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Abstract The paper contains the justification of the principle of minimum
of potential energy in the problem of stability of rotating viscous incompressible
self-gravitating liquid bounded only by a free surface. It is assumed that the
domain occupied by a rotating liquid that is referred to as equilibrium figure is
not symmetric with respect to the axis of rotation. The surface tension is not
taken into account. The proof of stability is based on the analysis of evolution
free boundary problem for the perturbations of the velocity and pressure.
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1. Introduction.

In the present article we continue the analysis of the stability of an isolated
mass of uniformly rotating viscous incompressible self-gravitating liquid initi-
ated in [1]. As in [1], we do not take into account capillary forces on the free
boundary. We recall that the velocity and the pressure of a liquid rotating as a
rigid body about the z3-axis is given by

V(z) = wles x &) = w(—a2,21,0), Plz)= %|w'|2 +po (1)

where ' = (21, 2, 0), po = const, e is a unit vector directed along the z3-axis
and w is the angular velocity of rotation. The domain F occupied by the liquid,
so called equilibrium figure, is defined by the equation

2
%|x’|2+n1/{(ar)+po=0, reG=0F, (1.2)

uw = [ 5%

is a gravitational potential of the domain F (the density of the liquid equals
one).

We consider the functions (1.1) given in F as a solution of a free boundary
problem governing the evolution of an isolated liquid mass bounded only by
a free surface. This problem consists of determination of a bounded domain
O C R3, ¢t > 0, as well as of the vector field of velocities v(x,t) = (vq,v2,v3)
and the pressure function p(z,t), € Q, t > 0, satisfying the equations

where

v+ (v-V)v — Vv 4 Vp =0,

V-v=0, xreQy, t>0, (1.3)
T(v,p)n = cU(z,t)n, V,=v-n, x ey =00,

’U(.’E,O):’U()(IE), QZEQ(),

dz
Ul t :/ _dz
@0= | T—2

is the Newtonian potential depending on an unknown domain ;, T'(v,p) =

—pIl+vS(v) is the stress tensor, S(v) = (g:i + %) is the doubled rate-
i/ jk=1,2,3

of-strain tensor, n is the exterior normal to T'y, V;, is the velocity of evolution
of T'; in the normal direction. The domain g is given.

We assume that the equilibrium figure F is a given bounded domain. If it
is axially symmetric with respect to the zs-axis (as the Maclaurin ellipsoids),
then the functions (1.1) given in the domain F represent the stationary solution
of (1.3). If F does not possess the symmetry property (as the Jacobi ellipsoids,

where v, k = const > 0,




pear-formed figures of Poincaré etc., see [2-5]), then there exists a one-parameter
family of the equilibrium figures, Fy, obtained by rotation of the angle § about
the zs-axis of one of them, Fy. We assume that § € R and Fy = Fpia,. In
this case the functions (1.1) defined in the variable domain F,;4, represent a
periodic solution of (1.3).

We observe that in the case of non-symmetric F the function h(y) = N (y) -
(es xy)|g, where N (y) is the exterior normal to G = 0F and ez is a unit vector
directed along the x3-axis, is different from identical zero, whereas for axially
symmetric F this function vanishes.

We are interested in the problem of stability of these solutions, that is closely
related to the well known problem of stability of equilibrium figures. According
to the classical theory, the figure is stable, if the quadratic form

#RiA = [ oo @1a + T ([ P oas)’

,N/ / PWPE) 4o 4. (1.4)
glg ly—2|
where oU(z)
x
b(z) = —w’a’ - N(z) — k N > by >0, (1.5)
is positive definite, i.e.,
crllplgyr) < 8 Rlp] < e2llplT, ) (1.6)

for arbitrary function p(x) given on G and satisfying the conditions

/p(a:)dS =0, /p(a:)a:idS =0, =123, (1.7)
G g

L p()h(z)dS, = 0, (18)

and unstable, if this form can take negative values. We give the justification of
the first statement by the analysis of the evolution free boundary problem for
the perturbations w(z,t) = v —V, s = p— P of the velocity and pressure. This
problem consists of determination of a bounded domain in R? (denoted also by
;) with the boundary T, t > 0, as well as of the functions w(z,t) and s(z,t),
satisfying the relations

w; + (w - V)w + 2w(es x w) — vV2w + Vs = 0,
V-’wZO, zegta t>07
2
T(w, s)n = (%Iw’? + kU (z, 1) +p0)n, (1.9)

Ve=w-n, zecly



w(z,0) = wo(z), =€ No.

The vector field wg = vg — V should satisfy the orthogonality conditions

wo(z)dx =0,
Qo

wo(z) -y (a)ds +w [

1a() - i)z = w / na(x) - my(@)dz,  (1.10)
Qo F

Qo
and it is easily verified that they hold at any moment of time ¢ > 0:

w(z,t)dx =0, (1.11)
Q¢

w(w,t) - m,(2)dz + w/

[ na(o) miaye = /f 13(x) - i),

Q¢

i =1,2,3. In addition, we have

12| = |71, (1.12)

/ zide =0, 1=1,2,3.
Q4

We find it convenient to pass to the Lagrangian coordinates £ € Qg connected
with the Eulerian coordinates = € {; by

¢

a::f-l-/ u(&, m)dr = X(§,1), (1.13)
0
where u(€,t) = w(X (&, t),t). Under this transformation (1.9) is converted to
wi +2w(es x u) — vViu+ V,q =0,
Vu-u(€,t) =0, £€Qp, t>0, (1.14)
w? s 2
Tu(w,q)n = (RU(X,8) + X (€D +p0)n, € €T,

’U,(f,O) = ’lUO(f), f € QO:

where ¢(§,t) = s(X(&,1),t), and V,,, Ty, are the transformed gradient and the
stress tensor, respectively. Since the Jacobian of the transformation (1.13)
equals one, we have V,, = AV, Ty(u,q) = —ql + vSy(u), where S,(u) =
AV, u+(AV,u)T is the transformed doubled rate-of-strain tensor, and A(¢,t) =
(Aij)i j=1,2,3 is the co-factors matrix corresponding to the transformation (1.13).
Finally, U(X,t) = [ [X(&t) — X(n,t)|""dn and n(z) is the exterior normal
to the surface I'y = XTy connected with the normal ng(§) to T'g by

A )no(€) (1.15)

nX &) = THE Dnoe)]”
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The problem (1.14) is studied in the weighted anisotropic Sobolev-Slobodetskii
spaces introduced by Y.Hataya [6]. Let Q17 = Qo x (0,7) and let Wé’l/Q(QT),
l > 1, be a standard anisotropic Sobolev-Slobodetskii space. The weighted space
W2l7l/2(QT) is defined as the set of functions (or vector fields) u(&,t), such that

u € Wé’l/Q(QT), tu € Wé_l’l/Q_l/Q (Qr) (the weight improves the behavior of u
for large t), and supplied with the norm

||u||’W2l,l/2(QT) = ||U||W2l,l/2(QT) + ||tu||W2171,z/271/2(QT).

We also set

lulls00m = Iellwroqor) + Il -,

||U,||W20,l/2(QT) = ||U||W20,l/2(QT) + ||tu||W§,z/271/2(QT).
The weighted spaces of functions given on smooth manifolds, in particular, on
Gr =Ty x (0,T), are defined in a similar way.
The main result of the paper is as follows.
Theorem 1.1. Assume the following:
1. wo € W (Qo), I € (1,3/2), satisfies the orthogonality conditions (1.10)
and the compatibility conditions

V-w =0, IoS(wo)nolr, =0, (1.16)

where Igf = f — no(f - no) is the projection on the tangent plane to Ty.
2. The domain Qo satisfies (1.12), the surface Ty = 0Qq is given by the
equation

where Ng is the unit normal to Gy, and po(y) € W2l+3/2(g) satisfies the condi-
tion

/F P @N(E) - (3 x £)dSe = 0, (1.18)

€ being the closest point of Gy to €.
3. The following smallness condition holds:

lwollwitr gy + loollyiters gy <€ < 1. (1.19)

4. The quadratic form (1.4) satisfies the condition (1.6), where G is an
arbitrary Gp.

Then the problem (1.14) has a unique solution u € W;H’Hlm(Qoo), Vs €
Wé’l/2(Qoo) such that s|¢er, € W21/2+l’1/4+l/2(Goo), and

||'U;||W22+l,1+l/2(Qoo) + ||VS||W21,1/2(QOQ) + ||S||ﬁ’/21/2+l,1/4+l/2(Goo)

< C(||w0||w21+1(90) + ||,00||W21+1(g)>. (1.20)



The surface T'y is given by the equation
=2+ Nou)(2)p(z,t), 2 € Gy, (1.21)

where Ny is a unit exterior normal to Gg. The derivative of 6(t) satisfies the
inequality

o <e [ fuEnlds. (1.2
I'o
whereas .
0(t) :/ 0 (T)dr — 0 (1.23)
0
as t — oco. The function
r€ 1) = plz,b), (1.24)
where z is the closest point of Gy(y) to X(§,t) € Ty, satisfies the condition

/ r(&, t)ho(r) (2)dSe Z/ p(z,t)hg(t)(2)dSe = 0 (1.25)
FO 1_‘0
and the inequality

||r||w21+1/2’0(G’00) + igg ||’I"(-, t)||W2l+1(F0) + iglgtllr(a t)||W2l(F0)

< c(||w0||W21+1(QO) + ||po||W2l+1(g)). (1.26)

Thus, w,s — 0 and Q; — Fp__ as t — oo, which means the stability of the
regime (1.1) of rigid rotation.

