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1 Introduction

In papers [11, 12| K. H. Leung and S. H. Man proved that any Schur ring
(S-ring) over a finite cyclic group can be constructed from special S-rings
by means of two operations: tensor product and wedge product (as for a
background of S-rings see Section 7). This theorem supplemented with the
normality theory from [5] enabled to get a series of strong results in algebraic
combinatorics [5, 6, 10, 14].

To generalize the Leung-Man theorem in some way to S-rings over an
arbitrary abelian group, the notion of S-ring over a commutative ring B! was
introduced in [7]; by definition any such ring is an S-ring over the additive
group R of the ring R that is invariant with respect to its multiplicative
group R*. It should be noted that by the Schur theorem on multipliers any
S-ring over a cyclic group of order n can be treated as an S-ring over the ring
R = Z, of integers modulo n. We observe that in this case R is the direct
product of Galois rings of coprime characteristics with prime residue fields.
Thus it is natural to generalize the Leung-Man theorem to S-rings over the
products of arbitrary Galois rings of coprime characteristics. In the present
paper (being the first step in the indicated direction) we do this when R is a
Galois ring of odd characteristic: the role of the special rings play S-rings of
rank 2 and pure cyclotomic S-rings defined in Section 2. Only one operation is
needed here: it is the generalized wreath product also defined in that section.

Theorem 1.1 Any S-ring over a Galois ring of odd characteristic is either
pure cyclotomic, or of rank 2, or a non-trivial generalized wreath product.

Theorem 1.1 is an immediate consequence of Theorems 2.11 and 5.1
proved in this paper. Indeed, let A be a non-rank 2 S-ring over a Galois ring
of odd characteristic. If A is not a non-trivial generalized wreath product,
then by Theorem 2.11 the hypothesis of Theorem 5.1 is satisfied. Thus by
the latter theorem the ring A is pure cyclotomic.

As it was said above the Leung-Man theorem was substantially strengthe-
ned in [5]. The key point there is the notion of a normal S-ring over a group.
The analog of normality for S-rings over a ring is introduced in Subsection 2.3.
It should be noted that the 1-1 correspondence between normal S-rings and
normal Cayley schemes over a group that was defined in [5, Subsection 4.3],

LAll rings are supposed to be finite rings with identity.



induces the 1-1 correspondence between normal (resp. pure) cyclotomic S-
rings and normal (resp. corresponding to pure groups) cyclotomic schemes
over a ring defined in [8, Section 1].

Let A be a normal S-ring over a Galois ring of odd characteristic. Then
by Corollary 2.14 and Theorem 5.1 we conclude that either A is pure
cyclotomic or rk(,A) = 2. However, in the latter case from Theorem 2.12
and Corollary 2.3 it follows that A is also cyclotomic. Thus using the
characterization of normal cyclotomic schemes over a Galois ring of odd
characteristic given in [8] we obtain the following result.

Theorem 1.2 An S-ring A over a Galois ring R of odd characteristic is
normal if and only if A is pure cyclotomic, and rk(A) > 2 unless R is a field
of order 3.

The following statement is straightforward from Theorems 1.1 and 1.2.

Theorem 1.3 Any S-ring over a Galois ring of odd characteristic is either
normal, or of rank 2, or a non-trivial generalized wreath product.

Concerning finite rings and permutation groups we refer to [13] and [3].
To make the paper self-contained, we cite the background on Schur rings and
Galois rings in Section 7 and Section 3 respectively. In the latter section we
also study multiplicative subgroups in Galois rings. The theory of S-rings
over a commutative ring is the subject of Sections 2 and 4. Theorem 6.1 used
in Section 4 is proved in Section 6. Finally, Section 5 contains Theorem 5.1
which is a key point for Theorem 1.1.

Notation. As usual by Z,Q,C we denote the ring of integers, the ring
of rationals and the field of complex numbers respectively.

For a commutative ring R with identity we denote by R* and rad(R) the
multiplicative group of R and the radical of R respectively.

The set of all ideals of R is denoted by Z(R). Given I € Z(R) we denote
by I the additive group of I, and by 77 the natural epimorphism from R
to R/I.

For a set X C R we denote by Iy (X) the smallest ideal of R containing X
and by Ip,(X) the largest ideal I of R such that X + I = X. Also we set

ann(X)={re R: rX ={0}}



and write ann(r) instead of ann({r}) for r € R.

The group ring of a group G over R is denoted by R[G]. For X C G we
set {(X) = ,ex T

The group of all permutations of R of the form z — ax?+b where a € R*,
b€ R, o € Aut(R), is denoted by AT'L;(R). The stabilizer of the point 0 in
it is denoted by I'L; (R).

For a finite local commutative ring R the Teichmiiller group and the group
of principal units are denoted by 7 and U respectively. Then

R =T x U,

and the groups 7 and U4 = 1 + rad(R) are a cyclic group of order ¢ — 1
and an abelian p-group respectively where ¢ and p are the order and the
characteristic of the residue field R/ rad(R).

