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ABSTRACT

For a subfamily of multiplicative measures on integer partitions we give condi-
tions for properly rescaled associated Young diagrams to converge in probability
to a certain deterministic curve named the limit shape of partitions. We provide
explicit formulas for the scaling function and the limit shape covering some known
and some new examples.
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Introduction

It is now widely known that a random partition of a large integer taken with equal
probability among all partitions of that integer has the Young diagram which looks
(after rescaling) close to a deterministic object called a limit shape of random par-
tition. The discovery of a phenomenon of limit shape formation for the random
partition of a large integer has a long history. First it was mentioned in the paper
by H. N. V. Temperley [15] in 1952 with heuristic arguments. Much later but inde-
pendently, the principal calculations leading to this result was made by M. Szalay
and P. Turán [14] in 1977, however they did not state their result in the modern
way. It was done by A. Vershik and stated in his joint paper with S. Kerov [16]
in 1985.

Later a new proof of the same result was found based on the fact that the
uniform measures on partitions of n are just the product measures restricted to some
linear subspace. (The probabilist would say that a random partition of n is just a
sequence of independent random variables with specific distributions conditioned
to have some weighted sum equal n.) This technique seems to be first applied
to random partitions by B. Fristedt [7]; now it is usually referred to as Fristedt’s
conditional device. Later it has been frequently used by various authors in the
related problems, see [11, 6, 8], to name just a few references. A. Vershik [17]
noted that the similar technique is applicable to a wider range of problems with
the same property that the measure is a product measure restricted to a certain
affine subset. Vershik called such measures on partitions multiplicative; we give the
precise definition in Section 1.

Similar “limit shape type” results have appeared in diverse contexts including
some probability measures on partitions, both multiplicative and not. One of the
first results of this type goes back to a seminal paper by P. Erdős and J. Lehner [10]:
it can be read from their paper that rescaled Young diagrams of strict partitions of a
large integer concentrate around a certain limit shape. This is also a multilplicative
case, although Erdős and Lehner did not use the related technique. A. Comtet et
al. [5] recently found the limit shape for the generalization of this case, namely
for partitions such that the difference between parts exceed some fixed number p.
For p ≥ 2 this family is not multiplicative. R. Cerf and R. Kenyon [4] confirmed
Vershik’s conjecture that the limit shape exists also for plane partitions.

In the paper [17] Vershik introduced several families of multiplicative measures
on partitions and stated that for these measures limit shapes also appear in the
proper scaling. He called such examples ergodic (see Definition 2 below) and asked a
general question about conditions for ergodicity of multiplicative measures. In this
note we give a partial answer to this question. The whole family of multiplicative
measures is naturally parameterized by a sequence of functions fk analytic in some
neighborhood of zero, as explained in Section 1. We restrict ourself to a subfamily
of multiplicative measures such that each member of this sequence is a power of
some fixed function: fk(z) = f(z)bk , bk ≥ 0, with some additional constraints
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on f and sequence bk. This restriction looks quite confining at a first glance but it
allows us to find exact formulas for the limit shape and to catch what happens in
a more general case. This family includes, for instance, the measures on partitions
which arise in connection with Meinardus’ Theorem (f(z) = 1/(1 − z)), see [1,
Ch. 6]. Granovsky et al. [9] applied recently a probabilistic technique going back
to Khinchin to this problem and improved Meinardus’ results; our approach partly
overlaps with one used in [9].

The lack of natural nonergodic multiplicative examples makes it harder to an-
swer Vershik’s question. Actually, essentially the only well studied example is the
so-called Ewens measure on partitions. We briefly describe its construction, see [2]
(where the term Ewens sampling formula is used) for a more detailed exposition.
Take a random permutation π from the symmetric group Sn with probability pro-
portional to θl(π) where θ > 0 is a parameter and l(π) is the number of cycles in per-
mutation π; θ = 1 corresponds to the uniform measure on Sn. Given π, consider the
partition of n on cycle lengths of π. The induced probability measure on partitions
is called Ewens measure. Mapping partition λ = (λ1, λ2, . . . ) with the usual order
λ1 ≥ λ2 ≥ . . . to a simplex ∇ = {(x1, x2, . . . ) :

∑
xi ≤ 1 and x1 ≥ x2 ≥ . . . } by

dividing parts of λ by its weight
∑

λi induces the sequence of discrete measures on
∇; taking their weak limit in the standard topology leads to the Poisson–Dirichlet
measure PD(θ) on ∇. This measure is not concentrated on the unique element
of ∇, so the Ewens measure is not ergodic.