The condition (1.8) is trivial in the case of axially symmetric F (since h(y) =
0). In the general case we have (1.25); as we shall see, it may be regarded as
the approximate condition (1.18) for p(z,t), z € Gy

The quadratic form (1.4) is the second variation of the energy functional

da:dy
— Q 1.2

where 8 = w [ [2/|*dz is the magnitude of the total angular momentum of the
rotating liquid and € is the domain in R? close to F and having the same volume
and the position of the barycenter as F. If the boundary of () is given by the
equation z =y + N(y)p(y,t), y € F, then the above-mentioned properties of Q
can be expressed in terms of p as follows:

[ewpis=o. [wiwpas=o, i=123, (1.28)
g g

where
P P’
o(y,p) =p— 371(31) + glC(y),



2 3 4
vilw,0) = ooy + Niw) (5 - SHw) + TEw), (129

H(y) and K(y) are the doubled mean curvature and the Gaussian curvature of G,
respectively. In particular, these conditions are satisfied by p. Direct calculation
shows that the first variation of R (considered as a functional defined on the set
of small p satisfying (1.28)) vanishes in view of (1.2) and the second variation
coincides with the form (1.4); moreover, if the form (1.4) is positive definite for
arbitrary p satisfying (1.7), (1.8), then the difference R — Ry where Rg = R|,=0o
is equivalent to ||p||%2(g) for small p satisfying (1.28), (1.25).

It should be observed that §>R[h] = 0.

When the surface tension is taken into account, then the extra term oH
appears in the boundary conditions, where ¢ is a positive constant coefficient
of the surface tension and H is the doubled mean curvature of I';. This term
is a strong regularizer of the problem, moreover, it guarantees the exponential
decay of the solution of (1.9), as ¢ — oo. The problem of stability of the rotat-
ing capillary viscous incompressible self-gravitating liquid is treated in a series
of papers of the author, partly in collaboration with Professor M.Padula. In
particular, the analogue of Theorem 1.1 for non-symmetric equilibrium figures
is proved in [7].

As it has been pointed out, our main attention is given to the case of non-
symmetric F. Sec. 2 is devoted to the construction of §(¢) and to the proof of
(1.22). In Sec. 3 the general scheme of the proof of Theorem 1.1 is presented
and the necessary transformations of the problem (1.14) are carried out. In Sec.
4 the main estimate of §’(¢) is obtained, as well as some important auxiliary
inequalities, whose proof requires additional calculations in the case of non-
symmetric F. Finally, in Sec. 5 the ”generalized energy” is estimated, which
furnishes uniform bounds for some weak norms of the solution of the problem
(1.14). In the case of symmetric F these bounds are obtained in [8].

2. On the construction of 4(t).

This section is devoted to the construction of the function €(t). At first we
introduce some notations (some of them are introduced above).

By Fy we mean the family of equilibrium figures obtained by rotation of the
angle @ of one of them, Fy, about the z3-axis, Gy is the boundary of Fy, Ny is
the exterior normal to Gy.

We set

Ry(z) = tdist(z, Gp), (2.1)

with the signs ”+” and ”-” corresponding to the cases z € R3\ Fp and = €
Fo, respectively. The function Ry is smooth in a certain neighborhood (d;-
neighborhood) of Gy and it possesses the property

VRy(z) = Ng(z?), (2.2)
where z? is the closest point of Gy to x. We have z = 27 + N(z’)Ry(z), i.e.,

i =z — Ry(x)VRy(z) = Ry (). (2.3)



The function Ry is also smooth in the d;-neighborhood of Gy. In the case # =0
the index 0 is sometimes omitted, in particular, Ro(z) = R(x).

It is easily seen that R(y) = Ry(Z(0)y), i.e.,, Ry(z) = R(Z(—0)z), and
Z(0)No(y) = Ny(z). It is also easily verified that hyg(Z(0)y) = ho(y), y € Go,
and that by (z) = bo(y), where by(z) = 7w2z’~N9(z)fnag’]"V(;) Up(2) =[5, %.
It follows that the quadratic form (1.4) is invariant under the rotation about
the z3-axis.

Let us consider the family of surfaces I'y given by the equation (1.13) with
& € Ty. In the case of small py and u these surfaces are close to a certain G
(say, Go) - see [1], Proposition 4.5. We want to construct the function #(t) such
that I'; can be given by (1.21) with p satisfying the condition similar to (1.8).

Let I's » be a surface obtained by rotation of I's through the angle A about
the zg-axis: 'y x = Z(A)T';, where

cosA —sinA 0
Z(A) =] sinA cosA O
0 0 1

For small X, I'; , is also located in a certain small neighborhood of Gy, and can
be defined by the equation

z=y+ Noy)py,t,\), yE€ Go. (2.4)
It follows that
p(y,t,A) = R(Z(N) X (£, 1))

and y = Z(\)X.
We look for the function A(t) such that

| REOO)X € ) (ET)as =0, (2.5)

which is equivalent to (1.25) with r(&,t) = R(Z(A(t))X(&,1)), 6(t) = —A(t).
Moreover, by Proposition 4.2 in [1], (2.5) can be written in the form

/g Py, £, A(D)ho(y) T 1dS = 0, (2.6)

where

_ A (9]
LT (y, p)No(y)|’

By L7 (y, p) we mean the co-factors matrix of the matrix of Jacobi of the trans-
formation (2.4), and the sign ”T” means transposition. If py and u are small,
then &1 is close to 1.

In the paper [7] where the stability of the rotating capillary liquid was ana-
lyzed, we were looking for A = A(t) such that

y=Z(A1)X (&, 1) (2.7)

/g Py, £, \(H) ho(y)dS =0,



but when the surface tension is neglected, then the equation (2.5) is more con-
venient for technical reasons.
Let us compute the partial derivative of the function

ft,2) = g R(Z(NX(&,1))ho(Z2X)dS¢ (2.8)

with respect to A. Since

IR(Z(NX(E,1))
oA

= No(ZX) - 2/(\)X = No(ZX) - Z(es x X)

= Nyg(X%)(es x X?) = hg(X?) = ho(Z(N)X),

we have

fA(t,/\):/g h%(y)\IfldSy+/F R(ZX)VhO(ﬁ).(vm(Z(A)X)Z(eng))dsg.

’ (2.9)
If u € W22+l’1+l/2(QT) is small, then, by Proposition 5.4 in [9], X (&,t) is
bounded by a constant independent of ¢ and |¥~!| > k > 0. This implies

BN 2k [ RS — o > & [ Bwas, (2.10)
Go Go
provided cod; < £ Jg, 4 (y)dS. For A = 0 we have
f(t,0) = | R(X)ho(X)dS,
T'o

hence in the interval
1 2 -1 1 - 2 -1
N <2k o)l ( [ Kas) T =267 [ REOR(Das|( | Hias)
Go To Go

there exists the number A(¢) that is sought.
We set ﬁ(yvt) = ﬁ(yataA(t))a yE gOa 0(t) = _/\(t) and

Pz 1) = BEAW)2 1), = € Gogry. (2.11)

It is clear that the equation (2.4) for the surface Z(A\)[; is equivalent to the
equation (1.21) for T';. Condition (1.25) is a consequence of (2.5); it is equivalent
to

/g Pz, Do ()05, dS = 0, (2.12)
0(t)

where

\I’é‘ _ |A(£7t)n0 €)| , ¥ = Xe(f,t),

LT (2,p) N (2)]



and L7 (z,p) is a co-factors matrix corresponding to the transformation (1.21).
It can be verified that ¥y = W.