2 Schur rings over a commutative ring

2.1 Let R be a finite commutative ring with identity. In this paper we
consider the permutation group induced by the action of the group R* on
the set R by multiplication. It is a subgroup of the group Aut(R™), leaves
any ideal of R fixed, and has R* as a regular faithful orbit.

Let A be an S-ring over the group R*. The following definition is taken
from [7].

Definition 2.1 We say that A is an S-ring over the ring R if it is invariant
with respect to the action of the group R* on Z[R™] by multiplication.

This is equivalent to say that uX € S(A) for all u € R* and X € S(A).
The S-ring of rank 2 and the group ring are obvious examples of S-rings over
the ring R. One more example generalizing the latter one is given in the
next paragraph. On the other hand, there is a lot of S-rings over R™ that
are not S-rings over R. For example, if R is a field, then any S-ring over
R is cyclotomic (Corollary 2.3). Therefore the number of all of them is at
most |R*|, whereas the number of S-rings over the group R* can be much
larger (because R™ is an elementary abelian group in this case).

Let K < R* be a group. Then, obviously, K acts faithfully on the group
ring Z[R"] and the set of all K-invariant elements of it forms an S-ring over



the group R™. It is called a cyclotomic one and is denoted by Cyc(K, R).
The basic sets of this ring are exactly the orbits of K on R and hence

Cyc(K,R) =span{{(X): X € Orb(K, R)}.

In fact, Cyc(K, R) is an S-ring over the ring R because the group R* permutes
the orbits of K. Since the group K acts semiregularly on R*, the cyclotomic
rings are in 1-1 correspondence to the subgroups of R*.

In the following statement we describe the structure of a basic set of an
S-ring over a ring.

Theorem 2.2 Let A be an S-ring over a commutative ring R and X € S(A).
Then there exists a set Xo C X such that xR* NyR* = () for all non-equal
x,y € X, and
X = U K (disjoint union) (1)
e Xo

where K ={u € R*: uX = X}.

Proof. The set X is obviously K-invariant. So it is the disjoint union of
some K-orbits. Take an element in each of them and denote the obtained
set by Xo. Then Xy C X and (1) holds. To complete the proof suppose that
rR* NyR* # () for some x,y € Xy, x # y. Then ux = y where u € R*. We
note that uX € S(A) (Definition 2.1). Since X NuX # (), this implies that
X =uX. But then v € K, which contradicts the choice of z and y.=

Corollary 2.3 In the condition of Theorem 2.2 suppose in addition that
X C R*. Then X € Orb(K, R). In particular, any S-ring over a field is a
cyclotomic one.m

For an S-ring A over the ring R set
I(A)={I€ZI(R): IS (A}

The elements of Z(A) are called A-ideals of R. We say that A is R-primitive
if 0 and R are the only A-ideals of R.

Theorem 2.4 [7| Let R be a commutative ring such that each primary
component of it is local. Then any R-primitive S-ring is either of rank 2
or cyclotomic.? In the latter case, R is a fieldm

2In the conditions of the theorem "R-primitivity" is equivalent to "quasiprimitivity"
in sense of [7] (see the remark before Theorem 1.3 of that paper).
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Corollary 2.5 Let R be a local commutative ring other than a field. Then
any R-primitive S-ring is of rank 2.m

Let R be an arbitrary commutative ring and I € Z(.A). Then the S-ring
Apg+r+ is an S-ring over the group (R/I)" = R*/I*. Since the ring A is
R*-invariant, the latter S-ring is (R/I)*-invariant. Thus it is an S-ring over
the quotient ring R/I; we will denote it by Ag/;.

2.2 Let A be an S-ring over a ring R and X € S*(A). It is well known
from the elementary theory of S-rings over abelian groups, that the smallest
group Uy < R* for which X C Uy, and the largest group Ly < R for which
Lo+ X = X, are A-subgroups. By Definition 2.1 this implies that the groups

U= () ulh, L= ) ulo

u€RX ueRX

belong to the set H(A). Clearly, U < Iy(X), L > I(X) and R*U = U,
R*L = L. On the other hand, suppose that the ring R is generated by the
units. Then any R*-invariant subgroup of R* is an ideal of R. Thus in this
case Iy(X) = U and I (X) = L, and hence Iy(X) and I,(X) are A-ideals
of R. This proves the following statement.

Theorem 2.6 Let A be an S-ring over a commutative ring R. Suppose that
R is generated by the units. Then Iy(X), IL(X) € Z(A) for all X € §*(A) =

Corollary 2.7 Let A be an S-ring over a local commutative ring. Then
Iv(X), IL(X) € Z(A) for all X € S*(A).

Proof. Follows from Theorem 2.6 because each element of the radical of a
local commutative ring is the difference of two units.m

It is easily seen that given X C R we have
IL(X)=1I(uX), ueR”. (2)

Therefore from Definition 2.1 it follows that the ideal I1,(X) does not depend
on the set X € S(A) such that X N R* # (). We denote this ideal by I1,(A).

