.2). Clearly,

(piR)⊥ = pn−iR̂, i = 0, . . . , n. (10)Take χ ∈ R̂ so that the image of χ ontains a primitive pnth root of unity.Then
R̂ = {χ(r) : r ∈ R}where χ(r) is the harater of R+ suh that χ(r)(x) = χ(rx), x ∈ R (seee.g. [9℄). It follows that the set R̂ together with the addition de�ned by thegroup operation in R̂ and the multipliation de�ned by the formula

χ(r)χ(s) = χ(rs), r, s ∈ R,beomes a ring the zero and the identity elements of whih are the prinipalharater and the harater χ respetively. We say that R̂ is the ring dual14



to R (with respet to χ). This ring is a Galois ring isomorphi to R: theisomorphism is given by r 7→ χ(r).4 Clearly,
R̂× = {χ(r) : r ∈ R×}, rad(R̂) = {χ(r) : r ∈ pR}. (11)The image of a group K ≤ R× with respet to the above isomorphism isdenoted by K̂.Theorem 4.1 Let R be a Galois ring of harateristi pn and S a pure subsetof R. Then(1) given S′ ⊂ R \ S there exists χ ∈ R̂× suh that χ(S) 6= χ(S′),(2) given χ ∈ R̂× there exists r ∈ R× suh that χ(rS) 6= 0.Proof. To prove statement (1) suppose on the ontrary that χ(S) = χ(S′)for all χ ∈ R̂×. However, when χ runs over R̂× its extension ψ : Q[G] →

C where G = R+, runs over the set Ψ(G) de�ned in Theorem 6.1. Thus
ξ(S)− ξ(S′) ∈ ker(ψ) for all ψ ∈ Ψ(G). Sine the group G is homoyli, byTheorem 6.1 this implies that ξ(S) − ξ(S′) ∈ (ξ(I)) where I is the minimalideal of the ring R. Sine S∩S′ = ∅, the set S is a union of additive I-osets.Therefore S is not pure, whih ontradits the hypothesis of the theorem. Toprove statement (2) let χ ∈ R̂×. By statement (1) with S′ = ∅ there existsa harater χ′ ∈ R̂× suh that χ′(S) 6= χ(S′) = 0. However, due to (11) wehave χ′ = χ(r) for some r ∈ R×. Thus, χ(rS) = χ′(S) 6= 0.4.2 Let A be an S-ring over a Galois ring R, R̂ the ring dual to R withrespet to a harater χ and Â the S-ring over the group R̂+ that is dualto A (see Subsetion 7.2).Theorem 4.2 The ring Â is an S-ring over the ring R̂.Proof. Suppose that χ(s) and χ(t) belong to the same basi set of Â where
s, t ∈ R. Then given r ∈ R× we have χ(s)(rS) = χ(t)(rS), or equivalently

χ(rs)(S) = χ(rt)(S), S ∈ S(A).4Sine the set R̂×
= R̂ \ pR̂ does not depend on the harater χ, any S-ring over thering dual to R with respet to χ is also an S-ring over the ring dual to R with respet toany other harater belonging to R̂×. 15



Sine χ(rs) = χ(r)χ(s) and χ(rt) = χ(r)χ(t), this implies that the haraters
χ(r)χ(s) and χ(r)χ(t) belong to the same basi set of Â for all r ∈ R×. Thusthe required statement follows from (11).We observe that if char(R) = pn then I(R) = {piR : i = 0, . . . , n} and
I(R̂) = {piR̂ : i = 0, . . . , n}. Therefore by (10) and (22) we have

I(Â) = {I⊥ : I ∈ I(A)}. (12)Thus A is R-primitive if and only if Â is R̂-primitive. Moreover, from (12)and Theorem 7.3 we obtain the following statement.Theorem 4.3 Let A be an S-ring over a Galois ring. Then the ring A is anon-trivial generalized wreath produt if and only if so is the ring Â. Moreexatly, A satis�es the I/J-ondition if and only if Â satis�es the J⊥/I⊥-ondition.Corollary 4.4 Let A be an S-ring over a Galois ring. Then A is pure if andonly if so is Â.Proof. Follows from Theorems 4.3 and 2.11.The following theorem shows that an S-ring and its dual are ylotomi ornot simultaneously. It an be also dedued from the results of [9℄ by using thewell-known 1-1 orrespondene between S-rings and translation assoiationshemes.Theorem 4.5 Let A = Cyc(K,R) where K ≤ R×. Then Â = Cyc(K̂, R̂).Proof. Let X ∈ Orb(K̂, R̂). Then given χ1, χ2 ∈ X there exists r ∈ K suhthat χ1 = χ
(r)
2 . Sine S = rS for eah basi set S of A, this implies that
χ1(S) = χ