In particular, if Ty is sufficiently close to a certain G’, then there exists such
o that Tg is representable in the form (1.11) with y € Z(6y)G’ = Gy and with
po satisfying (1.18). This defines the choice of Gy; we also have A\(0) = 0.

By the implicit function theorem, A(¢) possesses the derivative

ft(t7 /\)

YO = =5 0n by (2.13)
where
fe(t,A) = g No(ZX) - Z(\u(€, t)ho(2X)dS
+/ R(ZX)Vho(ZX) - VR(ZX)Z(Nu(&,t)dS, (2.14)
o
and f) is defined in (2.9). It is easily seen that
1 |ft(t /\
N ()] < AR | - }\(t) s |u(&,t)|dSe, (2.15)
hence for u € Wi '™ L+ (Qoo)
t
A(t) :/ N(r)dr — Ao, as t— oo. (2.16)
0

Thus we have proved the following proposition.
Proposition 2.1. IfT'; and is defined by (1.13) and the norms ||p0||Wz+3/z(F0)
2

and ||u||ﬁ;z+z,1+z/z(QT) are sufficiently small, then there exists a function A(t) sat-
2

isfying (2.15), (2.16) such that Ty can be given by (1.21), and p satisfies (2.12)
with 6(t) = —\(t).

Moreover, the following proposition holds.

Proposition 2.2. If u € W;HJHN (Qr), then

||AI||W21/2+3/4(07T) + §1<1£)1 |/\(t)| < C||U||W§,l/2+3/4(GT) < C||u||W22+z,1+z/2(GT) (217)

with the constant independent of T < oc.
We observe in conclusion that A’(¢) can be represented in the form

Jro No(€) - (&, Do (€)dSe

N(t) = —=2 T30S + m(t), (2.18)
where _ _
oty — Jro N0&) (& D0 (OdSe — £t A1)
- (t,A(t))
= - 1
+ s No(ﬁ).u(f,t)ho(f)dsg(fF 12 @5 fx(t,A(t)))' (2.19)

10



The first term in (2.18) is a linear part of X' (¢) with respect to uw and m(t) is a
nonlinear remainder. The estimate of m(¢) and the proof of Proposition 2.2 is
given below in Sec.4.

3. Scheme of the proof of Theorem 1.1.

As the first step, we reproduce (with necessary modifications) the trans-
formation of the problem (1.14) made in [1] in the symmetric case. We in-
troduce the projection IIf = f — n(n - f) and write the boundary condition
Ty(u,q)n = Mn, where M = L"72|9E’|2 + kU (z,t) + po, in an equivalent way as
follows:

IS, (u)n =0, —q+vn-S,(u)n =M.

Next, we make use of (1.2) and write M in the form
w? w?
M= 7|X'|2 + kU(X,t) +po = 7(|a:’|2 — 213 + &(U(z,t) —U(2)), (3.1)

where z = X (§,t) € I'y and z = X? € Gyy). Let y = Z(A(t))z. As in [1], we
have

M = ~Ba(e)plent) + SN ()P 0+ a-92%a @y
where
Bo(@)al.t) = ba)pe ) [ N PR = bt = | 0 Pn0%3,
(3.2)
Us(z,8) = /f % (3.3)
exs(2) = 2+ N7 (1), (34)

N* and p* are extensions of Ny and p from Gy in Fy, and Lg(z,t) is the
Jacobian of the transformation (3.4). When we pass in (3.2) to the variables
¢ €Ty, according to the formula y = Z(A(t)) X (&, t), we obtain

- B r(n,t)‘I’(ﬂat)dS
Bop = b(X")r(&,t) — “/FO | XO(&,t) — XO(n, 1)

[y — r(n,t)‘I’(ﬂat)dS
= b(Z(\()X)r — “/FO |ZX(¢,t) — ZX (1)

)

where r is the function (1.24), i.e.,

r(é,t) = REZAD)X (&, 1)) = p(ZX,t) = p(X’,1).

It follows that
Bop = By (§)r + Bi(r,u),

11



where

By©)r = bOr(6.0) [ %
Bi(r,u) = (b(Z(A()X) — b(&))r(&,1)
. r(n,t)¥(n,t)dS . r(n,t)dS
/ro ZX(60) - ZXm0) | / coa (3:5)
M =~ Bir + By(r,u) + - [Ny )7 (5, 1) + H/O (1- s)aagsds.

Next, we make one more modification of the problem (1.14) by inserting the

function r into it. We note that r(£,0) = R(£) = po(€) and
re(§,1) = No(Z(A(t)X) - Z2(A(B)(u(&,t) + X' () (es x X(&,1))

= No(ZX) - Zu + ho(ZX)N (1), (3.6)

because

No(ZX)- Z(es x X) = Ng(X?) - (e3 x X + Ny(X")p)

= Ny(X°) - (e3 x X°) = hy(X’) = ho(Z(N) X).
Thus, (u,q,r) can be regarded as a solution to the problem
u; 4 2w(es x u) — vViu + Vg =11 (u, q),

V-u=lx(u), £ey, t>0,

Mo S(u)no = l3(u), (3.7)
—q+vng - S(u)ng + By(&)r = l4(u) + I5(u,r),
r(et) = No(@)-u—e —T0E [ N ()b (7 .
(60 = Nol®) = [ o) Nu@ha(dS +iu). €€ Lo

u(§,0) =wo(§), €€, 7(0)=po(§), &€To.

The expressions Uy, l2, I3, l4, I5, I are nonlinear (at least quadratic) with respect
to u, g, r; they are given by the formulas

ll(u’a q) = I/(Viu - V2’U,) + Vq - vuqa

lo(u) = (V—=V,) - u,

I3(u) = (IS (u)ng — IS, (u)n), (3.8)
la(u) = v(ng - S(u)ng — n - Sy(u)n),
Is(u, R) = %N’2(X)r2(§,t) +/0 (1- s)ddSU; ds + B (r,u), (3.9)

12



ls(u) = (27 (A1) No(ZX)=No(€))u(§, 1) +(ho(ZX) ~ho()N (t)+ho(€)m(t).

(3.10)
. L . o 3 9 _
Owing to the Piola identity V - AT = (ZFI WJ‘Aij)izmﬁ = 0, where AT
means the transposed matrix A, we have
lo(w) =V - L(u), L(u)= (- A")u. (3.11)

Now we outline the proof of Theorem 1.1. As in [1], we use maximum
regularity estimates for the solutions of the linear problem

v+ 2w(es x v) — vV + Vp = f(£,1),
V"U:f(f,t), 56907 tG(O,T),
H()S('U)TLO = Hod(f,t),
—q+vng - S(v)ng + By(&)r = d(&, 1), (3.12)

 NA(E) ho(€) N (VB (i
e = Nof@) v i [ o) Na@ha(@as+o(6t), € To

v(£,0) =vo(§), £€Qo, r(£0)=ro(§), €T
and of a similar problem in Fy:

v+ 2w(es x V') — vV +Vp' = f'(z,t), V-v' = f(z,t) z€F,
IgS(v)No(z) = Hgd'(z,1),

—p'+vNy-S(v')No + Bo(z)r'(z,t) = d'(z,1), (3.13)
I h ! !
~ No(a)-v (m)—ﬁ[] 0'(5,8) No(w)ho(y)dS+¢'(x, 1), € Go,
L2(Go) 0
v'(z,0) = vy(z), re€Fo, 7' (x,0)=ry(z), z€ o,

where [Igf = f — No(No- f). In comparison with the case of axially symmetric
F, these problems contain an extra integral term in the boundary conditions.

We consider at first the problem (3.13).

Theorem 3.1. Let ! € (1,3/2), Qr = Fo x (0,T), &7 = Go x (0,T) and
let the data of the problem (3.18) possess the following regularity properties:
Fews'@r), £ e wytQy), f = V- F, F e W2 (Qr), v) €
W21+l(]:), 7,,(/) c W2l+1(g0), d/ c W2l+1/2,l/2+1/4(®T)’ d/ c W2l+1/2,l/2+1/4(®T)’
g € W2l+3/27l/2+3/4(®;p). Assume also that the compatibility conditions

V- vy = f(z,0), z€F, OgS(vy)No=1lgd (x,0), =€ G

are satisfied. Then the problem (3.13) has a unique solution v’ € W2+l 1+l/2(ﬂT

vy € W Qr), r € W21, such that e, € W2l+1/2 A (D)
(-, t) € Wit (Go) for arbitrary t € (0,T), and

’

Y(T) = ||v/||W22+1’1+l/2(QT)+||VP/||WQI‘I/Z(QT)+||p/||W2l+1/2’l/2+1/4((’57~)+||r/||W2l+1/2’0((’5T)
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/ T 1112 7112 1/2
b () s gy < (N + (| U amy + 1 a2, ) )

(3.14)
where

NT) = 18 g7z + 1 lwroan + 1F Ly + bl g

+||06||W21+z(]_-0)-|-||d’||W21+1/2,l/2+1/4(®T)+||d’||W2,+1/2,z/2+1/4(®T)-|-||g’||W2l+3/2,z/2+3/4(®T).