In this note we give another examples of nonergodic behavior (Proposition 2)
in a slightly weaker sense. However all these examples are degenerate.

The rest of the paper is organized as follows. In the next section we give a pre-
cise definition of multiplicative measures on partitions and present some basic facts
about them. In particular, we introduce the notions of grand and small canonical
ensembles of partitions. In the end of the section we formulate further assumptions
we impose on the multiplicative measure. In Section 2 we present a definition of
ergodicity and discuss its basic consequence. Section 3 is devoted to ergodicity in
the grand canonical ensemble. We give necessary and sufficient conditions for er-
godicity in the considered class of multiplicative measures (Theorem 6) and provide
an explicit formula for the limit shape in the ergodic case. In Section 4 we give
sufficient conditions for ergodicity in the small canonical ensemble. We conclude
the paper with examples in Section 5.

1 Multiplicative families

The multiplicative families of measures on partitions were defined in [17] in the
following way. For each n = 1, 2, . . . let µ(n) be a probability measure defined on
a set P(n) of integer partitions of n. For partition λ ∈ P(n) define completion
numbers or counts Rk(λ) = #{i : λi = k}, k = 1, 2, . . . , that is the number of parts
k in partition λ. Measure µ(n) makes Rk random variables: P[Rk = j] = µ(n){λ ∈
P(n) : Rk(λ) = j}. These random variables are obviously dependent since the
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relation

N(λ) :=
∞∑

k=1

kRk(λ) = n

holds for all λ ∈ P(n), i.e. µ(n)-almost sure. We also introduce a set P(0) = {∅}
and the trivial probability measure µ(0) on it.

Definition 1. The family of probability measures on partitions µ(n) is called multi-
plicative if there exists a sequence of positive numbers {ān}n≥0 such that

∑
n ān = 1

and counts Rk are mutually independent with respect to the convex combination
µ̄ :=

∑
n ānµ(n).

Independence of Rk with respect to µ̄ means that there exists a rectangular
array of nonnegative numbers ḡk,j, k ≥ 1, j ≥ 0 and

∑∞
j=0 ḡk,j = 1 for any k, such

that for any partition λ ∈ P = ∪∞
n=0P(n)

µ̄{λ} =

∞∏

k=1

ḡk,Rk(λ) . (1)

Introduce normalized coefficients gk,j = ḡk,j/ḡk,0 (division by ḡk,0 is possible since∏
k ḡk,0 = ā0 > 0 by definition) and consider functions fk(x) =

∑∞
j=0 gk,jx

j; these
are analytic functions at least in the unit disk. Let us define a family of measures
µx on the set of all integer partitions P by

µx{λ} =

∞∏

k=1

gk,Rk(λ)x
kRk(λ)

fk(xk)
=

xN(λ)

F (x)

∞∏

k=1

gk,Rk(λ)

where

F (x) =
∞∏

k=1

fk(x
k) . (2)

Inequalities 1 ≤ fk(x
k) ≤ 1/ḡk,0 valid for 0 ≤ x ≤ 1 ensure that the products above

converge at least for these x. Moreover, summation over all λ ∈ P yields that µx

are probability measures:

µxP =
∑

λ∈P

µx{λ} =
∑

(r1,r2,... )

∞∏

k=1

gk,rk
xkrk

fk(xk)
=

∞∏

k=1

∞∑

rk=0

gk,rk
xkrk

fk(xk)
= 1

where the middle sum is taken over all sequences (r1, r2, . . . ) of nonnegative integers
with finitely many nonzero terms (such sequences are in one-to-one correspondence
with partitions via rk = Rk(λ)).