(r)
2 (S) = χ2(rS) = χ2(S), S ∈ S(A).So A′ ≥ Â where A′ = Cyc(K̂, R̂). On the other hand, rk(Â) = rk(A) =

rk(A′). Thus Â = A′.
16



5 Pure S-rings over a Galois ringIn this setion we prove the following theorem.Theorem 5.1 Let A be an S-ring over a Galois ring R of odd harateristi.Suppose that A is pure and rk(A) ≥ 3. Then A is pure ylotomi.Proof. We need two lemmas.Lemma 5.2 In the onditions of Theorem 5.1 we have I(A) = I(R).Proof. Let char(R) = pn and I = pR, J = pn−1R. By Corollary 4.4 theS-ring Â over the Galois ring R̂ is pure. So from Theorem 3.7 it follows that
pR̂ is an Â-ideal. By formulas (10) and (12) this implies that J ∈ I(A).On the other hand, from Theorem 3.7 it follows that I ∈ I(A). Therefore
I(A) = I(R) for n ≤ 2. If n ≥ 3, then rk(AR/J) > 2 beause πJ(I) is aproper AR/J -ideal. Thus by indution we onlude that I(AR/J) = I(R/J).Sine J is the minimal ideal of R, it follows that I(A) = I(R).Lemma 5.3 Let A be an S-ring over a Galois ring R and K ≤ R×. Supposethat I(Â) = I(R̂) and Orb(K,R×) ⊂ S∗(A). Then any pure orbit of thegroup K̂ in R̂ belongs to S∗(Â).Proof. Let X1 be a pure orbit of the group K̂. Then X1 = χK̂1 for someharater χ1 ∈ R̂. Denote by X the basi set of Â ontaining χ1 and set
X2 = χK̂2 where χ2 ∈ X. Sine I(Â) = I(R̂) it follows that there exists anideal I ∈ I(R̂) suh that X1, X2 ⊂ IR̂×. Denote by a the ardinality of thekernel of the natural ation of the group K on the latter set. Sine the ationis semiregular, given S ∈ Orb(K,R×) and s ∈ S we have

χi(S) =
∑

r∈K

χi(rs) =
∑

r∈K

χ
(r)
i (s) = as(Xi), i = 1, 2,where s(Xi) is de�ned by (21) with G = R̂+, S = Xi and χ equal theharater of G orresponding to s. On the other hand, as S ∈ S∗(A) thede�nition of the dual S-ring implies that χ1(S) = χ2(S). Thus s(X1) = s(X2)for all s ∈ R×. Now due to the purity of the set X1, from statement (1) ofTheorem 4.1 applied to R̂ and X1, X2 it follows that X1 = X2 and hene

χ2 ∈ X1. Thus X ⊂ X1 and we are done.17



From Lemma 5.2 it follows that
I(A) = I(R). (13)By Corollary 2.3 this implies that the basi set of A ontaining 1R, say K,is a subgroup of R× and

Orb(K,R×) ⊂ S(A). (14)Moreover, due to (12) and (13) we have I(Â) = I(R̂). So by Lemma 5.3any pure orbit of the group K̂ belongs to S∗(Â). However, sine the S-ring A is pure, the group K and hene the group K̂ are also pure. So byCorollary 3.4 all orbits of K̂ are pure. Thus Â ≥ Cyc(K̂, R̂), and onsequentlyby Theorem 4.5
A ≥ Cyc(K,R).This shows that any orbit of K is a union of basi sets of A. Therefore toprove that A = Cyc(K,R) it su�es to verify that these basi sets are equal.Suppose on the ontrary that S1 and S2 are distint basi sets ontainedin an orbit of the group K. We observe that sine the orbit is pure, these setsare also pure (see the beginning of Subsetion 2.3). Therefore, by Theorem 4.1(with S = S1 and S′ = S2 for statement (1), and with S = K forstatement (2)) there exist a harater χ ∈ R̂ and a set T ∈ Orb(K,R×)suh that