Moreover, if f' € W;,Z/Q(QT)’ d c W21+1/2,l/2+1/4(6T)’ J e W21+1/2,l/2+1/4(6T)’
g € W2l+3/2’l/2+3/4(®T), e w,™qr), F' e W20’1+l/2(QT) (this means

that £ € Wit (Qp), tf' € Wo(Qr)), F' e W2 @), tF e w72 q.),
then

Y(T) = ||vl||ﬁ/22+l’1+l/2(QT)+||Vpl||Wé'l/2(QT)+||p,||W2l+1/2’l/2+1/4(Q5T)+||r,||W2l+1/2’0(®T)

! !
+§ggllr ¢ D llwiegy) + ggtllr (5 llwi(go)

A/ 4 2 112 v 1/2
< o( @)+ ([ OB sy + 15y g ) ). (319)

where
NT) = 1£ gz g + 1 o g,y + 1F sz g + 1761w g,

+||v6||W21+l(]:)+||dl||W21+1/2'l/2+1/4(®7‘)+||d/||ﬁ/21+1/2’l/2+1/4((’57~)+||g/||W21+3/2'1/2+3/4(®T)'

The constants in (3.14), (3-15) are independent of T.

In fact, the theorem is valid for I € (0,5/2), and the inequality (3.15) is
obtained by combination of (3.14) with [ and I — 1. The proof is given in [10,9].
The problem (3.12) reduces to (3.13) by the transformation

&=z + Ngy(z)ps(x) = ey (), x € Fo, (3.16)

where IN{; and pf are extensions of N and pg from Gy into Fy such that Ny is
sufficiently regular and

165 v 2+2 ) < el (3.17)
This transformation converts (3.12) to
’ ’ 2 'Y I
v; +2w(es x v') —vVV' + Vp' = f(z,t) + mi (v, p),

V~UI:L0fI(a?,t)+m2('Ul), foa
HgS(’Ul)NO = HgH()d/ + ’ITL3(’UI),
—p'+vNy - S(v')No + Bo(z)r' (z,t) = d'(x,t) + ma(v'), (3.18)
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ho(z)
||h0||2L2(g0)
v'(2,0) =vy(x), zeF, r(x,0)=r4(z), zeG,
where ”’” denotes the change of variables (3.16): f'(x,t) = f(e,,'(£),t). The
expressions m; are given by

7“; = No(.’lf)"Ul(.’E,t)— /g ’Ul(y,t)-No(y)ho(y)dS+gl($,t)—l—mS(’Ul,Tl), T e ga

mi (v, p) = v(V? = V2)'(y,t) + (V = V)P (3, 1),

ma(v') = (V = LyV) - v,

ms(v') = g(IgS(v') Ny — Ih S (v')ng), (3.19)
my(v',r') = V(No'S(U')NO*HOS(UI)"U)"'“/ ; (i’ t)(|Eg(ZaPO)N0(Z)|*1)dS,
Go [y — 2|
ms(v', 1)
= tote)(( [ was) " ~( [ B@IE .o Nowlas) ) [ v-Nowho(was
+ho(w)( [ BOIE W p0)No)ldS) [ o Nowho(w)(1-1EF v.p0) Nofw) .

By Lo = det £, we mean the Jacobian of the transformation e,,, Lo is its
Jacobian matrix, Lo = LoL; L'V = Ly TV is a transformed gradient with
respect to &, V = (Biyl’ Bin, Biyg), §(v) = Vv + (@'v)T is a transformed rate-
of-strain tensor. The normals Ny and ng are connected with each other by
Eg No(y)

no(€p, () = m‘

We notice that mo(v’) is representable in the divergence form:

(V=LoV) v'=(V-LTV) v =V-I-LTWw =V -M,

-~

where M = (I — L)v’.

The expressions (3.19) are linear functions of their arguments with small
coefficients proportional to the derivatives of pg. Under the assumption (1.19)
they satisfy the inequality

||m1||w21,l/2(QT) + ”mQ”WQH'l‘O(QT + ||M||W20’1+I/Z(QT)
+||m3(v)||I7V21+1/2,1/2+1/4(GT) + ||7TL4(’U,7“)||ﬁ/;21+1/2,l/2+1/4(GT)

+||m5 (’U, 7“) || sz+3/2,l/2+3/4(GT) S CG?T(’U,p, ’I") (320)

that can be obtained with the help of Proposition 4.1 in [1]. The estimate of
ms follows from

‘1 . ‘Eg(z,po)No(z)“ < ce. (3.18)
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Using (3.14) and (3.20), it is possible to prove the solvability of the problem
(3.12) and estimate the solution in a standard way, provided e is sufficiently
small (the details are omitted). We obtain the following result.

Theorem 3.2. Let | € (1,3/2), Qr = Qo x (0,T), Gpr = Ty x (0,7)
and let the data of the problem (3.12) possess the following regularity proper-
ties: £ € Wa'(Qr), f € W3 ™(Qr), f =V -F, F e Wy'""'?(Qr), vy €
W3t Qo). ro € Wyt (To), d € Wy /2N (Gr), d e w2 G,
g€ W2l+3/2’l/2+3/4(GT). Assume also that the compatibility conditions

A Vo = f(ga 0)7 £ S QO: H()S(’U())TLO = Hod(f,O), £ S 1—‘0

are satisfied. Then the problem (3.12) has a unique solution v € W22+l’1+l/2(QT),
Vp € WH2(Qr), r € WE22(Gy), such that plg, € Wirt/H2H Y Gy,
r(-,t) € WN(To) for arbitrary t € (0,T), and

Y(T) = ||’U||W22+1,1+1/2(QT)+||Vp||W21,z/z(QT)+||p||W21+1/z,1/2+1/4(G,T)+||7"||W21+1/2,0(G,T)

T ) ) 1/2
5D (1)l gy < (N + ( / (ol a00) + 712,272 ) ),

(3.21)
where

NT) = 1flyatr2ggmy + I lwtsrogamy + IF oz o + 7ol g,

+||vg||W21+z(90)+||d||W2z+1/2,z/2+1/4(GT)+||d||W21+1/2,z/2+1/4(GT)+||g||W21+3/2.l/2+3/4(GT).

Moreover, if f € Wy'/*(Qr), d € Wyt P12 Gy d e Wit 210 Gy,
ge W2l+3/2’l/2+3/4(GT), fe W21+Z7O(QT), Fc W20,1+l/2(QT) (this means that
f e Wy t2(Qr), tf € Wo*(Qr)), F € W' M2 (Qr), tF e W™ (Qr)),
then

Y(T) = HvHVT/22+I’1+”2(QT)+||vp||w2l’l/2(QT)+HpHWzl+1/2'l/2+1/4(G’T)+||r||W21+1/2,0(GT)
- fg’?’ ||7“(-, t)HWle(Fo) + ?ng)“t”r(a t)HWzl(Fo)
- T ) ) 2 »
< (M) + ([ Aol + Ilyvmg)at) ) (322)
where
N(T) = Hf”ﬁ/‘é-lm(QT) + ||f||ﬁ72l+1’0(QT) + HF”WQO'HI/Z(QT) + ||7-0||W21+1(F0)

+||UOHW21+l(g)+||d||Wé+1/2‘l/2+1/4(GT)+||d||Wé+1/2‘l/2+1/4(GT)+||g||w2l+3/2’l/2+3/4(GT)'

The constants in (3.21), (3.22) are independent of T
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The norm ||r||W271/2(F0) is defined in a standard way:

‘ fFo r(z)o(z)dz
sup

pewi2ryy Ielwirz ey

||7“||W271/2(F0) =

In order to be able to apply the inequality (3.22) to the problem (3.7), we
need to estimate the nonlinear terms in (3.7) and the lower order norms in
(3.21), (3.22).

