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S
hur rings over a Galois ringof odd 
hara
teristi
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sat St. Petersburgevdokim�pdmi.ras.ru ∗
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Abstra
tIt is proved that any S
hur ring over a Galois ring of odd
hara
teristi
 is either normal, or of rank 2, or a non-trivial generalizedwreath produ
t. The normal S
hur rings are 
hara
terized as a spe
ialsub
lass of the 
y
lotomi
 S
hur rings.
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1 Introdu
tionIn papers [11, 12℄ K. H. Leung and S. H. Man proved that any S
hur ring(S-ring) over a �nite 
y
li
 group 
an be 
onstru
ted from spe
ial S-ringsby means of two operations: tensor produ
t and wedge produ
t (as for aba
kground of S-rings see Se
tion 7). This theorem supplemented with thenormality theory from [5℄ enabled to get a series of strong results in algebrai

ombinatori
s [5, 6, 10, 14℄.To generalize the Leung-Man theorem in some way to S-rings over anarbitrary abelian group, the notion of S-ring over a 
ommutative ring R 1 wasintrodu
ed in [7℄; by de�nition any su
h ring is an S-ring over the additivegroup R+ of the ring R that is invariant with respe
t to its multipli
ativegroup R×. It should be noted that by the S
hur theorem on multipliers anyS-ring over a 
y
li
 group of order n 
an be treated as an S-ring over the ring
R = Zn of integers modulo n. We observe that in this 
ase R is the dire
tprodu
t of Galois rings of 
oprime 
hara
teristi
s with prime residue �elds.Thus it is natural to generalize the Leung-Man theorem to S-rings over theprodu
ts of arbitrary Galois rings of 
oprime 
hara
teristi
s. In the presentpaper (being the �rst step in the indi
ated dire
tion) we do this when R is aGalois ring of odd 
hara
teristi
: the role of the spe
ial rings play S-rings ofrank 2 and pure 
y
lotomi
 S-rings de�ned in Se
tion 2. Only one operation isneeded here: it is the generalized wreath produ
t also de�ned in that se
tion.Theorem 1.1 Any S-ring over a Galois ring of odd 
hara
teristi
 is eitherpure 
y
lotomi
, or of rank 2, or a non-trivial generalized wreath produ
t.Theorem 1.1 is an immediate 
onsequen
e of Theorems 2.11 and 5.1proved in this paper. Indeed, let A be a non-rank 2 S-ring over a Galois ringof odd 
hara
teristi
. If A is not a non-trivial generalized wreath produ
t,then by Theorem 2.11 the hypothesis of Theorem 5.1 is satis�ed. Thus bythe latter theorem the ring A is pure 
y
lotomi
.As it was said above the Leung-Man theorem was substantially strengthe-ned in [5℄. The key point there is the notion of a normal S-ring over a group.The analog of normality for S-rings over a ring is introdu
ed in Subse
tion 2.3.It should be noted that the 1-1 
orresponden
e between normal S-rings andnormal Cayley s
hemes over a group that was de�ned in [5, Subse
tion 4.3℄,1All rings are supposed to be �nite rings with identity.3



indu
es the 1-1 
orresponden
e between normal (resp. pure) 
y
lotomi
 S-rings and normal (resp. 
orresponding to pure groups) 
y
lotomi
 s
hemesover a ring de�ned in [8, Se
tion 1℄.Let A be a normal S-ring over a Galois ring of odd 
hara
teristi
. Thenby Corollary 2.14 and Theorem 5.1 we 
on
lude that either A is pure
y
lotomi
 or rk(A) = 2. However, in the latter 
ase from Theorem 2.12and Corollary 2.3 it follows that A is also 
y
lotomi
. Thus using the
hara
terization of normal 
y
lotomi
 s
hemes over a Galois ring of odd
hara
teristi
 given in [8℄ we obtain the following result.Theorem 1.2 An S-ring A over a Galois ring R of odd 
hara
teristi
 isnormal if and only if A is pure 
y
lotomi
, and rk(A) > 2 unless R is a �eldof order 3.The following statement is straightforward from Theorems 1.1 and 1.2.Theorem 1.3 Any S-ring over a Galois ring of odd 
hara
teristi
 is eithernormal, or of rank 2, or a non-trivial generalized wreath produ
t.Con
erning �nite rings and permutation groups we refer to [13℄ and [3℄.To make the paper self-
ontained, we 
ite the ba
kground on S
hur rings andGalois rings in Se
tion 7 and Se
tion 3 respe
tively. In the latter se
tion wealso study multipli
ative subgroups in Galois rings. The theory of S-ringsover a 
ommutative ring is the subje
t of Se
tions 2 and 4. Theorem 6.1 usedin Se
tion 4 is proved in Se
tion 6. Finally, Se
tion 5 
ontains Theorem 5.1whi
h is a key point for Theorem 1.1.Notation. As usual by Z,Q,C we denote the ring of integers, the ringof rationals and the �eld of 
omplex numbers respe
tively.For a 
ommutative ring R with identity we denote by R× and rad(R) themultipli
ative group of R and the radi
al of R respe
tively.The set of all ideals of R is denoted by I(R). Given I ∈ I(R) we denoteby I+ the additive group of I, and by πI the natural epimorphism from Rto R/I.For a set X ⊂ R we denote by IU(X) the smallest ideal of R 
ontainingXand by IL(X) the largest ideal I of R su
h that X + I = X. Also we set
ann(X) = {r ∈ R : rX = {0}}4



and write ann(r) instead of ann({r}) for r ∈ R.The group ring of a group G over R is denoted by R[G]. For X ⊂ G weset ξ(X) =
∑

x∈X x.The group of all permutations of R of the form x 7→ axσ+b where a ∈ R×,
b ∈ R, σ ∈ Aut(R), is denoted by AΓL1(R). The stabilizer of the point 0 init is denoted by ΓL1(R).For a �nite lo
al 
ommutative ringR the Tei
hm�uller group and the groupof prin
ipal units are denoted by T and U respe
tively. Then