Equation (1) and definition of µ̄ imply that for any n if λ ∈ P(n) then

µx{λ} =
xn

ā0F (x)
µ̄{λ} =

ānxn

ā0F (x)
µ(n){λ} .
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Thus measures µx are convex combinations of µ(n). Introducing an = ān/ā0 makes
it possible to write down expression for measures of partition λ ∈ P(n) as

µ(n){λ} =
F (x)

anxn
µx{λ} =

1

an

∞∏

k=1

gk,Rk(λ)

and the Taylor decomposition of F (·) as

F (x) =
∞∑

n=0

anxn .

Since an > 0, this is the analytic function in the unit disk, however the actual
radius of convergence ρ can be greater (and even infinite).

Function F plays a rôle of normalization factor, so a man with background in
statistical mechanics would call it a partition function. We utilize this terminology
and extend the analogy with statistical mechanics by using terms grand canonical
ensemble of partitions for the set P equipped with measure µx and small canonical
ensemble for the pair (P(n), µ(n)). Further discussion of these analogy and terms
can be found in [12, 17].

Partition function F is also closely related to the probabilistic notion of a prob-
ability generating function. Moments of N can be expressed in terms of F as

ExN
m =

1

F (x)

(
x

d

dx

)m

F (x) , m = 0, 1, 2, . . . , (3)

where Ex is an expectation operator with respect to measure µx. Similar formula
expresses moments of Rk in terms of fk:

ExR
m
k =

1

fk(z)

(
z

d

dz

)m

fk(z)

∣∣∣∣
z=xk

.

Since N =
∑

kRk, mean and variance of N can be also easily expressed in terms of
functions fk and get a particularly simple form in terms of its logarithmic derivative
hk(z) = f ′

k(z)/fk(z):

ExN =

∞∑

k=1

kxkf ′
k(x

k)

fk(xk)
=

∞∑

k=1

kxkhk(x
k) , (4)

Varx N =

∞∑

k=1

k2
(
xk
(
f ′

k(x
k) + xkf ′′

k (xk)
)
fk(x

k) − x2k
(
f ′

k(x
k)
)2)

(fk(xk))
2

=
∞∑

k=1

k2
(
xkhk(x

k) + x2kh′
k(x

k)
)
. (5)

Note that F itself does not define measures µx or µ(n) but F along with its
decomposition (2) does. However this decomposition is not unique. Indeed, given
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F (·) we could have taken ān = anxn
0 /F (x0) in Definition 1, for some x0 ∈ (0, ρ),

and constructed a new function F̂ (·) in the similar way. However it would satisfy
F̂ (x) = F (xx0) and f̂k(z) = f̂k(zx k

0 ), as can be easily checked. Up to this change
of variable F and its decomposition is uniquely defined.

The case considered in this note

Although multiplicativity is a rather restrictive requirement on measures µ(n) the
range of multiplicative measures is quite big. In this note we consider only measures
µ(n) such that after some appropriate change of variables described in the previ-
ous paragraph fk(z) = f(z)bk for some function f(·) and sequence of nonnegative
numbers {bk}, i. e.

F (x) =

∞∏

k=1

f(xk)bk . (6)

The natural requirement on the Taylor coefficients of f(z)bk to be positive may
imply certain restrictions on bk. We impose more conditions on the sequence {bk},
namely we assume that partial sums

Bk =
k∑

j=1

bk = kβℓ(k), β > 0, (7)

where ℓ(·) is a regularly varying function in the sense of Karamata, i. e. it is mea-
surable and for each fixed y ∈ (0,∞) there exists limx→∞ ℓ(xy)/ℓ(x) = 1, see [3].
Note that the requirement a1 > 0 implies that b1 > 0, otherwise the Taylor series
for F (x) would have no x term.