Theorem 3.3. If (u,q,r) satisfy the inequality

Y(T) <6< 1, (3.23)
where Y (T) is defined in (3.22), then
il + Wl any + Ellggomnra,
+||l3||W2l+1/2’l/2+1/4(G’T) + ||l4||wzl+1/2.z/2+1/4(GT)
Fllsllgarrrzzeirs gy + lsllgiesrirzss g )

< cllullyssnsirn gpy T IV g, + I sssrnuninrg,)  (329)

with the constant ¢ independent of T > 1.
Theorem 3.4. If the solution of the problem (3.7) is defined for t € (0,T)
and (8.23) holds, then w and p satisfy the inequality

t
06O+ 156D+ | (106D s #1000 n )

< e(llwoll3. a0 + I90l3a(as) ) (3.25)

with the constant independent of T.
The proof of Theorem 3.4 is given in Sec.5. By Proposition 4.6 in [1], (3.25)
implies

t
2 2 2 2
Dl + I D) + / (Il D) + NG, ) I

< c(Jwol ) + looll3.a(ar) )- (3.26)

As in the case of axially symmetric F, inequalities (3.22), (3.24), (3.26) allow
us to obtain the following uniform estimate of the solution of (3.7) playing a
crucial role in the analysis of the problem (1.9) (cf. [1], Theorem 2.3).

Theorem 3.5. Assume that the assumptions of Theorem 1.1 are satisfied.
If the solution of (3.7) is defined for t € (0,T) and (3.23) holds, then

V(7)< e lwoll i ay) + 100llwzor gy )- (3.27)

17



Inequality (3.23) is verified in the process of the proof of the solvability of
the problem (1.14). As in [1], the proof is carried out in two steps. First, using
the maximum regularity estimates for the Neumann problem

v — vV +Vp = f(x,t), V-v=f(z,t) e,

T(v,p)no =d(z,t), =z €Ty,
v(z,0) = vo(z), z € Qo,

and the estimate (3.24) of the nonlinear terms, we prove the solvability of the
problem (1.14) in the interval ¢ € (0, 1), and the estimate

||U||W22+l,1+l/2(Q1) + ||Vq||W2z,z/z(Q1) + ||q||W21+1,(z+1)/2(G1)

< C(||w0||w2l+1(90) + ||P0||W2’“(go)>

for the solution (cf. [1], Theorem 3.1). Then we construct 8(t) = —A(t), as
made in Propositions 2.1, 2.2, and estimate the function

60 =m@+ [ (NoERRXED) - Zu+ ho(ZXN (7).

If € in (1.19) is small, then we arrive at (3.23) and, by Theorem 3.5, at (3.27)
for t € (0,1). Now we can make one more step and define the solution for
t € (T,2T). Assume that the solution of (3.7), as well as the function 6(t),
is defined for ¢t € (0,T) and inequalities (3.23) and (2.17) are satisfied. Then
it is possible to extend the solution in the time interval ¢ € (0,7 + 1). As in
[1] (see Theorem 3.2), this reduces to the problem (3.5) in [1], slightly more
complicated than (1.14). It is essential that in the proof of Theorems 3.1 and
3.2 in [1] the symmetry properties of F are not used. If u and ¢ are constructed
for t € (0,7 + 1), then it is possible to define 6(¢), t € (0,T + 1), satisfying
(2.17), and estimate

t

HE1) = r(6T) + /

(NO (ZX) - Zu+ ho (ﬁ)xm) dr,
T

t € (T, T +1). By Theorem 3.5, the extended functions satisfy (3.27), (2.17)
with constants independent of T', as in the symmetric case. In this way we
construct the solution in the infinite time interval and conclude the proof of
Theorem 1.1.

4. Proof of Proposition 2.2 and of the estimate (3.24)

This section is devoted to some estimates presented in Sec. 2 and 3.

Proof of Proposition 2.2. We consider the function f(¢,\) defined in (2.8).
When we extend hg from Gy in the é;-neighborhood of Gy so that this function
remains smooth (which reduces to the extension of Ny, as it has been done
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above) and take account of the relation ho(y) = ho(%R(y)), then we can write
f(t,A) as
£6.0) = [ FEMX(E DS, (@1)
0

where F' is a smooth function in a certain neighborhood of T'y. The partial
derivatives of f with respect to A are given by

AN = | VF(ZWNX(&1)-2'XdSe = | VF(Z(\)X)-2'Z27'ZXdS;
o To

= [ VFEMNX(E1) - (e x ZX)dSe = / Fi(Z2X)dS,
I'o T'o

A = | VE(ZNX)-(e3 x ZX))dS = | F(ZX)dS;, (4.2)
o To

where F; and F, are also smooth functions. Moreover,

fi(t,\) = VF(Z(\)X) - Zul(g, t)ng,
To
mmnzﬁvm@@m»a@ﬁ%& (4.3)
fou(t,A) = g VFE(Z(MN)X) - Zu(€, t)dS;,

Fult, ) = / VF(Z(\)X) - Zu,dSe + / Zu-VVF(ZX) - ZudS;
To o
= ¢1(t) + p2(t). (4.4)
Differentiating (2.13) with respect to ¢, we obtain

" _ a ft 6 ft 7 _
AT = 7(5 K)A:A(t) ; <5E)A=A(t)/\ () = M) + Xa(0). (45)

Since X (§,t) and u({,t) are bounded uniformly with respect to ¢ and fy
satisfies (2.10), we have
()l =
O i/ x=x(t)

d f
‘(5 f_:))\:)\(t)

and in view of (2.15)

| <e [ Quite.nl+ ute pas.

wwmg/wmwwm@ww,

To

INiato,) < ellullypos . (4.6)
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Now we estimate

min(T.1) - gp, T oy 2\ 172
(/0 hl”“/h |AL(=h)A"(t)] dt) )

where p = 1/2 — 1/4, Ay(—h)N'(t) = N'(t — h) — X'(t). Using (4.2) it is not
difficult to verify that

min(T,1) dh T ) 1/2
([ 7 [ 1aemnoPa) < el < clules, .

(4.7
The function A () is given by
_ (Ju  Jifxe _
M (t) = ( R )A:Mt) = A3 (t) + M (t).
with A4 also satisfying (4.7). Now we consider the difference
A¢(—h)As(t)
1 1

Since |fa(t, A(t))] > ¢ > 0 and |%m| < ¢, we have

min(1,T) dh T 12 1/2
([ s | 1aPlaemz @)™ < elluliom,

min(1,T) dh T 1 1/2
_ah _ 2
(/0 h1+2u/h |A¢(=h) furl |f>‘|2dt>

min(1,T) dh T 1/2
SC(/O m/h |At(*h)ftt|2dt) ;

[Asllwz0.1) < el feellwg 0,1y

which implies

I lwg o1 < (I fullwgom + 1l i)
The function fi(t) is representable in the form (4.4) with ¢» satisfying
62llwg0,1) < clld2llwg o) < cllullwor g, (4.8)

and

¢1 (t) = b(€7 t) : ut(£7 t)dsa

o
where b = Z7H(A\(t))VF(Z(X(t))X (&,1)) is the function such that

sup |b(&,t)| + sup by (&,1)] < c.

T
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Hence
@1ellweo,m) < C”UtHWZO’“(GT)a

et o) < ellullyonsn gy,
Together with (4.8), this inequality implies
||/\/||W2l/2+3/4(07T) < C||U||W2o,z/2+3/4(GT). (4.9)

In order to conclude the proof of (2.17), we need to estimate the norm

I+ DN g 0,m)

with gy = /2 + 1/4. This can be done by repeating the above arguments. In
view of (2.15), we have

[(1+8)X | pago,r) < ell(1+ )l o)
min(1,T) dh T 2 1/2
(7 o [ asorfa-nyofa)

min(LT) g T , > \1/2
= c(/o [AE=T /h (1+1) ’At(*h)ft(t)‘ dt) + el (14 t) fill Lo(o,1)
< C”(]- + t)uHW;le (Gr)’

which concludes the proof of (2.17) and of Proposition 2.2.

On the estimate (3.24). The expressions ly, l2, I3, 4 are the same as in the
symmetric case, and they have been estimated in [9], Propositions 5.5 and 5.6,
but I5 and lg are somewhat different. As in the symmetric case, main technical
difficulties arise in the estimate of [5, in particular, of the second derivative ‘9;3%
of the potlential (3.3). It has the same form as the analogous function in [1],

only the role of p is played by p or p. We have:

% = Viz, )+Va(z, ) =Wi(z,8)-Now) (2)p(2, 1) =W (2, 1)-No(2)p(2, 1),
(4.10)
B JOINCAN(SYD) dS¢
Vs = [ e v s R o1k
V2(z,t):/g ﬁ(C,t)A(C,sﬁ)%mds’
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Since p(y,t) = p(Z(0(t))y,t), the formula (4.10) is equivalent to

U (Z(0(t))y, 1)
0s?