R× = T × U ,and the groups T and U = 1 + rad(R) are a 
y
li
 group of order q − 1and an abelian p-group respe
tively where q and p are the order and the
hara
teristi
 of the residue �eld R/ rad(R).2 S
hur rings over a 
ommutative ring2.1 Let R be a �nite 
ommutative ring with identity. In this paper we
onsider the permutation group indu
ed by the a
tion of the group R× onthe set R by multipli
ation. It is a subgroup of the group Aut(R+), leavesany ideal of R �xed, and has R× as a regular faithful orbit.Let A be an S-ring over the group R+. The following de�nition is takenfrom [7℄.De�nition 2.1 We say that A is an S-ring over the ring R if it is invariantwith respe
t to the a
tion of the group R× on Z[R+] by multipli
ation.This is equivalent to say that uX ∈ S(A) for all u ∈ R× and X ∈ S(A).The S-ring of rank 2 and the group ring are obvious examples of S-rings overthe ring R. One more example generalizing the latter one is given in thenext paragraph. On the other hand, there is a lot of S-rings over R+ thatare not S-rings over R. For example, if R is a �eld, then any S-ring over
R is 
y
lotomi
 (Corollary 2.3). Therefore the number of all of them is atmost |R×|, whereas the number of S-rings over the group R+ 
an be mu
hlarger (be
ause R+ is an elementary abelian group in this 
ase).Let K ≤ R× be a group. Then, obviously, K a
ts faithfully on the groupring Z[R+] and the set of all K-invariant elements of it forms an S-ring over5



the group R+. It is 
alled a 
y
lotomi
 one and is denoted by Cyc(K,R).The basi
 sets of this ring are exa
tly the orbits of K on R and hen
e
Cyc(K,R) = span{ξ(X) : X ∈ Orb(K,R)}.In fa
t,Cyc(K,R) is an S-ring over the ringR be
ause the groupR× permutesthe orbits of K. Sin
e the group K a
ts semiregularly on R×, the 
y
lotomi
rings are in 1-1 
orresponden
e to the subgroups of R×.In the following statement we des
ribe the stru
ture of a basi
 set of anS-ring over a ring.Theorem 2.2 Let A be an S-ring over a 
ommutative ring R and X ∈ S(A).Then there exists a set X0 ⊂ X su
h that xR× ∩ yR× = ∅ for all non-equal

x, y ∈ X0, and
X =

⋃

x∈X0

xK (disjoint union) (1)where K = {u ∈ R× : uX = X}.Proof. The set X is obviously K-invariant. So it is the disjoint union ofsome K-orbits. Take an element in ea
h of them and denote the obtainedset by X0. Then X0 ⊂ X and (1) holds. To 
omplete the proof suppose that
xR× ∩ yR× 6= ∅ for some x, y ∈ X0, x 6= y. Then ux = y where u ∈ R×. Wenote that uX ∈ S(A) (De�nition 2.1). Sin
e X ∩ uX 6= ∅, this implies that
X = uX. But then u ∈ K, whi
h 
ontradi
ts the 
hoi
e of x and y.Corollary 2.3 In the 
ondition of Theorem 2.2 suppose in addition that
X ⊂ R×. Then X ∈ Orb(K,R). In parti
ular, any S-ring over a �eld is a
y
lotomi
 one.For an S-ring A over the ring R set

I(A) = {I ∈ I(R) : I ∈ S∗(A)}.The elements of I(A) are 
alled A-ideals of R. We say that A is R-primitiveif 0 and R are the only A-ideals of R.Theorem 2.4 [7℄ Let R be a 
ommutative ring su
h that ea
h primary
omponent of it is lo
al. Then any R-primitive S-ring is either of rank 2or 
y
lotomi
.2 In the latter 
ase, R is a �eld.2In the 
onditions of the theorem "R-primitivity" is equivalent to "quasiprimitivity"in sense of [7℄ (see the remark before Theorem 1.3 of that paper).6



Corollary 2.5 Let R be a lo
al 
ommutative ring other than a �eld. Thenany R-primitive S-ring is of rank 2.Let R be an arbitrary 
ommutative ring and I ∈ I(A). Then the S-ring
AR+/I+ is an S-ring over the group (R/I)+ = R+/I+. Sin
e the ring A is
R×-invariant, the latter S-ring is (R/I)×-invariant. Thus it is an S-ring overthe quotient ring R/I; we will denote it by AR/I .2.2 Let A be an S-ring over a ring R and X ∈ S∗(A). It is well knownfrom the elementary theory of S-rings over abelian groups, that the smallestgroup U0 ≤ R+ for whi
h X ⊂ U0, and the largest group L0 ≤ R+ for whi
h
L0 +X = X, are A-subgroups. By De�nition 2.1 this implies that the groups

U =
⋂

u∈R×

uU0, L =
∑

u∈R×

uL0belong to the set H(A). Clearly, U ≤ IU(X), L ≥ IL(X) and R×U = U ,
R×L = L. On the other hand, suppose that the ring R is generated by theunits. Then any R×-invariant subgroup of R+ is an ideal of R. Thus in this
ase IU(X) = U and IL(X) = L, and hen
e IU(X) and IL(X) are A-idealsof R. This proves the following statement.Theorem 2.6 Let A be an S-ring over a 
ommutative ring R. Suppose that
R is generated by the units. Then IU(X), IL(X) ∈ I(A) for all X ∈ S∗(A).Corollary 2.7 Let A be an S-ring over a lo
al 
ommutative ring. Then
IU(X), IL(X) ∈ I(A) for all X ∈ S∗(A).Proof. Follows from Theorem 2.6 be
ause ea
h element of the radi
al of alo
al 
ommutative ring is the di�eren
e of two units.It is easily seen that given X ⊂ R we have

IL(X) = IL(uX), u ∈ R×. (2)Therefore from De�nition 2.1 it follows that the ideal IL(X) does not dependon the set X ∈ S(A) su
h that X ∩R× 6= ∅. We denote this ideal by IL(A).Theorem 2.8 Let A be an S-ring over a lo
al 
ommutative ring R. Then
IL(A) 6= 0 if and only if there exist proper ideals I, J ∈ I(A) su
h that