Theorem 2.8 Let A be an S-ring over a local commutative ring R. Then
I (A) # 0 if and only if there exist proper ideals I1,J € Z(A) such that

JCI(X)NI, X eSA), X CR\I (3)



Proof. The sufficiency immediately follows from the definitions. To prove the
necessity suppose that I,(A) # 0. Set J = I,(A) and I a maximal element
in the set {I' € Z(A) : J C I' # R}. Clearly, J C I. Take X € S(A) such
that X C R\ I. Then X N R* # (), for otherwise the ideal generated by
X and [ is contained in rad(R) and belongs to Z(.A) (Corollary 2.7), which
contradicts the maximality of I. So I,(X) = J by the definition of I,(.A).
Thus (3) holds. Since J = I1,(A) # 0 and I # R, we are done.m

If (3) holds for some ideals I,J € Z(A), we say that A is a generalized
wreath product or that A satisfies the I/J-condition. Clearly, it is true
whenever I = R or J = 0. Theorem 2.8 shows that I,(A) # 0 if and
only if the S-ring A is a non-trivial generalized wreath product in the sense

of the following definition the second part of which is a special case of [5,
Definition 5.2].

Definition 2.9 We say that A is a non-trivial generalized wreath product if
there exist proper ideals I, J € Z(A) such that (3) holds. In this case we also
say that A satisfies the I/J-condition non-trivially.

It should be noted that in the sense of [4] the S-ring A satisfying the I/J-
condition is the (standard) generalized wreath product of the S-rings A; and
Apg,j over the groups I and (R/J)* respectively. Moreover, the latter S-ring
can be treated as an S-ring over the ring R/J whereas the former one when
I is a principal ideal can be treated as an S-ring over the ring R/ ann([).

2.3 Following [8] a non-empty set X C R is called pure if I;,(X) = 0. This
means that the only ideal I for which X + 1 = X is the zero one. Due to (2)
the sets X and uX are pure or not simultaneously. Therefore any subset of
a pure orbit of a subgroup of R* is also pure. It should be noted that if X is
such a pure orbit the set 77(X) where [ is an ideal of R, is not necessarily
pure. However, if I = I1,(X), the set 7;(X) is pure for all X C R.

Definition 2.10 The S-ring A is called pure if I;,(A) = 0.

It follows that A is pure if and only if some (and hence any) X € S(A),
X N R* # (), is pure. S-rings of rank 2 and cyclotomic rings Cyc(K, R) with
pure groups K < R*, are obvious examples of pure S-rings. Non-pure S-rings
over a local ring can be characterized by means of Theorem 2.8 as follows.

Theorem 2.11 An S-ring over a local commutative ring is not pure if and
only if it is a non-trivial generalized wreath product.m
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We say that an S-ring A over a commutative ring R is normal if
Aut(A) < TLi(R). (4)

Suppose that rk(.A) = 2. Then obviously 7' Aut(A) = Sym(R) where T is the
group of all translations of R; in particular, the group 7" Aut(.A) is primitive.
On the other hand, if the ring R is local, then rad(R) is a block of the group
AT'L;(R) < Sym(R). Since any block of a primitive group is trivial, we come
to the following statement.

Theorem 2.12 Let A be a normal S-ring over a local commutative ring R.
If tk(A) = 2, then R is a field.m

The following statement provides a necessity condition for a cyclotomic
S-ring over a Galois ring to be normal (cf. [8, Theorem 1.4]).

Theorem 2.13 Let A be a normal S-ring over a local commutative ring R
with the residue field of order q. Suppose that A satisfies the I/J-condition
non-trivially for some I,J € Z(R). Then q =2 and J C ann((2,rad(R)?)).

Proof. By the theorem hypothesis we have I C rad(R) and J # 0. So
the S-ring A satisfies the rad(R)/J-condition non-trivially. Therefore from
Theorem 7.2 it follows that given a € J the permutation f, € Sym(R) defined
by

x, otherwise,

s {x+a, if v eU;
xle =

belongs to Aut(A). On the other hand, from the normality of A it follows
that z/e = ba? for some b € R* and o € Aut(R), and all z € R. Since
1/a = a + 1, we conclude that b = a + 1. Thus,

2 =z/(1+a), reR\U. (5)

This implies that o leaves fixed each set x 4 rad(R). Since 79 = 7 and
|7 N (z+rad(R))| = 1 for z € R*, we see that o leaves fixed each element
of 7. Therefore t =t =t/(1 +a) for all t € T \ {1}. If ¢ > 2, then the
latter set is not empty whence it follows that a = 0. Thus in this case J = 0.
Contradiction. This proves that ¢ = 2. But then 2 € rad(R), and hence due



to (5) we have 2 =2/(1+a). So 2a = 0 and J C ann(2). On the other hand,
given z,y € rad(R) we have

vy/(1+a) = (zy)” = 2"y" = 2y/(1 + a)’,

whence it follows that axy = 0. Therefore J C ann(rad(R)?).=

Corollary 2.14 Any normal S-ring over a Galois ring of odd characteristic
1S pure.

Proof. Follows from Theorems 2.13 and 2.11 .=

3 Multiplicative subgroups in Galois rings

3.1 A local ring R is called Galois if rad(R) = pR where p is a prime.?

Given positive integers n, d there exists a unique (up to isomorphism) Galois
ring of characteristic p” with the residue field of order ¢ = p?; it is denoted
by GR(p™,d). We observe that

GR(p,d) = GF(p?),  GR(p",1) = Zyn.