=V %) + VO, t) - WOy, 1) No@)p(,t) — WL (1) - No(y)i(y, 1),
where y € Go,

~ OA(n, sp) ds,
VO, 1) = / t n
C = ) e e ) — e

)

(0) _ 5 s 2;
Own = [ RECIEAUR D et g ony
©) B OL(n, sp*) esz(y) — es5(n)

Wi (y’”‘/ﬂ 85 Teasy) — el "

ds,

ey O €sp — €sp
W0 = /fo Hon s, |€sﬁ((yy))— esa((:))Pdn'

Estimates of these potentials are made exactly as in [11] and they lead to the
inequality analogous to (3.20) in [11], namely,

120

0s?

y:ﬁ||ﬁ/21+1/2’l/2+1/4(GT) < Cf‘ig (- 1)l Witt(To)

(||r||W21+1/2,0(GT) 1+ t)u||W21/2,o(GT)>. (4.11)

The proof is based on the estimates of the Newtonian and single layer poten-
tials obtained in [12]. We also make use of the estimate of the time derivative
pt. Let V! be the velocity of the evolution of the surface Z(A(t))X (&,t) in the
direction of the exterior normal n’. We have

vi= 2 200)X(€n) - n = Zu-n+ 2 XN )
=u-n+(e3x X) -nX\(t).
Hence o R
_ U(f,t)Z:\T(z)Ng(z) (eSXX)'ET(Z)Ng(z) )
- A(z,p) * A(z,p) N(#). (4.12)

Here, as usual, the points y and z are connected with Z(0(t))y = z and A(z, p) =
1 — pHo(2) + p2Ko(z), where Hy is the doubled mean curvature and Ky is the
Gaussian curvature of Gy. From (4.12) and (1.22) it follows that

I Dl gy < el Dl
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which is analogous to the estimate (3.19) in [11] for p;. This allows us to obtain
(4.11).
Now we turn our attention to Bj(r,u). According to (3.5),

Bi(r,u) = By(r,u) — 6Bs(r,u) — 6B4(r,u) — £Bs(r,u),

where
Bs(r,u) = (W(Z(A6)X) = b(E)r(&, 1),
B3(7_,u) — / 7"(77:75)(‘1'(77:75) - 1)dS"7,
Ty [Z2X(&t) — ZX(n,t)|
! 0 1
By(r,u) = ds /FO r(n,t)a X.E0-X, (n,t)|dS’

1
(r,u) / ds/ r(n,t) ds
To 35 |Z(sA(0)X (&, 1) — Z(sA) X (n, 1)]
In the case of axially symmetric 7 we have Z = I and the term By drops

out.
We start with the estimate of By and show that

||Bg || W2l+1/2‘l/2+3/4(GT)

< C(||U||W2l+2.o(QT) + ||7“||ﬁ72!+1/2,0(GT)) ||’u||ﬁ,‘-21+2,o(QT). (4.13)

Following the arguments in the proof of Proposition 5.7 in [9], we estimate the
difference L -
bo(ZX) — bo(6). (4.14)

In Proposition 5.7 it is proved that
150(X (€, 1)) — Bo(@) gz ry, < ellullgzmagg,y: Vi€ (O.T).  (415)
The difference (4.14) satisfies the same inequality; indeed,

bo(Z2X) = bo(€) = (bo(Z2X) — bo(X)) + (bo(X) — bo(€)),

bo(ZX) — bo(X / 5200(Z(sX)X)ds

= [ wnzEenx)E0)
where bo(-) = bo(93(+)). Hence, by (2.15),

HbO(ﬁ) - bO(X)HWZlH/z(FO)
t
c(1+||u||v~v2l+2.o(Qi))|/\(t)| < c/o /F [u (€, 7)|dSdr < clulgeo g, (4.16)

23



We also need to estimate the time derivative

2 (m@X) ~b0(®)r

- (bo(ﬁ) _ bo(f))rt +rVbo(2X) (Z(/\)u(f, t) + Z’(/\)X/\’(t)).

Using the inequalities (4.16), (2.15), we obtain
0 — _ _— _
||E(b0(ZX) - bo(f))THLz(ro) < sup [(00(Z2X) = bo(E)l|7e (s )| La(ro)
0

L (ZX)
ot

Together with (4.15), (4.16), this estimate implies (4.13).
For the estimate of B3, By, Bs we can use Proposition 2.10 in [11]. It concerns
the surface integrals of the form

1oy S0P (& O] < elfuCo ) (llizgreo g, + sup (& D).

U(yat) = - |T(y7t) - T(nat”ilg(nat)dsa

nlnt) = [ IO (a0 aln0)a(n. 0145,
Wl+3/2—e

where 7 (y, t) is an invertible mapping of class W, (Q), € € (0,1—1), with
T € W5 () and a is as regular as p. It is easily seen that the transformation
T = Z(A\(t))X (&, t) possesses these properties and ZX = e;lX. Therefore the
application of Proposition 2.10 leads to the same estimates for By (and for I5)
as in [11], namely,

||15||W21+1/2,l/2+1/4(GT)

2
< C(fgg ||7“(-,t)||W21+1(F0) + ||7“(-,t)||ﬁ721+1/2,1/2+1/4(GT) + ||U||ﬁ’/2l+2,l/2+1(QT)> .

(4.17)
Now we pass to the estimate of

lo(u) = (27 (A(®)No(ZX)~No(&)) (&, t)+(ho(ZX) ~ho ()X (t)+ho (€)m(t)
=157 (w) + 17 () + 1§ (w)
where m(t) is defined in (2.19). We have already seen above that

1ho(ZX) = ho(E)llyy 11721y < cllullggisns g,

127 A No(ZX) = No(©)l 12, < clAB) | No(ZX)

(To ”Wé““(m

+||N0(§) — N0(5)||W21+1/2(F0) < C||U||/W21+2.0(Qt). (418)
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Exactly in the same way we obtain

10 () — o)l z45/21,, + 127 D) No(ZX) ~ No(@)ll sz ry)

<c(1+ \/E)||u||ﬁ/‘2’+2’0(Qt)-

In addition, we have
0 —
||_h0(ZX)||L2(F0) + ||EZ NO(ZX)HLz(FO) < cHu”Lz(Fo)’

82
ves

These inequalities allow us to estimate lél) and lé(f) exactly in the same way as
lg has been estimated in [9], Proposition 5.8:

B0 X tatro + g 2 NoE Doty < elaelzar + el aces )

||lé1)(u)||W23/2+z,3/4+1/2(GT) + ||lé2) (u)||w23/2+1,3/4+z/2(GT)

< cllullggirn g, (lullgsoqp) + sup [u(. 1))

The proof reduces to repeating the arguments in this Proposition. Finally, it is
easily seen that

”léB)(U)||W23/2+l,3/4+1/2(GT) < C||m||ﬁ721/2+3/4(0’T)-

According to (2.19), m(t) = mq(t) + m2(t), where

_
It A(E)

ma(t) = - [ (27 ()N ET )0 (ET)-No(ho(6)) e )5,

mo (t)

_Jry No(§) - u(€, )ho(€)dS
LG [, k3OS,

r(€,1)Vho (ZX) - (VR(ZX)(e5 x ZX))dS

f( / hg(g‘)ds)_1 / r(€,6)Vho (ZX)VR(ZX)Z(\E)u(, £)dS.  (4.19)
To To
In view of (4.18), (2.15),

|27 A®)NoET)ho(ZX) = No(@ho(8)| < clluligzino g,

II%(zﬂ(A(t))No(ﬁ)hO(ﬁ) - No(g)ho(g)) Izare) < el B)llzaro),
12 (27 )N EE)ho(Z) - No(@ho()) l1ro

< (el Dllara) + I, Ol )
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hence
my (t)

_ ft (ta/\(t)) 1 — — B _
= L [ (27 )N o020~ Not©)ho(6)) e, s

s 5 (F AOINED(ET) - No(@ho(8)) -l )

+ [ (27 AOINo(ETOh(ZT) ~ No(@h(©)) - wa(€, 1S ).
o
satisfies the inequalities

14 20,1 < elltllos @ lullgzsno o).