J ⊂ IL(X) ∩ I, X ∈ S(A), X ⊂ R \ I. (3)7



Proof. The su�
ien
y immediately follows from the de�nitions. To prove thene
essity suppose that IL(A) 6= 0. Set J = IL(A) and I a maximal elementin the set {I ′ ∈ I(A) : J ⊂ I ′ 6= R}. Clearly, J ⊂ I. Take X ∈ S(A) su
hthat X ⊂ R \ I. Then X ∩ R× 6= ∅, for otherwise the ideal generated by
X and I is 
ontained in rad(R) and belongs to I(A) (Corollary 2.7), whi
h
ontradi
ts the maximality of I. So IL(X) = J by the de�nition of IL(A).Thus (3) holds. Sin
e J = IL(A) 6= 0 and I 6= R, we are done.If (3) holds for some ideals I, J ∈ I(A), we say that A is a generalizedwreath produ
t or that A satis�es the I/J-
ondition. Clearly, it is truewhenever I = R or J = 0. Theorem 2.8 shows that IL(A) 6= 0 if andonly if the S-ring A is a non-trivial generalized wreath produ
t in the senseof the following de�nition the se
ond part of whi
h is a spe
ial 
ase of [5,De�nition 5.2℄.De�nition 2.9 We say that A is a non-trivial generalized wreath produ
t ifthere exist proper ideals I, J ∈ I(A) su
h that (3) holds. In this 
ase we alsosay that A satis�es the I/J-
ondition non-trivially.It should be noted that in the sense of [4℄ the S-ring A satisfying the I/J-
ondition is the (standard) generalized wreath produ
t of the S-rings AI and
AR/J over the groups I+ and (R/J)+ respe
tively. Moreover, the latter S-ring
an be treated as an S-ring over the ring R/J whereas the former one when
I is a prin
ipal ideal 
an be treated as an S-ring over the ring R/ ann(I).2.3 Following [8℄ a non-empty set X ⊂ R is 
alled pure if IL(X) = 0. Thismeans that the only ideal I for whi
h X + I = X, is the zero one. Due to (2)the sets X and uX are pure or not simultaneously. Therefore any subset ofa pure orbit of a subgroup of R× is also pure. It should be noted that if X issu
h a pure orbit the set πI(X) where I is an ideal of R, is not ne
essarilypure. However, if I = IL(X), the set πI(X) is pure for all X ⊂ R.De�nition 2.10 The S-ring A is 
alled pure if IL(A) = 0.It follows that A is pure if and only if some (and hen
e any) X ∈ S(A),
X ∩R× 6= ∅, is pure. S-rings of rank 2 and 
y
lotomi
 rings Cyc(K,R) withpure groups K ≤ R×, are obvious examples of pure S-rings. Non-pure S-ringsover a lo
al ring 
an be 
hara
terized by means of Theorem 2.8 as follows.Theorem 2.11 An S-ring over a lo
al 
ommutative ring is not pure if andonly if it is a non-trivial generalized wreath produ
t.8



We say that an S-ring A over a 
ommutative ring R is normal if
Aut(A) ≤ ΓL1(R). (4)Suppose that rk(A) = 2. Then obviously T Aut(A) = Sym(R) where T is thegroup of all translations of R; in parti
ular, the group T Aut(A) is primitive.On the other hand, if the ring R is lo
al, then rad(R) is a blo
k of the group

AΓL1(R) ≤ Sym(R). Sin
e any blo
k of a primitive group is trivial, we 
ometo the following statement.Theorem 2.12 Let A be a normal S-ring over a lo
al 
ommutative ring R.If rk(A) = 2, then R is a �eld.The following statement provides a ne
essity 
ondition for a 
y
lotomi
S-ring over a Galois ring to be normal (
f. [8, Theorem 1.4℄).Theorem 2.13 Let A be a normal S-ring over a lo
al 
ommutative ring Rwith the residue �eld of order q. Suppose that A satis�es the I/J-
onditionnon-trivially for some I, J ∈ I(R). Then q = 2 and J ⊂ ann((2, rad(R)2)).Proof. By the theorem hypothesis we have I ⊂ rad(R) and J 6= 0. Sothe S-ring A satis�es the rad(R)/J-
ondition non-trivially. Therefore fromTheorem 7.2 it follows that given a ∈ J the permutation fa ∈ Sym(R) de�nedby
xfa =

{
x+ a, if x ∈ U ;
x, otherwise,belongs to Aut(A). On the other hand, from the normality of A it followsthat xfa = bxσ for some b ∈ R× and σ ∈ Aut(R), and all x ∈ R. Sin
e

1fa = a+ 1, we 
on
lude that b = a+ 1. Thus,
xσ = x/(1 + a), x ∈ R \ U . (5)This implies that σ leaves �xed ea
h set x + rad(R). Sin
e T σ = T and

|T ∩ (x + rad(R))| = 1 for x ∈ R×, we see that σ leaves �xed ea
h elementof T . Therefore t = tσ = t/(1 + a) for all t ∈ T \ {1}. If q > 2, then thelatter set is not empty when
e it follows that a = 0. Thus in this 
ase J = 0.Contradi
tion. This proves that q = 2. But then 2 ∈ rad(R), and hen
e due9



to (5) we have 2 = 2/(1+ a). So 2a = 0 and J ⊂ ann(2). On the other hand,given x, y ∈ rad(R) we have
xy/(1 + a) = (xy)σ = xσyσ = xy/(1 + a)2,when
e it follows that axy = 0. Therefore J ⊂ ann(rad(R)2).Corollary 2.14 Any normal S-ring over a Galois ring of odd 
hara
teristi
is pure.Proof. Follows from Theorems 2.13 and 2.11.3 Multipli
ative subgroups in Galois rings3.1 A lo
al ring R is 
alled Galois if rad(R) = pR where p is a prime.3Given positive integers n, d there exists a unique (up to isomorphism) Galoisring of 
hara
teristi
 pn with the residue �eld of order q = pd; it is denotedby GR(pn, d). We observe that
GR(p, d) ∼= GF(pd), GR(pn, 1) ∼= Zpn.Ea
h ideal of the Galois ring GR(pn, d) = R other than R is of the form piR,

i = 1, . . . , n, and the 
orresponding quotient ring is isomorphi
 to GR(pi, d).It is known that R+ is a homo
y
li
 p-group of rank d and exponent pn, i.e.it is isomorphi
 to a dire
t produ
t of d 
y
li
 p-groups of order pn. If p isodd, then the group U = 1 + pR is homo
y
li
 of rank d and exponent pn−1;the set of its elements of order dividing pn−i equals Ui = 1+piR, i = 1, . . . , n.In this subse
tion we dedu
e several 
onsequen
es from the followingstatement proved in [8, Theorem 6.6℄.Lemma 3.1 Let R be a Galois ring of odd 
hara
teristi
, K ≤ R× a groupand I ∈ I(R). Then the group πI(K) is pure whenever so is K.The following general lemma will be used in proving Theorem 3.3 below.3This is one of the equivalent de�nitions given in [13℄.
10