χ(S1) 6= χ(S2), χ(T ) 6= 0. (15)On the other hand, due to the supposition and (14) we have S1, S2 ⊂ rad(R).Sine ξ(S1), ξ(T ) ∈ A and T ⊂ R×, this implies that the produt ξ(S1)ξ(T )belongs to the subset A ∩ span(R×) of the ring Z[R+], and hene it is K-invariant. Taking into aount that S2 = rS1 for some r ∈ K, we onludethat
ξ(S1)ξ(T ) = ξ(rS1)ξ(rT ) = ξ(S2)ξ(T ).Applying χ to both sides of this equality we obtain a ontradition with (15).6 A theorem on haratersThe following statement on the representations of a homoyli group is ageneralization of [11, Proposition 2.7℄).18



Theorem 6.1 Let G be a homoyli �nite group of exponent pn, n ≥ 1.Denote by Ψ = Ψ(G) the set of all ring homomorphisms ψ : Q[G] → C suhthat im(ψ) = Q(w) where w is a primitive pnth root of unity. Then
⋂

ψ∈Ψ

ker(ψ) = I(G0) (16)where G0 = Gpn−1 and I(G0) is the ideal of Q[G] generated by ξ(G0).Proof. It is easily seen that the restrition of any homomorphism ψ ∈ Ψto the group G0 is a non-prinipal irreduible harater of this group. So
ψ(ξ(S)) = 0 for all S ∈ G/G0. Sine I(G0) is the linear span of the elements
ξ(S), this implies that I(G0) ⊂ ker(ψ). Thus I(G0) is a subset of the left-handside of (16).To prove the onverse inlusion we need two auxiliary lemmas. Belowgiven f, g ∈ G we set

αf (g) = |{ψ ∈ Ψ : f−1g ∈ Hψ}|where Hψ = {g ∈ G : ψ(g) = 1}.Lemma 6.2 If gG0 = g′G0, then αf (g) = αf (g
′) for all f ∈ G \ {g, g′}.Proof. Due to the homoyliity of G the group Aut(G) ats transitivelyon the elements of the same order. Sine obviously (Hψ)σ = Hψσ for all

σ ∈ Aut(G) where ψσ is the element of Ψ taking ξ to ψ(ξσ), we onludethat
o(f−1g) = o((f ′)−1g′) ⇒ αf (g) = αf ′(g

′)for all f, f ′ ∈ G where o(x) denotes the order of x ∈ G. This proves therequired statement beause o(f−1g) = o(f−1g′) unless f ∈ {g, g′}. (Indeed,if o(f−1g) > p, then obviously o(f−1g) = o(f−1g′), whereas otherwise
o(f−1g) 6= o(f−1g′) only if f = g or f = g′.)Let ξ =

∑
g∈G agg be an element of Q[G]. Denote by C the group of all

pnth roots of unity in C. For c ∈ C and ψ ∈ Ψ set
Ac =

∑

g∈G∩ψ−1(c)

ag.19



Lemma 6.3 Suppose that ξ ∈ ker(ψ). Then for eah S ∈ G/G0 the number
Aψ(g) does not depend on g ∈ S.Proof. Denote by ψ0 : Q[C] → Q(w) the epimorphism idential on thegroup C. Sine the restrition of ψ to G indues an epimorphism fromG to C,there exists a unique epimorphism ϕ : Q[G] → Q[C] suh that ψ = ϕ ◦ ψ0.By the lemma hypothesis this implies that ϕ(ξ) ∈ ker(ψ0). Therefore takinginto aount that G ∩ ϕ−1(c) = G ∩ ψ−1(c) for all c ∈ C, we onlude thatthe right-hand side of the obvious formula