For certain statements below these assumptions on behavior of bk are not enough
and additional conditions are required. In order to formulate the first of them
we introduce for a positive real s the set Ks of integers behaving similar to the
arithmetic progression with the difference s. More formally, define

Ks = {k ∈ Z+ : ∃j such that |k − sj| < 1/2} . (8)

Obviously, for s ≤ 1 these sets coincide with Z+ but for s > 1 holes in Ks occur.
In some statements we shall need the following regularity assumption in addition
to (7): there exists χ ∈ (0, 1) such that for any s ≥ 2

∑

j≤k
j∈Ks

bj ≤ χBk . (9)

If β > 2 assumption (7) is strong enough for all our purposes. However for
0 < β ≤ 2 we need more detailed asymptotics of partial sums Bk:

Bk = θkβ + O
(
kβ−ζ

)
, k → ∞ (10)
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for some constants β, θ > 0 and ζ > 1 − β/2.
We also suppose that for some ρ1 ∈ (0,∞], f(x) is finite for x ∈ (0, ρ1) and has

a nonremovable singularity at x = ρ1; the nonnegativity of the Taylor coefficients

implies that f(xk) is an analytic function in a disk of radius ρk = ρ
1/k
1 (ρk = ∞

if ρ1 = ∞). If the singularity happens at ρ1 ≤ 1 we shall often require that it
is a pole. If ρ1 is finite the change of variables x 7→ ρ1x can make the radius of
convergence of all function fk(x

k) equal 1 however functions fk(·) won’t be equal
after it. The following simple statement holds.

Proposition 1. Let F be defined by (6) and condition (7) holds. If ρ1 < 1 then
F is analytic in the disk |z| < ρ1 and has a singularity at ρ = ρ1. If ρ1 ≥ 1 (in
particular ρ1 = ∞) then F (·) is analytic in the unit disk and has a singularity
at ρ = 1.

Proof. If x < ρ1 < 1 then for all 0 < y < x inequality f(y) ≤ 1 + (f(x) − 1)y
holds since function f is convex. Consequently the product (2) evaluated at point

y is dominated by the converging product
∏∞

k=1

(
1 + (f(x)− 1)yk

)bk . On the other
hand, F (x) → ∞ as x → ρ1 since so does the first factor in (2).

If x < 1 ≤ ρ1 the same argument shows the convergence of the infinite product
evaluated at x, but F (1) =

∏
k f(1)bk = ∞ since Bk → ∞ by (7).

2 Ergodicity

Given a partition λ of n we consider its Young diagram which can be defined as a
subgraph of function

ϕλ(t) =
∑

k>t

Rk(λ), t ≥ 0.

For a sequence of positive numbers α(n) we consider its scaled version

ϕ̃
(n)
λ (t) =

α(n)

n
ϕλ(tα(n)) =

α(n)

n

∑

k>tα(n)

Rk(λ) .

Taking λ ∈ P(n) at random with probability µ(n){λ} makes these random functions.

Definition 2. We call a family of measures µ(n) ergodic if there exists a sequence
α(n) and a piecewise continuous function ϕ : R+ → R+ such that

∫∞
0 ϕ(t)dt = 1

and for any finite collection 0 < t1 < · · · < tℓ of its continuity points values ϕ̃
(n)
λ (tj),

j = 1, . . . , ℓ, converge to ϕ(tj) in probability, that is for any ε > 0

lim
n→∞

µ(n)
{
λ :
∣∣ϕ̃(n)

λ (tj) − ϕ(tj)
∣∣ < ε for all j = 1, . . . , ℓ

}
= 1 .

The function ϕ is called a limit shape of partitions.
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Remarks. 1. If a sequence α(n) exists it is essentially unique meaning that for α
(n)
1

and α
(n)
2 two such sequences α

(n)
1 /α

(n)
2 → c ∈ (0,∞) and function ϕ is appropriately

transformed.
2. If a function ϕ exists it is nonincreasing since all ϕ̃

(n)
λ do not increase.

The notion of ergodicity can be also defined in the grand canonical ensemble.
However it should be done in slightly different way to keep the main advantage of
measures µx that ϕλ(t) is a sum of independent random variables. Given a positive
function αx defined for x ∈ (0, ρ) define the scaled Young diagram as

ϕ̃x;λ(t) =
αx

ExN
ϕλ(αxt) =

αx

ExN

∑

k>αxt

Rk(λ) .