Yoan (T L )12
(] g [ 1demmi@Par) ™ < clullg on o lllzog,)

and
Yodh T ) 5 \1/2
(] 7 | G+ 0Ranmm@Pde) 410+ Om o
< (1 + Ol s oy [l 252000
established in the same way as (2.17). This implies
||mlllw21/2+3/4(0,T) < CHUHWS‘UQJFBM(G’T)Hu”Wf“’O(QT)' (420)

The function ms(t) is estimated by similar arguments. Taking (3.6) into
account we obtain

Imallgparesars o ) < cllwllgortarn g, (HUHL2(F0) + ||7“||L2(Fo))-

This implies
||lﬁ (u) ||W21+3/2,l/2+1/2(GT)

< C||u||ﬁ/‘.2l+2,l/2+1(QT) (HUHWZIJrZ,O(QT) + Sclglp |u(f, t)| + ||7'||L2(F0))7
T
Thus (3.24) is proved.

5. Proof of Theorem 3.4

We start by obtaining some auxiliary relations and estimates. Let w be a
solution of the problem (1.9) and let w* be a projection of w on the subspace
of vector fields orthogonal to all rigid displacements. In view of (1.11),

3

w(z,t) = wt(z,t) + ng(t)nk(z), (5.1)
k=1
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where 1, () = e, X x, e, = (Jix)i=1,2,3. and gi(t) are functions defined as a
solution of a linear algebraic system

3
; Sik (Vg (t) = /Q w(z,t) - n,(2)dz = Li(t) (5.2)

with

Si(t) = / 1:(2) - (@) de,

1) = ~oo( [ my(a) my(o)d - /f no(@) m@)dz):  (53)

by F we mean arbitrary Fy. Since
—/ N3 - n;d :/ zjzgdr =0, j=1,2 (5.4)
F F

(see [2]), we have

Il(t) = 65,3 - Sig(t)w, (55)
where § = w [ [¢/[*dz is the magnitude of the angular momentum of the rotat-
ing liquid. The matrix S = (Si(t))i r=1,2,3 is symmetric and positive definite,
because for arbitrary real &

3
Sut6€ = [ |3 emia)Pds = [ 1€ x aPds > el
toi—1 t

3
i k=1
Hence there exists the inverse matrix S™! = (S (#)); x=1,2,3, and

3

gk(t) = D SE(t)(BOms — Sms(t)w) = BSF(t) — Sraw. (5.6)

m=1

We recall that T'; is given by the equation (1.21) with p satisfying (1.25).
We compute the projection p of p on the subspace of Ly(Gy) orthogonal to
the functions (1,21, 22,23, hg)(x)). It is clear that (1,21, 2, 23) are linearly
independent functions of z € G and hy(z) = Ny(x) - n;(x) is orthogonal to
them, because

No(z) my(2)dS = [ V- my(a)dz =0, (5.7)
Ge Fo
/ ziNg(2) - m3(2)dS = V- x;ns(z)dr = 0. (5.8)
Go Fo
We have A
p=p"+ > crt)er,
k=0
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where @o(z) =0, pi(x) =z, 1= 1,2,3, pa(z) = hg(z). By (5.7), (5.8),
3
[ Beads =3 a) [ pu@in@is, a=0,1,23,
Ge 0

b— G

and

3
cat) =) ¢"(t) [ ppydsS,

where ¢?°(t) are elements of the matrix inverse to ® = (fgg soa%dS)
It follows that

p=p-+ 23: ¢‘”’/

a,b=0 g

a,b=0,1,2,3

pputSea(o) + ho@)lhal g, | phds.
2] 6
Conditions (1.28) for p imply

/ P )ds = [ ple. )1 - oz, 7)dS,
Go Go

/ ple,0yridS = [ pla, t)(@: — iz, p))dS,
Go Go
/ P, ho(@)dS = | pla, yho(z) (1 — W)dS,
Go Go
and, as a consequence,

| [ 2w 0S| < 17l 20, 11 = Py < Bl 2,y

}/gg p(z,t)zidS‘ < c6||p||W;1/z(g9);
moreover, since

1= @] < |1~ [Anoll + 1~ 1£7(2,5)No|)

< C(”“”WZH"O(G” + ||ﬁ||w2'+1*€(g9)) < cd,

we have

‘/g e, Oho(@)dS| < e8]y 112,
6

Hence
o — ﬁL||W2*1/2(g9) < 06ﬁ||W;1/2(g9)7
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which means that for small § the norms ||ﬂ|W71/2(g9) and ||ﬁl-||W,1/2(g9) are
2 2
equivalent to each other:

APl 1726y < 1P Iy 17260y < €21Plly 1726y (5.9)

Now we proceed to the proof of Theorem 3.4, assuming that the solution of
(1.9), (1.14) is constructed for ¢ € (0,T) and the condition (3.23) is satisfied.
The following propositions play an important role in the proof.

Proposition 5.1. Given the function fy € W21/2(QO) such that fgo fodS =0,
there erists a divergence free vector field W € Wy (Q;) satisfying the condition

W(z,t) -m;(z)de =0, j=1,2,3, (5.10)
Qy

and the inequalities
IWllwi e, < cllfollyir g,

IW a0 < llfoll o) (5.11)
IW o < e(Ifollyarz g + 1 fotllacen )

Sketch of the proof. At first we construct a divergence free W in the do-
main ; = Z(A(¢)) with the normal component on 9, equal to fo(eﬁ(y))|ET(y, p)No| ™t
that satisfies inequalities (5.11) and the condition (5.10) in €. The construc-
tion (for a particular fy) is given in [13], Lemma 4.1, and it is valid for arbitrary

fo € Wa'*(Go). The vector field W is defined by
W(z,t) = Z7'A)W(Z(A1)z,b), =z € Q.

Direct computation shows that W satisfies (5.10). Inequalities (5.11) follow

from similar inequalities for w.
Proposition 5.2. Let Us be a potential defined in (3.3). For arbitrary

fie W§/2(g0) the following inequality holds:

.

Proof. According to (4.10),

OUs dS| < cd||p] 5.12
S F1(2)dS| < el g, 1 il g, - (5.12)

0*Us,
Ge 8.92

fi(z)dS

:/g (Vl(Z,t)+V2(Z,t)—Wl(Z,t)-Ng(t)(z)l/o\(z’t)—W2(Z’t).Ne(Z)"o\(Z’t))fldS

= [ ot (5 + A Vil as
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- /g P2, ) Fu(2)No(2) - (W (2,8) + W(z,1))dS, (5.13)

where

_ [ (o5 _ S
R e e o T ML o o o L

The right hand side of (5.13) does not exceed
2756y (192 Vo il + IAVAL AT 272,

+[fiNg - (W1 + W2>IIW;/2<99>)-

Applying Proposition 4.1 in [1] that concerns the estimate of the product of two
functions, we obtain

| [ G n S| <l e, (15

-FHI\H;V;+1/2(QG)H‘@[fl]HpV;/2(g9)*-Hf1H;V;/2(g9)(H“flH|pv;+1/2(gg)*-ﬂ‘4’1H|pvg+1/2(gg))>-

In view of the estimates of the volume and surface potentials obtained in [11],
Sec.3, this inequality implies (5.12). The proposition is proved.

Inequality (3.25) follows from the estimate of a ”generalized energy”. We
multiply the first equation in (1.9) by w and integrate over ;. Making use of
the transport theorem and of the boundary conditions, we arrive at the energy
relation

1d w2 12 v 29
s (Il 0,y /Q | da:—k;/m e, t)dr) + 7 [ Iswdz =0
(5.14)

OA
HW"H/2 (Go) ||V3[.f1]||W1/2(g )

By (5.1) and (5.5),

w7500 = lwt 17,0, + ZSm gk (t)g;(t) = w17, 0
k.j=1

3
+ Z Sk (BS*2 (1) — Oraw) (BS7 (1) — 6j3w) = [lw™[|7,(q.)
kg1
62

33 2 2 — 112 -
+533 (1) 52 + Sa3(t)w? — 2w = |Jw IIL2(91>+fQi o' Pdz

+5%(S33 — Sz3') + w? |2’ |2 dx — 2Bw.
Q¢

The expression

B*(S33 — S33') = —B°S. 125 783
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62
" SszdetS
is a positive definite quadratic form with respect to Si3, Sa3, since 2S5 <
V511V S22. Hence (5.14) may be written in the form

(811535 + S22575 — 2512513523) = Q(2)

v

d /1
(5wl + Q) + R ~ Ra) + 3

2
= ,]_
7 \3 o, |S(w)|“dx =0, (5.15)

where

2 2, \ 'K
R(t) = 672 [ e dz) 75/9 Uz, t)dz — po|Ql,

R = 2(2 e, Ntk .
0=25 |~T | dz 5 . L[(Qﬁ)diﬂ p0|.7:9|.
Fo )