Fach ideal of the Galois ring GR(p",d) = R other than R is of the form p'R,
i=1,...,n, and the corresponding quotient ring is isomorphic to GR(p", d).
It is known that R is a homocyclic p-group of rank d and exponent p", i.e.
it is isomorphic to a direct product of d cyclic p-groups of order p”. If p is
odd, then the group U = 1 + pR is homocyclic of rank d and exponent p"~!;
the set of its elements of order dividing p"~* equalsU; = 1+p'R, i =1,...,n.

In this subsection we deduce several consequences from the following
statement proved in [8, Theorem 6.6].

Lemma 3.1 Let R be a Galois ring of odd characteristic, K < R* a group
and I € Z(R). Then the group m(K) is pure whenever so is K .m

The following general lemma will be used in proving Theorem 3.3 below.

3This is one of the equivalent definitions given in [13].
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Lemma 3.2 Let R be a commutative ring. Then given r € R and X C R
we have

ra (I (7(X))) = I(rX)

where m = 7 with I = ann(r).

Proof. Denote by f the R-module endomorphism z +— rz of R. Then
ker(f) = ann(r) and im(f) = rR. Therefore f induces an R-module
isomorphism ¢ : R/I — rR. Clearly, g induces a bijection from the set
{J€ZI(R): JDI}ontotheset {Je€Z(R): JCrR}. So

gUL(Y)) = I(9(Y)), Y CR/L (6)

(Here I,(Y) € Z(R/I) and I1,(g(Y)) € Z(R), see Notation.) Besides, ker(7) =
ker(g) where 7 = 77. So g(Y) = f(7=*(Y)) for all Y C R/I. Thus from (6)
we obtain that

P (I(r(X)) = Fr (I (x(X)))) = IL(F(X)) = L(rX)
forall X C Rm

Theorem 3.3 Let R = GR(p",d) with p odd, and K < R*. Then given
i €40,...,n} we have

(1) I(m(K)) = n(IL(K)) where m = mpn—ig,
(2) IL(X) = p'IL(K) for all X € Orb(K,p'R*).

Proof. Let us prove statement (1). From Lemma 3.1 it follows that this
statement is true when the group K is pure. Suppose that I;,(K) # 0. By
induction without loss of generality we can assume that ¢ = n — 1. However,
in this case I1,(K) D p" 'R and hence the equality Ip(m(K)) = m(I(K)) is
obvious. To prove statement (2) let X = 2K where x = p'u with u € R*.
Then by statement (1) and Lemma 3.2 with » = xz and X = K we have

I(X) = I(2K) = 2 I, (7(K)) = 2 (7(IL(K))) =
vl (K) = p'ul,(K) = p'I,(K).»

Corollary 3.4 Any orbit of a pure multiplicative subgroup in a Galois ring
of odd characteristic, is pure.m
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The following useful statement is another consequence of Lemma 3.1. Tt
can also be easily deduced from the homocyclicity of the group U (in the
odd characteristic case) by means of the theorem on a basis of a p-group |1,
p.105, Proposition 23.1].

Lemma 3.5 Let R = GR(p",d) with p odd, K <U and K; = K NU; where
i=1,...,n. Then for anyi € {1,...,n — 1} we have [K; : K;11] < p* with
the equality attained if and only iof K; = U;.

Proof. Clearly, [K; : K1) < [U; : Us 1] = p for all 4. If K; = U; for some i,
then K;,; = U1 and hence [K; : K;;1] = p Let us prove the converse
statement by induction on n — 7. It is easily seen that if + = n — 1, then
Kij1 = Upy1 = {1} and hence |K;| = p? = |U;|. Since K; < U;, this shows
that K; = U;. Suppose that i« <n — 1. Then K,y NU,,_; = K; NU,,_1, and
hence

[m(KG) : m(Kiyn)] = [/ (K NUp—1) - Kiga /(Kipr NUn-1)] =

(K /(K N Up—1) 2 K /(KN U—1)] = [KG 0 K] =p?

where @ = myn-1g. On the other hand, obviously n(K;) = w(K); and
m(Kit1) = m(K)i41. Then by the induction hypothesis (applied to the
ring 7(R) = GR(p" !, d), the group m(K) and i) we have 7(K;) = m(U;).
However, I1,(K;) # 0, for otherwise Ip,(m(K;)) = 0 by Lemma 3.1 and then
7(U;) = m(U,) which is impossible because i < n — 1. Therefore U,, 1 < K;
and hence K; = 7! (n(K;) = n 1 (n(U;)) = U;m

3.2 In this subsection basing on the properties of multiplicative subgroups
in a Galois ring we prove Theorem 3.7 which will be used in Section 5. We
need the following lemma. Below for a ring R, a set X C R and an ideal

I € Z(R) weset X;,=XN(x+1I)forall z € R.
Lemma 3.6 Let R = GR(p™,d) with p odd, K a subgroup of R* with
I(K) < p" 'R where | > 1, and J = p™R an ideal of R with m < n.
Suppose that for some y € pI'R*, z € p'R* we have

Yoyl = 12|

where Y = yK, Z = zK. Then m = n whenever [ < m — 1.