Lemma 3.2 Let R be a 
ommutative ring. Then given r ∈ R and X ⊂ Rwe have
rπ−1(IL(π(X))) = IL(rX)where π = πI with I = ann(r).Proof. Denote by f the R-module endomorphism x 7→ rx of R. Then

ker(f) = ann(r) and im(f) = rR. Therefore f indu
es an R-moduleisomorphism g : R/I → rR. Clearly, g indu
es a bije
tion from the set
{J ∈ I(R) : J ⊃ I} onto the set {J ∈ I(R) : J ⊂ rR}. So

g(IL(Y )) = IL(g(Y )), Y ⊂ R/I. (6)(Here IL(Y ) ∈ I(R/I) and IL(g(Y )) ∈ I(R), see Notation.) Besides, ker(π) =
ker(g) where π = πI . So g(Y ) = f(π−1(Y )) for all Y ⊂ R/I. Thus from (6)we obtain that

rπ−1(IL(π(X))) = f(π−1(IL(π(X)))) = IL(f(X)) = IL(rX)for all X ⊂ R.Theorem 3.3 Let R = GR(pn, d) with p odd, and K ≤ R×. Then given
i ∈ {0, . . . , n} we have(1) IL(π(K)) = π(IL(K)) where π = πpn−iR,(2) IL(X) = piIL(K) for all X ∈ Orb(K, piR×).Proof. Let us prove statement (1). From Lemma 3.1 it follows that thisstatement is true when the group K is pure. Suppose that IL(K) 6= 0. Byindu
tion without loss of generality we 
an assume that i = n− 1. However,in this 
ase IL(K) ⊃ pn−1R and hen
e the equality IL(π(K)) = π(IL(K)) isobvious. To prove statement (2) let X = xK where x = piu with u ∈ R×.Then by statement (1) and Lemma 3.2 with r = x and X = K we have

IL(X) = IL(xK) = xπ−1IL(π(K)) = xπ−1(π(IL(K))) =

xIL(K) = piuIL(K) = piIL(K).Corollary 3.4 Any orbit of a pure multipli
ative subgroup in a Galois ringof odd 
hara
teristi
, is pure. 11



The following useful statement is another 
onsequen
e of Lemma 3.1. It
an also be easily dedu
ed from the homo
y
li
ity of the group U (in theodd 
hara
teristi
 
ase) by means of the theorem on a basis of a p-group [1,p.105, Proposition 23.1℄.Lemma 3.5 Let R = GR(pn, d) with p odd, K ≤ U and Ki = K ∩ Ui where
i = 1, . . . , n. Then for any i ∈ {1, . . . , n − 1} we have [Ki : Ki+1] ≤ pd withthe equality attained if and only if Ki = Ui.Proof. Clearly, [Ki : Ki+1] ≤ [Ui : Ui+1] = pd for all i. If Ki = Ui for some i,then Ki+1 = Ui+1 and hen
e [Ki : Ki+1] = pd. Let us prove the 
onversestatement by indu
tion on n − i. It is easily seen that if i = n − 1, then
Ki+1 = Ui+1 = {1} and hen
e |Ki| = pd = |Ui|. Sin
e Ki ≤ Ui, this showsthat Ki = Ui. Suppose that i < n − 1. Then Ki+1 ∩ Un−1 = Ki ∩ Un−1, andhen
e

[π(Ki) : π(Ki+1)] = [Ki/(Ki ∩ Un−1) : Ki+1/(Ki+1 ∩ Un−1)] =

[Ki/(Ki ∩ Un−1) : Ki+1/(Ki ∩ Un−1)] = [Ki : Ki+1] = pdwhere π = πpn−1R. On the other hand, obviously π(Ki) = π(K)i and
π(Ki+1) = π(K)i+1. Then by the indu
tion hypothesis (applied to thering π(R) = GR(pn−1, d), the group π(K) and i) we have π(Ki) = π(Ui).However, IL(Ki) 6= 0, for otherwise IL(π(Ki)) = 0 by Lemma 3.1 and then
π(Ui) = π(Un) whi
h is impossible be
ause i < n − 1. Therefore Un−1 ≤ Kiand hen
e Ki = π−1(π(Ki) = π−1(π(Ui)) = Ui.3.2 In this subse
tion basing on the properties of multipli
ative subgroupsin a Galois ring we prove Theorem 3.7 whi
h will be used in Se
tion 5. Weneed the following lemma. Below for a ring R, a set X ⊂ R and an ideal
I ∈ I(R) we set XI,x = X ∩ (x+ I) for all x ∈ R.Lemma 3.6 Let R = GR(pn, d) with p odd, K a subgroup of R× with
IL(K) ≤ pn−lR where l ≥ 1, and J = pmR an ideal of R with m ≤ n.Suppose that for some y ∈ pl−1R×, z ∈ plR× we have

|YJ,y| = |ZJ,z|where Y = yK, Z = zK. Then m = n whenever l ≤ m− 1.12



Proof. Suppose that l ≤ m−1. Let x ∈ X ∈ Orb(K, pjR×) where 0 ≤ j ≤ l.Then
XJ,x = X ∩ (x+ J) = x(K ∩ Um−j) = xKm−jwhere for any i = 1, . . . , n we set Ki = K∩Ui. Besides, Un−j ≤ Um−j be
ause