Now we use the relations
2(es xm;) =—V(n;-mg)+n', i=1,2,3,

where nt = 15, n? = —m,, n® = 0, and write the first equation in (1.9) in the

form

wi + (w - V)wt + (w- V)w' + 2w(es x wh)

3 2
vVt +V(p—w Zgj (tng -m;) = —w; —w Z gam™(x), (5.16)

j=1 a=1
where w’ = 2321 g;i(t)n;(z). Since (w’-V)w' = —3V]w'[?, (5.16) is equivalent

to
wi + (w - V)wt + (wh - V)w' + 2w(es x wr)
3 1 2
vVt + V(- w) git)ng n; — 5lw'?) = —wi—w Y gan(2), (5.17)
j=1 a=1
We multiply (5.17) by the auxiliary vector field W constructed in Proposi-
tion 5.2 leaving for the moment the function f; indefinite. Then we integrate
the product over ;. Elementary calculations lead to

4 wt - Wz — wL~(Wt+(w~V)W)da:+2w/ (es x wh) - Wdz
dt Jo, oy o)
+2 [ Sty s(W)dr +/ (w - V)w' - Wz
Q4 Q
2 1
_/F (OF 403 g (0ma(e) -0y (x) + Sl PIW -mdS =0, (5.18)
t j=1

We multiply (5.18) by a small positive v and add to (5.15). As a result we

obtain 1B
—di ) 4 Ei(t)=0 (5.19)
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with

1
E(t) = §||w||%2(91) +Q+(R—Ro)+7 [ wt Wdz, (5.20)
Q;
14
Ey(t) = §||S(w¢)||2L2(Qi)—7 wL-(Wt+(w-V)W)dz+2w'y/ (esxw™t)-Wdz

Q4 Q¢

+V2—7 S(wr) - S(W)dz + 7/ (wh - V)w'  Wdz —yJ, (5.21)
Q Q4
where J is the surface integral in (5.18).
We pass to the estimates of E and F;. At first we consider the integral 7.
It can be written in the form

: 1 12
= /g M+ gi(0ma(@) - my(@) + 5 l'?)

j=1

)fldsz

r=e; 1 (z

where f; = W~n|w:eﬁ(z)|ET(z,ﬁ)N9(z)|. We introduce the matrix Sy = (S§;,)j,k=1,2,3
with the elements

S0, = / ;) - ().
Goa(t)

In view of (5.4), S35 and S3,, vanish, S3; = [, |2/[*dz and the matrix (S95)a,5=1,2

(o3
is positive definite. We make use of the relation

3
M40 g5ty (a) (o) + '

j=1

z=e;(2)

= —Bo(2)p(z,t) +w > 83t di(t)ny(2) - mj(2) + M, (5.22)
k,j=1

where

p(¢, )dS
0 |Z_ C)' ’

di(t) = —w [] Pz t03(2) - 14 (2)dS,

By(z) = bo(2)p — n/g

VD TR 29 ! 9°U, Lo
M= N PP 0+ [ (1= 5tds+ gl
3
o 30 (SHOIE) - SO (2) - my(2)
7,k=1

£ 3 SEOLO)ms@) @) —my(2) (), w=eplz)  (5:29)
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is the sum of nonlinear terms with respect to p in (5.22). Let

B(2)p(z,t) = Bo(2)p(z,t) — w85 ds(t)[m3(2)|?
w? |Z/|2

W g p(¢,t)[¢ )P ds,
Go 2

= Bo(2)p(z,t) +

3
Bi(2)p(z,t) = Bo(2)p(z,t) —w Y Sitdr(t)ms(2) - m;(2)
k,j=1

2

=B+ Y S0z / B¢, 1)CsCadS,

a,f=1 Go
4
Bip= PB,Pp+ Zgok(Z)/g p(¢,t)pr (C)dS,
k=1 ¢

where P is the projection on the subspace of L2(Gp) orthogonal to the functions
@k, i.e., to (1,21, 22, 23, hg(1)(2)) defined on Gy. The quadratic form fg9 pBpdS of
the operator B coincides with the form (1.4), hence, for p satisfying (1.7), (1.8)
we have [, Bi(p)pdS > clpl7,g,) It follows that [ pBi(p)dS > cllpll7, g,

for arbitrary p € L2(Gg). The integral equation
Bif =g

of the Fredholm type is uniquely solvable for arbitrary g € Lo(Gy); moreover,
if ¢ = Pg, then the equation B;f = ¢ holds. Finally, if g € W21/2(g9), then
f € W,%(Gy), and

||f||W21/2(g9) < C||g||W21/2(g9). (5-24)

Now we define f; as the solution of the equation
Bifi = P(=2¢) "' Pp=P(-Ag)"'p",

where Ay is the Laplace-Beltrami operator on Gy (in fact, the equation B; f; =
P(—Ay)~'pt is satisfied). By virtue of (5.24) and (5.9),

1fill2 gy < N80 3 20,

~L ~
<clp ||W;1/2(g9) < cllpllwgl/z(gg)-
The function fo(y) = f1(Z2(0(t))y,t), v € Go, is a solution of the equation
Bi(y)fo = Po(—20)"*5", € Go,

where A is the Laplace-Beltrami operator on Gy and P, is a projection on the
subspace of functions orthogonal to (1,y1,y2,¥s, ho(y)). Hence

1Pl 172Gy = 1Pl yy172g, -
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We set W -n

- = f1(2)|L% (2,p)Ng|™. By the definition of the oper-
r=e;(z
ator By, ’

= /g » (Bo@)a(z.1) — 0D St du(tms (=) -1y () (=, )8

=1

:/g Bi(2)pfi(z,t)dS = | pBi1fidS= [ pr(=Ag)'pHdS > C||/7||3V;1/2(g9)-
0

Ge Geo

Now we consider the contribution of the nonlinear terms (5.23) into —7,
i.e., the integral

_g" = [ Mfi(z,t)ds.
Go

We have

29 ~ 2~
| [, NP 051048 | < 1Dl IIN'C)PRA g,

< Bl plly 12 g M lwprzgg,) < €l g, )

From the formula (2.9) in [14] it follows that (5.3) can be written in the form
1
)=~ [ ds [ 5o tms(en () - mueip()A 6P
0 ]
which implies
1
RO ~du(t) =~ [ s [ 50, 1)0ns(exp () myesg (DA -m(2)me(2)aS,

(O] + [T (0)] < ellplly 72, -
116 (t) — de(8)] < 817l 172 gy

For the estimate of S7%(t) — S2*(¢) we use the relations S~' — S5t = S5 (Sp —
5)S~! and

1
53e0) == [ [ 50 (myesp () m(ess() AP~ my () me(2)) S
0
It follows that
|Sjk(t) - S?k' < C(SHpHWZ*lﬁ(gg)' (525)

From the above inequalities it is easy to conclude that
1 S -
[ Gl +e 3 (570 - S autnma(z) -my) (2
0 Fok=1
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3
+ ) ST (05 (e55(2)) - Milesp(2)) —m3(2) -nk(Z))fl(Z’t)dS‘

j,k—_l
< 2
C(SHZ)\H ,]/2( ).

Finally, by Proposition 5.2,

[ sas [ 20 puas| <ol
, 1m0 | 5 S| < cllplly e,

Putting all the estimates together we see that for small §

—'Yj Z CW”ﬁHiVZ—m(gg) = cyllﬁ”?/Vfl/Z(go)-

2

We pass to the estimates of the volume integrals in (5.21). By Proposition
5.1,

| [ ot Wda] <l 00 (1ol + 1olza)

< clwtlran) (Bl 72y, + 171l12209) )
and since

3

17t 2260y < ellwlramy < elwtllamy + e 1Tk(?)]
k=1

< el i, + 18l 1726y )

we have
1 1 1 ~
| |t Weds| < el lwzcon (o lwac@o + 17l r2,)
In view of Proposition 5.1, other integrals in (5.21) do not exceed

eVl lws ol ollwarz gy < vl s Py, 1720y = eVl lwa o IBly, 12 g,

which allows us to conclude, taking the Korn inequality into account, that for
small v

Ev(8) = e(vIwtllws @) + 16l yr2(g,) )
As for E(t), this function satisfies (also for small ) the inequality
&1 (w1340, + 17130060 ) < B® < e (I0F 13,0, + 1713006, )-
that is a consequence of the estimate

callAl7 5060y = C1llBll7(6,) < R = Ro < callplli, gy, = c2llpll7, 60
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(see the remark at the end of Sec.1). When we integrate (5.19), we arrive at
(3.25). Thus Theorem 3.4 is proved.
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