12



Proof. Suppose that [ < m—1. Let x € X € Orb(K,p? R*) where 0 < j <.
Then
XJ@ =XnN (a:+ J) = a:(KﬂMm_]) — J?Km_j

where for any ¢ = 1,...,n we set K; = K NU;. Besides, U,,_; < U,,_; because
m < n, and U,,_; < K because j < [. Therefore, K,,_; > U,_;. Since the
point stabilizer (R*), of x in R* equals U,,_;, it follows that (K,,—;); = Un—;
and hence |(K,,_;).| = [p" 7 R| = p®. Thus,

(Xoel = K : (Kn—j)a] = [EKomy| /0.
By the lemma hypothesis this implies that

K| /90 = Y| = 22| = | K| /1™

whence [K,,_; : Kn_141] = p?. By Lemma 3.5 we have K,,_; = Uy,_;, and
hence U,,_; < K. Therefore p" 'R > I,(K) > p™'R. Since m < n, it follows
that m = n.m

Theorem 3.7 Let A be a pure S-ring over a Galois ring R of odd characte-
ristic p". If rk(A) > 2, then rad(R) is an A-ideal of R.

Proof. Take X € S(A) such that X N R* # (), and set
J=max{I €Z(A): X CR\I}.

It suffices to show that J = rad(R). Suppose that this is not true. Then
J = p™R where 2 < m < n. First, we observe that the set X; = X Np'R* is
non-empty for i = 0,...,m — 1, or equivalently that tr(X) = R\ J where

tr(X) = U uX.

ueRX

Indeed, tr(X) is an A-subset of R such that R* C tr(X) C R\ J. Therefore,
if tr(X) # R\ J, then one can find a set Y € S(A) such that Y C rad(R)\ J.
This implies that J C Iy(Y) C rad(R) which contradicts the definition of J
by Corollary 2.7. Thus all the X;’s are non-empty and

|(X1)J,y| = |XJ,y| = |XJ,Z| = |(XJ)J,Z|) Yy € Xi7 S Xj7 Za.] - 07' o )m_l
(7)
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(see equality (20)).
Next, set K = {u € R*: uX = X}. Then by Theorem 2.2 we have

X; € Orb(K,p'RY), i=0,...,m—1. (8)

Let us define a non-negative integer [ by the condition Iy,(K) = p"~'R. Since
m > 2, there exists x € X Nrad(R). Then obviously (1 + Ip){z} = {x}
where Iy = p" ! R. This implies that (1 + I;)X = X and hence 1 + [, < K.
Therefore [y C Ir,(K) whence it follows that [ > 1. On the other hand, due
to (8) from statement (2) of Theorem 3.3 it follows that

IL(X)=p" "R, i=0,...,m—1 (9)

Thus, | < m—1, for otherwise Iy C I1,(X) which contradicts the purity of X.
Therefore due to (7) the hypothesis of Lemma 3.6 is satisfied for all y € X;
and z € X;. So by this lemma m = n and hence J = 0. Next, from the
definition of J it follows that the S-ring A is R-primitive. So by Corollary 2.5
we have rk(A) = 2. Contradiction. Thus J = rad(R).=

4 Duality

4.1 Let R be a Galois ring of characteristic p™ and R = R" the group dual
to the group R™ (see Subsection 7.2). Clearly,

~

('R =p" 'R, i=0,...,n. (10)

Take x € R so that the image of y contains a primitive p"th root of unity.
Then

R={x": reR}
where x(") is the character of R such that x")(z) = x(rz), v € R (see
e.g. [9]). It follows that the set R together with the addition defined by the
group operation in R and the multiplication defined by the formula

X(T)X(S) — X(TS); r s € R,

becomes a ring the zero and the identity elements of which are the principal
character and the character y respectively. We say that R is the ring dual
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to R (with respect to x). This ring is a Galois ring isomorphic to R: the
isomorphism is given by r — x(".4 Clearly,

R*={x"": reR*}, rad(R)={x": rcpR}. (11)

The image of a group K < R* with respect to the above isomorphism is
denoted by K.

Theorem 4.1 Let R be a Galois ring of characteristic p™ and S a pure subset
of R. Then

(1) given 8" C R\ S there exists x € R* such that x(S) # x(5"),

(2) given x € R* there exists v € R* such that x(rS) # 0.

Proof. To prove statement (1) suppose on the contrary that x(S) = x(5")
for all y € R*. However, when y runs over R* its extension ¢ : Q[G] —
C where G = R™, runs over the set ¥(G) defined in Theorem 6.1. Thus
£(S) —&(S") € ker() for all p € U(G). Since the group G is homocyclic, by
Theorem 6.1 this implies that £(.S) — £(S7) € (£(1)) where [ is the minimal
ideal of the ring R. Since SNS’ = (), the set S is a union of additive I-cosets.
Therefore S is not pure, which contradicts the hypothesis of the theorem. To
prove statement (2) let x € R*. By statement (1) with S" = () there exists
a character Y € R* such that X'(S) # x(5") = 0. However, due to (11) we
have X' = x") for some r € R*. Thus, x(rS) = x'(S) # 0.