m ≤ n, and Un−j ≤ K be
ause j ≤ l. Therefore, Km−j ≥ Un−j. Sin
e thepoint stabilizer (R×)x of x in R× equals Un−j, it follows that (Km−j)x = Un−jand hen
e |(Km−j)x| = |pn−jR| = pjd. Thus,
|XJ,x| = [Km−j : (Km−j)x] = |Km−j |/p

jd.By the lemma hypothesis this implies that
|Km−l+1|/p

(l−1)d = |YJ,y| = |ZJ,z| = |Km−l|/p
ldwhen
e [Km−l : Km−l+1] = pd. By Lemma 3.5 we have Km−l = Um−l, andhen
e Um−l ≤ K. Therefore pn−lR ≥ IL(K) ≥ pm−lR. Sin
e m ≤ n, it followsthat m = n.Theorem 3.7 Let A be a pure S-ring over a Galois ring R of odd 
hara
te-risti
 pn. If rk(A) > 2, then rad(R) is an A-ideal of R.Proof. Take X ∈ S(A) su
h that X ∩R× 6= ∅, and set

J = max{I ∈ I(A) : X ⊂ R \ I}.It su�
es to show that J = rad(R). Suppose that this is not true. Then
J = pmR where 2 ≤ m ≤ n. First, we observe that the set Xi = X ∩ piR× isnon-empty for i = 0, . . . ,m− 1, or equivalently that tr(X) = R \ J where

tr(X) =
⋃

u∈R×

uX.Indeed, tr(X) is an A-subset of R su
h that R× ⊂ tr(X) ⊂ R \ J . Therefore,if tr(X) 6= R\J , then one 
an �nd a set Y ∈ S(A) su
h that Y ⊂ rad(R)\J .This implies that J ( IU(Y ) ⊂ rad(R) whi
h 
ontradi
ts the de�nition of Jby Corollary 2.7. Thus all the Xi's are non-empty and
|(Xi)J,y| = |XJ,y| = |XJ,z| = |(Xj)J,z|, y ∈ Xi, z ∈ Xj , i, j = 0, . . . ,m−1(7)13



(see equality (20)).Next, set K = {u ∈ R× : uX = X}. Then by Theorem 2.2 we have
Xi ∈ Orb(K, piR×), i = 0, . . . ,m− 1. (8)Let us de�ne a non-negative integer l by the 
ondition IL(K) = pn−lR. Sin
e

m ≥ 2, there exists x ∈ X ∩ rad(R). Then obviously (1 + I0){x} = {x}where I0 = pn−1R. This implies that (1 + I0)X = X and hen
e 1 + I0 ≤ K.Therefore I0 ⊂ IL(K) when
e it follows that l ≥ 1. On the other hand, dueto (8) from statement (2) of Theorem 3.3 it follows that
IL(Xi) = pn−l+iR, i = 0, . . . ,m− 1. (9)Thus, l ≤ m−1, for otherwise I0 ⊂ IL(X) whi
h 
ontradi
ts the purity of X.Therefore due to (7) the hypothesis of Lemma 3.6 is satis�ed for all y ∈ Xl−1and z ∈ Xl. So by this lemma m = n and hen
e J = 0. Next, from thede�nition of J it follows that the S-ring A is R-primitive. So by Corollary 2.5we have rk(A) = 2. Contradi
tion. Thus J = rad(R).4 Duality4.1 Let R be a Galois ring of 
hara
teristi
 pn and R̂ = R̂+ the group dualto the group R+ (see Subse
tion 7.2). Clearly,

(piR)⊥ = pn−iR̂, i = 0, . . . , n. (10)Take χ ∈ R̂ so that the image of χ 
ontains a primitive pnth root of unity.Then
R̂ = {χ(r) : r ∈ R}where χ(r) is the 
hara
ter of R+ su
h that χ(r)(x) = χ(rx), x ∈ R (seee.g. [9℄). It follows that the set R̂ together with the addition de�ned by thegroup operation in R̂ and the multipli
ation de�ned by the formula

χ(r)χ(s) = χ(rs), r, s ∈ R,be
omes a ring the zero and the identity elements of whi
h are the prin
ipal
hara
ter and the 
hara
ter χ respe
tively. We say that R̂ is the ring dual14



to R (with respe
t to χ). This ring is a Galois ring isomorphi
 to R: theisomorphism is given by r 7→ χ(r).4 Clearly,
R̂× = {χ(r) : r ∈ R×}, rad(R̂) = {χ(r) : r ∈ pR}. (11)The image of a group K ≤ R× with respe
t to the above isomorphism isdenoted by K̂.Theorem 4.1 Let R be a Galois ring of 
hara
teristi
 pn and S a pure subsetof R. Then(1) given S′ ⊂ R \ S there exists χ ∈ R̂× su
h that χ(S) 6= χ(S′),(2) given χ ∈ R̂× there exists r ∈ R× su
h that χ(rS) 6= 0.Proof. To prove statement (1) suppose on the 
ontrary that χ(S) = χ(S′)for all χ ∈ R̂×. However, when χ runs over R̂× its extension ψ : Q[G] →

C where G = R+, runs over the set Ψ(G) de�ned in Theorem 6.1. Thus
ξ(S)− ξ(S′) ∈ ker(ψ) for all ψ ∈ Ψ(G). Sin
e the group G is homo
y
li
, byTheorem 6.1 this implies that ξ(S) − ξ(S′) ∈ (ξ(I)) where I is the minimalideal of the ring R. Sin
e S∩S′ = ∅, the set S is a union of additive I-
osets.Therefore S is not pure, whi
h 
ontradi
ts the hypothesis of the theorem. Toprove statement (2) let χ ∈ R̂×. By statement (1) with S′ = ∅ there existsa 
hara
ter χ′ ∈ R̂× su
h that χ′(S) 6= χ(S′) = 0. However, due to (11) wehave χ′ = χ(r) for some r ∈ R×. Thus, χ(rS) = χ′(S) 6= 0.4.2 Let A be an S-ring over a Galois ring R, R̂ the ring dual to R withrespe
t to a 
hara
ter χ and Â the S-ring over the group R̂+ that is dualto A (see Subse
tion 7.2).Theorem 4.2 The ring Â is an S-ring over the ring R̂.Proof. Suppose that χ(s) and χ(t) belong to the same basi
 set of Â where
s, t ∈ R. Then given r ∈ R× we have χ(s)(rS) = χ(t)(rS), or equivalently