ϕ(ξ) =
∑

g∈G

agϕ(g) =
∑

c∈C

(
∑

g∈G∩ϕ−1(c)

ag)c =
∑

c∈C

Accalso belongs to ker(ψ0). On the other hand, from [11, Proposition 2.7℄ itfollows that
ker(ψ0) = I(C0) = span{ξ(T ) : T ∈ C/C0} (17)where C0 is the group of pth roots of unity. Thus for eah C0-oset of C thenumber Ac does not depend on the hoie of c in this oset (we used that

ψ(G0) = C0). The lemma is proved.To omplete the proof suppose that ξ belongs to the left-hand side of (16).To prove that ξ ∈ I(G0) it su�es to verify that given S ∈ G/G0 the number
ag does not depend on g ∈ S. First, we observe that given g ∈ G we have

∑

ψ∈Ψ

Aψ(g) =
∑

ψ∈Ψ

∑

h∈gHψ

agh =
∑

f∈G

αf (g)af .If g′ ∈ gG0, then from Lemma 6.3 it follows that Aψ(g) = Aψ(g′) and hene
∑

f∈G

αf (g)af =
∑

f∈G

αf (g
′)af . (18)By Lemma 6.2 this implies that

αg(g)ag + αg′(g)ag′ = αg(g
′)ag + αg′(g

′)ag′ .Sine obviously αg(g) = |Ψ| = αg′(g
′) and αg′(g) = αg(g

′), we onlude that
(|Ψ| − αg(g

′))(ag − ag′) = 0. (19)However, when ψ runs over Ψ the group Hψ runs over the set of all maximalhomoyli subgroups of G of exponent pn. Therefore ⋂
ψ∈ΨHψ = {1}, andhene αg(g′) < |Ψ| whenever g 6= g′. By (19) this shows that ag = ag′ and weare done. 20



7 S-rings over a �nite group7.1 Let G be a �nite group. A subring A of the group ring Z[G] is alleda Shur ring (S-ring, for short) over G if it has a (uniquely determined) Z-basis onsisting of the elements ξ(X) =
∑

x∈X x where X runs over a family
S = S(A) of pairwise disjoint non-empty subsets of G suh that

{1} ∈ S,
⋃

X∈S

X = G and X ∈ S ⇒ X−1 ∈ S.We all the elements of S the basi sets of A and denote by S∗(A) the setof all unions of them and by H(A) the set of all subgroups of G in S∗(A).The elements of S∗(A) and H(A) are alled A-subsets of G (or A-sets) and
A-subgroups of G respetively. The number

rk(A) = dimZ(A)is alled the rank of A.Let H ≤ G and X ⊂ G. Then X is a disjoint union of the sets
XH,x = X ∩Hxwhere x runs over a right transversal ofG byH. On the other hand, obviously

ξ(H)ξ(XH,x) = |XH,x| ξ(Hx). Thus if H ∈ H(A) and X ∈ S(A), then
|XH,x| = |XH,y|, x, y ∈ X, (20)(the oe�ient of ξ(X)ξ(H) in ξ(X) oinides with |XH,x| for all x ∈ X).Let H ∈ H(A). Then {X ∈ S : X ⊂ H} is the set of basi sets of anS-ring over the group H. This S-ring is denoted by AH . If the group H isnormal and π : G→ G/H is the quotient epimorphism, then {π(X) : X ∈ S}is the set of basi sets of an S-ring over the groupG/H. This S-ring is denotedby AG/H .De�nition 7.1 Let A be an S-ring over a group G and let L,U be subgroupsof G. We say that A satis�es the U/L-ondition if the following threeonditions hold:(1) L ≤ U and L is normal in G, 21