4.2 Let A be an S-ring over a Galois ring R, R the ring dual to R with
respect to a character y and A the S-ring over the group R' that is dual
to A (see Subsection 7.2).

Theorem 4.2 The ring A is an S-ring over the ring R.

Proof. Suppose that y*) and ) belong to the same basic set of A where
s,t € R. Then given r € R* we have x*)(rS) = x®(r5), or equivalently

X"(8) =x"0(8), S € S(A).

4Since the set RX = R \ p]:Z does not depend on the character y, any S-ring over the
ring dual to R with respect to x is also an S-ring over the ring dual to R with respect to
any other character belonging to R*.
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Since ¥ = "y and ™ = (@ this implies that the characters
Y x) and xx® belong to the same basic set of A for all » € R*. Thus
the required statement follows from (11).m

We observe that if char(R) = p" then Z(R) = {p'R :i = 0,...,n} and
I(R) ={p'R :i=0,...,n}. Therefore by (10) and (22) we have

T(A) ={I*: T eZ(A)}. (12)

Thus A is R-primitive if and only if A is R-primitive. Moreover, from (12)
and Theorem 7.3 we obtain the following statement.

Theorem 4.3 Let A be an S-ring over a Galois ring. Then the ring A is a
non-trivial generalized wreath product if and only if so is the ring A. More
exactly, A satisfies the I/J-condition if and only if A satisfies the J*/I+-
condition.m

Corollary 4.4 Let A be an S-ring over a Galois ring. Then A is pure if and
only if so is A.

Proof. Follows from Theorems 4.3 and 2.11.m

The following theorem shows that an S-ring and its dual are cyclotomic or
not simultaneously. It can be also deduced from the results of [9] by using the
well-known 1-1 correspondence between S-rings and translation association
schemes.

Theorem 4.5 Let A = Cyc(K, R) where K < R*. Then A = Cyc(K, R).

Proof. Let X € Orb([?, ﬁ) Then given x1, x2 € X there exists r € K such
that x; = X2(T). Since S = rS for each basic set S of A, this implies that

X1(8) = x5 (S) = x5 (rS) = v,(S), S € S(A).

So A’ > A where A’ = Cyc(f(,f%). On the other hand, rk(j) = rk(A) =
rk(A’). Thus A = A’ =
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5 Pure S-rings over a Galois ring
In this section we prove the following theorem.

Theorem 5.1 Let A be an S-ring over a Galois ring R of odd characteristic.
Suppose that A is pure and rk(A) > 3. Then A is pure cyclotomic.

Proof. We need two lemmas.
Lemma 5.2 In the conditions of Theorem 5.1 we have Z(A) = Z(R).

Proof. Let char(R) = p"” and I = pR, J = p" 'R. By Corollary 4.4 the
S-ring A over the Galois ring R is pure. So from Theorem 3.7 it follows that
pR is an A-ideal. By formulas (10) and (12) this implies that J € Z(A).
On the other hand, from Theorem 3.7 it follows that I € Z(A). Therefore
I(A) = Z(R) for n < 2. If n > 3, then rk(Ag/s) > 2 because 7;(I) is a
proper Ag, -ideal. Thus by induction we conclude that Z(Ag/;) = Z(R/J).
Since J is the minimal ideal of R, it follows that Z(A) = Z(R).m

Lemma 5.3 Let A be an S-ring over a Galois ring R and K < R*. Suppose
that Z(A) = Z(R) and Orb(K,R*) C S*(A). Then any pure orbit of the
group K in R belongs to S*(A).

Proof. Let X; be a pure orbit of the group K. Then X, = X{? for some
character X1 € R. Denote by X the basic set of A containing x; and set
X, = x& where y, € X. Since Z(A) = Z(R) it follows that there exists an
ideal I € Z(R) such that X1, X, C IR*. Denote by a the cardinality of the
kernel of the natural action of the group K on the latter set. Since the action

is semiregular, given S € Orb(K, R*) and s € S we have

= xilrs) => X (s) X)), i=1,2,

reK rekK

where s(X;) is defined by (21) with G = R*, S = X; and y equal the
character of G corresponding to s. On the other hand, as S € S*(A) the
definition of the dual S-ring implies that x;(S) = x2(5). Thus s(X;) = s(X5)
for all s € R*. Now due to the purity of the set X, from statement (1) of
Theorem 4.1 applied to R and X1, X, it follows that X; = X, and hence
X2 € X1. Thus X C X; and we are done.n
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From Lemma 5.2 it follows that
Z(A) =Z(R). (13)

By Corollary 2.3 this implies that the basic set of A containing 15, say K,
is a subgroup of R* and

Orb(K, R*) C S(A). (14)

Moreover, due to (12) and (13) we have Z(A) = Z(R). So by Lemma 5.3
any pure orbit of the group K belongs to S*(.Z) However, since the S-
ring A is pure, the group K and hence the group K are also pure. So by
Corollary 3.4 all orbits of K are pure. Thus A > CyC(K R) and consequently
by Theorem 4.5

A > Cyc(K, R).