χ(rs)(S) = χ(rt)(S), S ∈ S(A).4Sin
e the set R̂×
= R̂ \ pR̂ does not depend on the 
hara
ter χ, any S-ring over thering dual to R with respe
t to χ is also an S-ring over the ring dual to R with respe
t toany other 
hara
ter belonging to R̂×. 15



Sin
e χ(rs) = χ(r)χ(s) and χ(rt) = χ(r)χ(t), this implies that the 
hara
ters
χ(r)χ(s) and χ(r)χ(t) belong to the same basi
 set of Â for all r ∈ R×. Thusthe required statement follows from (11).We observe that if char(R) = pn then I(R) = {piR : i = 0, . . . , n} and
I(R̂) = {piR̂ : i = 0, . . . , n}. Therefore by (10) and (22) we have

I(Â) = {I⊥ : I ∈ I(A)}. (12)Thus A is R-primitive if and only if Â is R̂-primitive. Moreover, from (12)and Theorem 7.3 we obtain the following statement.Theorem 4.3 Let A be an S-ring over a Galois ring. Then the ring A is anon-trivial generalized wreath produ
t if and only if so is the ring Â. Moreexa
tly, A satis�es the I/J-
ondition if and only if Â satis�es the J⊥/I⊥-
ondition.Corollary 4.4 Let A be an S-ring over a Galois ring. Then A is pure if andonly if so is Â.Proof. Follows from Theorems 4.3 and 2.11.The following theorem shows that an S-ring and its dual are 
y
lotomi
 ornot simultaneously. It 
an be also dedu
ed from the results of [9℄ by using thewell-known 1-1 
orresponden
e between S-rings and translation asso
iations
hemes.Theorem 4.5 Let A = Cyc(K,R) where K ≤ R×. Then Â = Cyc(K̂, R̂).Proof. Let X ∈ Orb(K̂, R̂). Then given χ1, χ2 ∈ X there exists r ∈ K su
hthat χ1 = χ
(r)
2 . Sin
e S = rS for ea
h basi
 set S of A, this implies that
χ1(S) = χ

(r)
2 (S) = χ2(rS) = χ2(S), S ∈ S(A).So A′ ≥ Â where A′ = Cyc(K̂, R̂). On the other hand, rk(Â) = rk(A) =

rk(A′). Thus Â = A′.
16



5 Pure S-rings over a Galois ringIn this se
tion we prove the following theorem.Theorem 5.1 Let A be an S-ring over a Galois ring R of odd 
hara
teristi
.Suppose that A is pure and rk(A) ≥ 3. Then A is pure 
y
lotomi
.Proof. We need two lemmas.Lemma 5.2 In the 
onditions of Theorem 5.1 we have I(A) = I(R).Proof. Let char(R) = pn and I = pR, J = pn−1R. By Corollary 4.4 theS-ring Â over the Galois ring R̂ is pure. So from Theorem 3.7 it follows that
pR̂ is an Â-ideal. By formulas (10) and (12) this implies that J ∈ I(A).On the other hand, from Theorem 3.7 it follows that I ∈ I(A). Therefore
I(A) = I(R) for n ≤ 2. If n ≥ 3, then rk(AR/J) > 2 be
ause πJ(I) is aproper AR/J -ideal. Thus by indu
tion we 
on
lude that I(AR/J) = I(R/J).Sin
e J is the minimal ideal of R, it follows that I(A) = I(R).Lemma 5.3 Let A be an S-ring over a Galois ring R and K ≤ R×. Supposethat I(Â) = I(R̂) and Orb(K,R×) ⊂ S∗(A). Then any pure orbit of thegroup K̂ in R̂ belongs to S∗(Â).Proof. Let X1 be a pure orbit of the group K̂. Then X1 = χK̂1 for some
hara
ter χ1 ∈ R̂. Denote by X the basi
 set of Â 
ontaining χ1 and set
X2 = χK̂2 where χ2 ∈ X. Sin
e I(Â) = I(R̂) it follows that there exists anideal I ∈ I(R̂) su
h that X1, X2 ⊂ IR̂×. Denote by a the 
ardinality of thekernel of the natural a
tion of the group K on the latter set. Sin
e the a
tionis semiregular, given S ∈ Orb(K,R×) and s ∈ S we have

χi(S) =
∑

r∈K

χi(rs) =
∑

r∈K

χ
(r)
i (s) = as(Xi), i = 1, 2,where s(Xi) is de�ned by (21) with G = R̂+, S = Xi and χ equal the
hara
ter of G 
orresponding to s. On the other hand, as S ∈ S∗(A) thede�nition of the dual S-ring implies that χ1(S) = χ2(S). Thus s(X1) = s(X2)for all s ∈ R×. Now due to the purity of the set X1, from statement (1) ofTheorem 4.1 applied to R̂ and X1, X2 it follows that X1 = X2 and hen
e

χ2 ∈ X1. Thus X ⊂ X1 and we are done.17



From Lemma 5.2 it follows that
I(A) = I(R). (13)By Corollary 2.3 this implies that the basi
 set of A 
ontaining 1R, say K,is a subgroup of R× and

Orb(K,R×) ⊂ S(A). (14)Moreover, due to (12) and (13) we have I(Â) = I(R̂). So by Lemma 5.3any pure orbit of the group K̂ belongs to S∗(Â). However, sin
e the S-ring A is pure, the group K and hen
e the group K̂ are also pure. So byCorollary 3.4 all orbits of K̂ are pure. Thus Â ≥ Cyc(K̂, R̂), and 
onsequentlyby Theorem 4.5
A ≥ Cyc(K,R).This shows that any orbit of K is a union of basi
 sets of A. Therefore toprove that A = Cyc(K,R) it su�
es to verify that these basi
 sets are equal.Suppose on the 
ontrary that S1 and S2 are distin
t basi
 sets 
ontainedin an orbit of the group K. We observe that sin
e the orbit is pure, these setsare also pure (see the beginning of Subse
tion 2.3). Therefore, by Theorem 4.1(with S = S1 and S′ = S2 for statement (1), and with S = K forstatement (2)) there exist a 
hara
ter χ ∈ R̂ and a set T ∈ Orb(K,R×)su
h that