(2) L,U ∈ H(A),(3) LX = XL = X for all X ∈ S(A) with X ⊂ G \ U .If, moreover, L 6= {1} and U 6= G, we say that A satis�es the U/L-onditionnon-trivially.An S-ring A satisfying the U/L-ondition was alled in [11, 12℄ the wedgeprodut of the S-rings AU and AG/L. It should be noted that the authorsin [4℄ independently introdued the external operation of the generalizedwreath produt of two S-rings whih produes exatly the S-rings satisfyingthe U/L-ondition.The following statement shows that any S-ring A over G that satis�esthe U/L-ondition non-trivially ontains speial non-trivial automorphisms.By de�nition a permutation f ∈ Sym(G) is an automorphism of A if 1f = 1and the elements xy−1 and xf(yf )−1 belong to the same basi set of A for all
x, y ∈ G. Below the group of all automorphisms of A is denoted by Aut(A).Theorem 7.2 Let A be an S-ring over a group G that satis�es the U/L-ondition. Then given a mapping t : G/U → L with t(U) = 1, thepermutation x 7→ x t(Ux) of G belongs to Aut(A).Proof. Follows from [5, Lemma 5.6℄ for f1 = idU and f2 = idG/L.7.2 Let A be an S-ring over a �nite abelian group G and Ĝ the group dualto G, i.e. the group of all irreduible C-haraters of G. Given S ⊂ G and
χ ∈ Ĝ set

χ(S) =
∑

s∈S

χ(s). (21)Charaters χ1, χ2 ∈ Ĝ are alled equivalent if χ1(S) = χ2(S) for all S ∈

S(A). Denote by Ŝ the set of lasses of this equivalene relation. Then thesubmodule of Z[Ĝ] spanned by the elements ξ(X), X ∈ Ŝ, is an S-ring over Ĝ(see [2, Theorem 6.3℄). This ring is alled dual to A and is denoted by Â.Obviously, S(Â) = Ŝ. Moreover, rk(Â) = rk(A) and
H(Â) = {H⊥ : H ∈ H(A)} (22)where H⊥ = {χ ∈ Ĝ : H ≤ ker(χ)}. It is also true that the S-ring dual to Âis equal to A. 22



Theorem 7.3 Let A be an S-ring over an abelian group G. Then the ring
A is a non-trivial generalized wreath produt if and only if so is the ring
Â. More exatly, A satis�es the U/L-ondition if and only if Â satis�es the
L⊥/U⊥-ondition.Proof. Sine (1G)⊥ = Ĝ and G⊥ = 1Ĝ, it su�es to verify only the seondpart of the theorem. To do this suppose that A satis�es the U/L-onditionfor some U,L ∈ H(A). Then U⊥, L⊥ ∈ H(Â) and U⊥ ≤ L⊥. Therefore toverify that the S-ring Â satis�es the L⊥/U⊥-ondition it su�es to provethat given a basi set X̂ ⊂ Ĝ \ L⊥ of Â we have X̂ψ = X̂ for all haraters
ψ ∈ U⊥. By the de�nition of the dual S-ring all we need to verify is thatgiven χ ∈ X̂ and ψ ∈ U⊥ we have

χ(S) = χψ(S), S ∈ S(A). (23)Let us onsider two ases. If S ⊂ U , then by the hoie of ψ we have ψ(x) = 1for all x ∈ S. Therefore χ(S) = χψ(S). Now, suppose that S ⊂ G \ U . Sinethe ring A satis�es the U/L-ondition, it follows that the set S is a union ofosets by the group L. On the other hand, sine χ ∈ X̂ ⊂ Ĝ \ L⊥, we seethat ker(χ) 6⊂ L. Besides, sine ker(ψ) ≥ U ≥ L, we also have ker(χψ) 6⊂ L.However, it is well known that χ′(L) = 0, and hene χ′(xL) = 0 where x ∈ G,for any harater χ′ ∈ Ĝ suh that ker(χ′) 6⊂ L. Thus χ(S) = 0 = χψ(S).This proves equality (23). The onverse statement follows from the diret oneand the equalities (L⊥)⊥ = L and (U⊥)⊥ = U .Referenes[1℄ M. Ashbaher, Finite group theory, Cambridge Studies in AdvanedMathematis, 10. Cambridge University Press, Cambridge, 1986.[2℄ E. Bannai, T. Ito, Algebrai ombinatoris. I, Benjamin/Cummings,Menlo Park, CA, 1984.[3℄ J. D. Dixon, B. Mortimer, Permutation groups, Graduate Texts inMathematis, No. 163, Springer-Verlag New York, 1996.[4℄ S. Evdokimov, I. Ponomarenko, On a family of Shur rings over a �niteyli group, Algebra and Analysis, 13 (2001), 3, 139�154. (Englishtranslation in St. Petersburg Math. J., 13 (2002), no. 3, 441�451.)23
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