This shows that any orbit of K is a union of basic sets of A. Therefore to
prove that A = Cyc(K, R) it suffices to verify that these basic sets are equal.

Suppose on the contrary that S; and Sy are distinct basic sets contained
in an orbit of the group K. We observe that since the orbit is pure, these sets
are also pure (see the beginning of Subsection 2.3). Therefore, by Theorem 4.1
(with S = S; and §' = Sy for statement (1), and with S = K for
statement (2)) there exist a character Y € R and a set T € Orb(K, R*)
such that

X(S1) # x(S2), x(T) #0. (15)

On the other hand, due to the supposition and (14) we have S;, Sy C rad(R).
Since £(51),&(T) € A and T C R*, this implies that the product £(51)&(T)
belongs to the subset A N span(R*) of the ring Z[R"], and hence it is K-
invariant. Taking into account that Sy = rS; for some r € K, we conclude
that

§(51)E(T) = &(rS1)E(rT) = £(52)E(T).
Applying x to both sides of this equality we obtain a contradiction with (15).m

6 A theorem on characters

The following statement on the representations of a homocyclic group is a
generalization of [11, Proposition 2.7]).
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Theorem 6.1 Let G be a homocyclic finite group of exponent p, n > 1.
Denote by ¥ = U(G) the set of all ring homomorphisms ¢ : Q[G] — C such
that im(v) = Q(w) where w is a primitive p"th root of unity. Then

() ker(v) = I(Go) (16)

where Gy = GP"" and 1(G) is the ideal of Q[G] generated by £(Gy).

Proof. It is easily seen that the restriction of any homomorphism ¢ € ¥
to the group Gy is a non-principal irreducible character of this group. So
P(&(S)) =0 for all S € G/Gy. Since 1(Gy) is the linear span of the elements
£(9), this implies that I(Gg) C ker(¢). Thus I(G)) is a subset of the left-hand
side of (16).

To prove the converse inclusion we need two auxiliary lemmas. Below
given f,g € G we set

ap(g) =Y e V: flge Hy}
where H, ={g € G : ¢(g) = 1}.
Lemma 6.2 If Gy = ¢'Go, then ar(g) = ays(g’) for all f € G\ {g,9'}.

Proof. Due to the homocyclicity of G the group Aut(G) acts transitively
on the elements of the same order. Since obviously (Hy)” = Hye for all
o € Aut(G) where 17 is the element of ¥ taking & to ¥(£7), we conclude
that

olf gy =o((f)d) = aslg)=ar(g)
for all f, f' € G where o(x) denotes the order of x € G. This proves the

required statement because o(f~'g) = o(f7'¢’) unless f € {g,¢'}. (Indeed,
if o(f~'g) > p, then obviously o(f~'g) = o(f'¢’), whereas otherwise

o(f7'g) #o(f'g) only if f=gor f=g')n
Let £ = > cqagg be an element of Q[G]. Denote by C' the group of all
p"th roots of unity in C. For ¢ € C' and ¢ € V¥ set

A, = Z Qg.

geGMp=1(c)
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Lemma 6.3 Suppose that & € ker(v)). Then for each S € G /Gy the number
Ay(g) does not depend on g € S.

Proof. Denote by ¢y : Q[C] — Q(w) the epimorphism identical on the
group C'. Since the restriction of ¢ to GG induces an epimorphism from G to C,
there exists a unique epimorphism ¢ : Q[G] — Q[C] such that ¥ = ¢ o ).
By the lemma hypothesis this implies that ¢(&) € ker(¢g). Therefore taking
into account that G Ny~ t(c) = GNy~(c) for all ¢ € C, we conclude that
the right-hand side of the obvious formula

= awlg)=) ( Y, ade=) Ac
geG ceC geGnep~—1(c) ceC

also belongs to ker(t)p). On the other hand, from [11, Proposition 2.7] it
follows that

ker(ig) = I(Cy) = span{&(T) : T € C/Cy} (17)
where (Y is the group of pth roots of unity. Thus for each Cy-coset of C' the

number A. does not depend on the choice of ¢ in this coset (we used that
P(Go) = Cp). The lemma is proved.m

To complete the proof suppose that £ belongs to the left-hand side of (16).
To prove that £ € I(Gy) it suffices to verify that given S € G /Gy the number
a, does not depend on g € S. First, we observe that given g € G we have

D Ao =D D am=) aslg)a
Ppev eV hegHy fea
If ¢ € gGo, then from Lemma 6.3 it follows that Ay ) = Ayy) and hence
Y ag(gag =Y ag(g)ay. (18)
feG feG
By Lemma 6.2 this implies that
ag(9)ag + ag(g)ay = ayg(g)a, + ag(g)ay.
Since obviously ay(g9) = |V| = oy (¢') and ay(g9) = a4(g’), we conclude that
(W] — ay(g')(ag — ag) = 0. (19)
However, when 1 runs over ¥ the group H, runs over the set of all maximal
homocyclic subgroups of G of exponent p". Therefore (. Hy = {1}, and

hence ay,(¢') < |V| whenever g # ¢'. By (19) this shows that a, = a, and we
are done.m
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7 S-rings over a finite group