χ(S1) 6= χ(S2), χ(T ) 6= 0. (15)On the other hand, due to the supposition and (14) we have S1, S2 ⊂ rad(R).Sin
e ξ(S1), ξ(T ) ∈ A and T ⊂ R×, this implies that the produ
t ξ(S1)ξ(T )belongs to the subset A ∩ span(R×) of the ring Z[R+], and hen
e it is K-invariant. Taking into a

ount that S2 = rS1 for some r ∈ K, we 
on
ludethat
ξ(S1)ξ(T ) = ξ(rS1)ξ(rT ) = ξ(S2)ξ(T ).Applying χ to both sides of this equality we obtain a 
ontradi
tion with (15).6 A theorem on 
hara
tersThe following statement on the representations of a homo
y
li
 group is ageneralization of [11, Proposition 2.7℄).18



Theorem 6.1 Let G be a homo
y
li
 �nite group of exponent pn, n ≥ 1.Denote by Ψ = Ψ(G) the set of all ring homomorphisms ψ : Q[G] → C su
hthat im(ψ) = Q(w) where w is a primitive pnth root of unity. Then
⋂

ψ∈Ψ

ker(ψ) = I(G0) (16)where G0 = Gpn−1 and I(G0) is the ideal of Q[G] generated by ξ(G0).Proof. It is easily seen that the restri
tion of any homomorphism ψ ∈ Ψto the group G0 is a non-prin
ipal irredu
ible 
hara
ter of this group. So
ψ(ξ(S)) = 0 for all S ∈ G/G0. Sin
e I(G0) is the linear span of the elements
ξ(S), this implies that I(G0) ⊂ ker(ψ). Thus I(G0) is a subset of the left-handside of (16).To prove the 
onverse in
lusion we need two auxiliary lemmas. Belowgiven f, g ∈ G we set

αf (g) = |{ψ ∈ Ψ : f−1g ∈ Hψ}|where Hψ = {g ∈ G : ψ(g) = 1}.Lemma 6.2 If gG0 = g′G0, then αf (g) = αf (g
′) for all f ∈ G \ {g, g′}.Proof. Due to the homo
y
li
ity of G the group Aut(G) a
ts transitivelyon the elements of the same order. Sin
e obviously (Hψ)σ = Hψσ for all

σ ∈ Aut(G) where ψσ is the element of Ψ taking ξ to ψ(ξσ), we 
on
ludethat
o(f−1g) = o((f ′)−1g′) ⇒ αf (g) = αf ′(g

′)for all f, f ′ ∈ G where o(x) denotes the order of x ∈ G. This proves therequired statement be
ause o(f−1g) = o(f−1g′) unless f ∈ {g, g′}. (Indeed,if o(f−1g) > p, then obviously o(f−1g) = o(f−1g′), whereas otherwise
o(f−1g) 6= o(f−1g′) only if f = g or f = g′.)Let ξ =

∑
g∈G agg be an element of Q[G]. Denote by C the group of all

pnth roots of unity in C. For c ∈ C and ψ ∈ Ψ set
Ac =

∑

g∈G∩ψ−1(c)

ag.19



Lemma 6.3 Suppose that ξ ∈ ker(ψ). Then for ea
h S ∈ G/G0 the number
Aψ(g) does not depend on g ∈ S.Proof. Denote by ψ0 : Q[C] → Q(w) the epimorphism identi
al on thegroup C. Sin
e the restri
tion of ψ to G indu
es an epimorphism fromG to C,there exists a unique epimorphism ϕ : Q[G] → Q[C] su
h that ψ = ϕ ◦ ψ0.By the lemma hypothesis this implies that ϕ(ξ) ∈ ker(ψ0). Therefore takinginto a

ount that G ∩ ϕ−1(c) = G ∩ ψ−1(c) for all c ∈ C, we 
on
lude thatthe right-hand side of the obvious formula

ϕ(ξ) =
∑

g∈G

agϕ(g) =
∑

c∈C

(
∑

g∈G∩ϕ−1(c)

ag)c =
∑

c∈C

Accalso belongs to ker(ψ0). On the other hand, from [11, Proposition 2.7℄ itfollows that
ker(ψ0) = I(C0) = span{ξ(T ) : T ∈ C/C0} (17)where C0 is the group of pth roots of unity. Thus for ea
h C0-
oset of C thenumber Ac does not depend on the 
hoi
e of c in this 
oset (we used that

ψ(G0) = C0). The lemma is proved.To 
omplete the proof suppose that ξ belongs to the left-hand side of (16).To prove that ξ ∈ I(G0) it su�
es to verify that given S ∈ G/G0 the number
ag does not depend on g ∈ S. First, we observe that given g ∈ G we have

∑

ψ∈Ψ

Aψ(g) =
∑

ψ∈Ψ

∑

h∈gHψ

agh =
∑

f∈G

αf (g)af .If g′ ∈ gG0, then from Lemma 6.3 it follows that Aψ(g) = Aψ(g′) and hen
e
∑

f∈G

αf (g)af =
∑

f∈G

αf (g
′)af . (18)By Lemma 6.2 this implies that

αg(g)ag + αg′(g)ag′ = αg(g
′)ag + αg′(g

′)ag′ .Sin
e obviously αg(g) = |Ψ| = αg′(g
′) and αg′(g) = αg(g

′), we 
on
lude that
(|Ψ| − αg(g

′))(ag − ag′) = 0. (19)However, when ψ runs over Ψ the group Hψ runs over the set of all maximalhomo
y
li
 subgroups of G of exponent pn. Therefore ⋂
ψ∈ΨHψ = {1}, andhen
e αg(g′) < |Ψ| whenever g 6= g′. By (19) this shows that ag = ag′ and weare done. 20