7.1 Let G be a finite group. A subring A of the group ring Z[G] is called
a Schur ring (S-ring, for short) over G if it has a (uniquely determined) Z-
basis consisting of the elements {(X) = > _, * where X runs over a family
S = S(A) of pairwise disjoint non-empty subsets of G such that

{1}es, |JX=G and Xe8 = X 'es
XeS

We call the elements of S the basic sets of A and denote by S*(A) the set,
of all unions of them and by H(A) the set of all subgroups of G' in $*(A).
The elements of S*(A) and H(A) are called A-subsets of G (or A-sets) and
A-subgroups of G respectively. The number

rk(A) = dimg(.A)

is called the rank of A.
Let H < G and X C G. Then X is a disjoint union of the sets

Xpyo=XNHz

where x runs over a right transversal of G by H. On the other hand, obviously
E(H)E(Xpo) = |Xua E(Hx). Thus if H € H(A) and X € S(A), then

| Xtz = | Xyl x,y € X, (20)

(the coeflicient of £(X)E(H) in (X)) coincides with | X g .| for all x € X).

Let H € H(A). Then {X € §: X C H} is the set of basic sets of an
S-ring over the group H. This S-ring is denoted by Ag. If the group H is
normal and 7 : G — G/ H is the quotient epimorphism, then {7(X) : X € S}
is the set of basic sets of an S-ring over the group GG/ H. This S-ring is denoted
by Ag/H.

Definition 7.1 Let A be an S-ring over a group G and let L, U be subgroups
of G. We say that A satisfies the U/L-condition if the following three
conditions hold:

(1) L <U and L is normal in G,
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(2) L,U € H(A),
(3) LX = XL =X foral X € S(A) with X C G\ U.

If, moreover, L # {1} and U # G, we say that A satisfies the U/ L-condition
non-trivially.

An S-ring A satisfying the U/ L-condition was called in [11, 12] the wedge
product of the S-rings Ay and Ag/r. It should be noted that the authors
in [4] independently introduced the external operation of the generalized
wreath product of two S-rings which produces exactly the S-rings satistying

the U/L-condition.

The following statement shows that any S-ring A over G that satisfies
the U/L-condition non-trivially contains special non-trivial automorphisms.
By definition a permutation f € Sym(G) is an automorphism of A if 1/ = 1
and the elements xy~* and 27/ (y/)~! belong to the same basic set of A for all
z,y € G. Below the group of all automorphisms of A is denoted by Aut(.A).

Theorem 7.2 Let A be an S-ring over a group G that satisfies the U/L-
condition. Then given a mapping t : G/U — L with t({U) = 1, the
permutation x — xt(Uzx) of G belongs to Aut(A).

Proof. Follows from [5, Lemma 5.6 for f; =idy and f, =idg/,m

7.2 Let A be an S-ring over a finite abelian group G and G the group dual
to G, i.e. the group of all irreducible C-characters of G. Given S C G and

X € G set
X(8) = x(s). (21)

SES

Characters x1,x2 € G are called equivalent if X1(S) = x2(S) for all S €
S(A). Denote by S the set of classes of this equivalence relation. Then the
submodule of Z[CA}] spanned by the elements £(X), X € S, is an S-ring over G
(see [2, Theorem 6.3]). This ring is called dual to A and is denoted by A.

~

Obviously, S(A) = S. Moreover, rk(A) = rk(A) and
H(A) = {H": He H(A)} (22)

where H+ = {x € G: H< ker(x)}. It is also true that the S-ring dual to A
is equal to A.
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Theorem 7.3 Let A be an S-ring over an abelian group G. Then the ring
A is a non-trivial generalized wreath product if and only if so is the ring

A. More exactly, A satisfies the U/ L-condition if and only zf.A satisfies the
L+ /U -condition.

Proof. Since (1¢)* = G and G+ = 14, it suffices to verify only the second
part of the theorem. To do this suppose that A satisfies the U/L-condition
for some U, L € H(A). Then UL, L+ € H(A) and U+ < L*. Therefore to
verify that the S-ring .A satisfies the L*/UL-condition it suffices to prove
that given a basic set X C G \ L+ of A we have Xt = X for all characters
¢ € Ut. By the definition of the dual S-ring all we need to verify is that
given x € X and 1 € U+ we have

X(5) =xu(5),  5eS(A). (23)

Let us consider two cases. If S C U, then by the choice of ¢ we have ¢(z) =
for all z € S. Therefore x(S) = x¥(S). Now, suppose that S C G \ U. Since
the ring A satisfies the U/L-condition, it follows that the set S is a union of
cosets by the group L. On the other hand, since x € XcdG \ L, we see
that ker(x) ¢ L. Besides, since ker(¢)) > U > L, we also have ker(xy) ¢ L.
However, it is well known that x/(L) = 0, and hence x'(zL) = 0 where z € G,
for any character y’' € G such that ker(x') ¢ L. Thus x(S5) = 0 = xu(9).
This proves equality (23). The converse statement follows from the direct one
and the equalities (L)t = L and (UY)t =U.m
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