7 S-rings over a �nite group7.1 Let G be a �nite group. A subring A of the group ring Z[G] is 
alleda S
hur ring (S-ring, for short) over G if it has a (uniquely determined) Z-basis 
onsisting of the elements ξ(X) =
∑

x∈X x where X runs over a family
S = S(A) of pairwise disjoint non-empty subsets of G su
h that

{1} ∈ S,
⋃

X∈S

X = G and X ∈ S ⇒ X−1 ∈ S.We 
all the elements of S the basi
 sets of A and denote by S∗(A) the setof all unions of them and by H(A) the set of all subgroups of G in S∗(A).The elements of S∗(A) and H(A) are 
alled A-subsets of G (or A-sets) and
A-subgroups of G respe
tively. The number

rk(A) = dimZ(A)is 
alled the rank of A.Let H ≤ G and X ⊂ G. Then X is a disjoint union of the sets
XH,x = X ∩Hxwhere x runs over a right transversal ofG byH. On the other hand, obviously

ξ(H)ξ(XH,x) = |XH,x| ξ(Hx). Thus if H ∈ H(A) and X ∈ S(A), then
|XH,x| = |XH,y|, x, y ∈ X, (20)(the 
oe�
ient of ξ(X)ξ(H) in ξ(X) 
oin
ides with |XH,x| for all x ∈ X).Let H ∈ H(A). Then {X ∈ S : X ⊂ H} is the set of basi
 sets of anS-ring over the group H. This S-ring is denoted by AH . If the group H isnormal and π : G→ G/H is the quotient epimorphism, then {π(X) : X ∈ S}is the set of basi
 sets of an S-ring over the groupG/H. This S-ring is denotedby AG/H .De�nition 7.1 Let A be an S-ring over a group G and let L,U be subgroupsof G. We say that A satis�es the U/L-
ondition if the following three
onditions hold:(1) L ≤ U and L is normal in G, 21



(2) L,U ∈ H(A),(3) LX = XL = X for all X ∈ S(A) with X ⊂ G \ U .If, moreover, L 6= {1} and U 6= G, we say that A satis�es the U/L-
onditionnon-trivially.An S-ring A satisfying the U/L-
ondition was 
alled in [11, 12℄ the wedgeprodu
t of the S-rings AU and AG/L. It should be noted that the authorsin [4℄ independently introdu
ed the external operation of the generalizedwreath produ
t of two S-rings whi
h produ
es exa
tly the S-rings satisfyingthe U/L-
ondition.The following statement shows that any S-ring A over G that satis�esthe U/L-
ondition non-trivially 
ontains spe
ial non-trivial automorphisms.By de�nition a permutation f ∈ Sym(G) is an automorphism of A if 1f = 1and the elements xy−1 and xf(yf )−1 belong to the same basi
 set of A for all
x, y ∈ G. Below the group of all automorphisms of A is denoted by Aut(A).Theorem 7.2 Let A be an S-ring over a group G that satis�es the U/L-
ondition. Then given a mapping t : G/U → L with t(U) = 1, thepermutation x 7→ x t(Ux) of G belongs to Aut(A).Proof. Follows from [5, Lemma 5.6℄ for f1 = idU and f2 = idG/L.7.2 Let A be an S-ring over a �nite abelian group G and Ĝ the group dualto G, i.e. the group of all irredu
ible C-
hara
ters of G. Given S ⊂ G and
χ ∈ Ĝ set

χ(S) =
∑

s∈S

χ(s). (21)Chara
ters χ1, χ2 ∈ Ĝ are 
alled equivalent if χ1(S) = χ2(S) for all S ∈

S(A). Denote by Ŝ the set of 
lasses of this equivalen
e relation. Then thesubmodule of Z[Ĝ] spanned by the elements ξ(X), X ∈ Ŝ, is an S-ring over Ĝ(see [2, Theorem 6.3℄). This ring is 
alled dual to A and is denoted by Â.Obviously, S(Â) = Ŝ. Moreover, rk(Â) = rk(A) and
H(Â) = {H⊥ : H ∈ H(A)} (22)where H⊥ = {χ ∈ Ĝ : H ≤ ker(χ)}. It is also true that the S-ring dual to Âis equal to A. 22



Theorem 7.3 Let A be an S-ring over an abelian group G. Then the ring
A is a non-trivial generalized wreath produ
t if and only if so is the ring
Â. More exa
tly, A satis�es the U/L-
ondition if and only if Â satis�es the
L⊥/U⊥-
ondition.Proof. Sin
e (1G)⊥ = Ĝ and G⊥ = 1Ĝ, it su�
es to verify only the se
ondpart of the theorem. To do this suppose that A satis�es the U/L-
onditionfor some U,L ∈ H(A). Then U⊥, L⊥ ∈ H(Â) and U⊥ ≤ L⊥. Therefore toverify that the S-ring Â satis�es the L⊥/U⊥-
ondition it su�
es to provethat given a basi
 set X̂ ⊂ Ĝ \ L⊥ of Â we have X̂ψ = X̂ for all 
hara
ters
ψ ∈ U⊥. By the de�nition of the dual S-ring all we need to verify is thatgiven χ ∈ X̂ and ψ ∈ U⊥ we have

χ(S) = χψ(S), S ∈ S(A). (23)Let us 
onsider two 
ases. If S ⊂ U , then by the 
hoi
e of ψ we have ψ(x) = 1for all x ∈ S. Therefore χ(S) = χψ(S). Now, suppose that S ⊂ G \ U . Sin
ethe ring A satis�es the U/L-
ondition, it follows that the set S is a union of
osets by the group L. On the other hand, sin
e χ ∈ X̂ ⊂ Ĝ \ L⊥, we seethat ker(χ) 6⊂ L. Besides, sin
e ker(ψ) ≥ U ≥ L, we also have ker(χψ) 6⊂ L.However, it is well known that χ′(L) = 0, and hen
e χ′(xL) = 0 where x ∈ G,for any 
hara
ter χ′ ∈ Ĝ su
h that ker(χ′) 6⊂ L. Thus χ(S) = 0 = χψ(S).This proves equality (23). The 
onverse statement follows from the dire
t oneand the equalities (L⊥)⊥ = L and (U⊥)⊥ = U .Referen
es[1℄ M. As
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