Scaling here depends on x so
∫∞
0 ϕ̃x;λ(t)dt = 1 does not hold for all λ however the

mean value of this integral is 1. A family of measures µx is called ergodic if there
exist a scaling function αx and a limit shape ϕ,

∫∞
0 ϕ(t)dt = 1, such that for any

ε > 0 and (t1, . . . , tℓ) a set of continuity points of ϕ

lim
xրρ

µx

{
λ :
∣∣ϕ̃x;λ(tj) − ϕ(tj)

∣∣ < ε for all j = 1, . . . , ℓ
}

= 1 .

Ergodicity of µ(n) and µx are closely related however not equivalent. The subject
of this note is to establish conditions for ergodicity of the first family but we shall
investigate properties of the second one as well. We start with a simple criterion
for the case when measures µx can not be ergodic.

Proposition 2. If function F has a pole in point ρ then measures µx are not
ergodic.

Proof. Suppose that F has a pole of order m ≥ 1 at ρ. Then in some neighborhood
of ρ it can be decomposed into the Laurent series

F (x) =

∞∑

j=−m

cj(x − ρ)j , c−m 6= 0.

Using formula (3) we see that as x ր ρ

ExN =
−xmc−m(x − ρ)−m−1 + . . .

c−m(x − ρ)−m + . . .
∼ mρ

ρ − x
,

ExN2 =
m(m + 1)xc−m(x − ρ)−m−2 + . . .

c−m(x − ρ)−m + . . .
∼ m(m + 1)ρ2

(ρ − x)2

where dots denote lower order terms. Hence the variance of N/ExN is bounded
away from zero. Consequently there exists τ > 0 and c > 0 such that µx{λ :
|N(λ)/ExN − 1| > τ} > c for all x close to ρ. Moreover, since the mean of N/ExN
is one, the one-sided inequality should also take place with positive probability:
µx{λ : N(λ)/ExN < 1 − τ} > c.
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Suppose that measures µx are ergodic with scaling ax and limit shape ϕ. Recall
that ϕ is a weakly decreasing piecewise continuous function with unit integral. Take
the ϕ-continuity point ε > 0 small enough so that

∫ ε

0
(ϕ(t) − ϕ(ε))dt +

∫ ∞

0
min{ε, ϕ(t)}dt < τ/3.

Geometrically it means that the area of the limit shape ϕ lying lower than ε or
higher than ϕ(ε) is less than τ/3. Let T = inf{t : ϕ(t) < ε}. Given ε and δ ∈ (0, ε)
define a finite collection of points recursively by the following procedure: take
t0 = ε and let ti = inf{t : ϕ(t) < ϕ(ti−1 + 0) − δ} until on some step td ≥ T . (Here
ϕ(t + 0) is the right limit at t.) The procedure ends in final number of steps since
ϕ(ti +0) ≤ ϕ(ti−1)− δ. Define now a function ϕ∗ : [0, T ] → R to be equal ϕ(ε)− 2δ
on [0, t1] and for all i = 2, . . . d let ϕ∗(t) = ϕ(ti−1 + 0) − 2δ on (ti−1, ti]. Thus ϕ∗

is a piecewise constant function with discontinuities at {ti} and by construction it
satisfies ϕ∗(t) ≤ ϕ(t) − δ for all t ∈ [ε, T ]. Consequently ergodicity implies that
µx{λ : ϕ̃x;λ(t) > ϕ∗(t), t ∈ [ε, T ]} → 1 as x → ρ. For all such λ

N(λ) =

∞∑

k=1

kRk(λ) ≥
⌊Tαx⌋∑

k=⌊εαx⌋

kRk(λ) ≥ ExN

∫ T

0
(ϕ∗(t) − ε)dt.

Taking δ > 0 and ε > 0 small enough the last integral can be made greater than
1 − 2τ/3, thus providing the contradiction which finishes the proof.

Remark. Note that the proof does not use the specific form (6) of decomposition (2)
and thus the result holds for any multiplicative measure.

3 Ergodicity in the grand canonical ensemble

Independence of Rk in grand canonical ensemble allows establishing sufficient condi-
tions for ergodicity in the grand canonical ensemble. We start with finding asymp-
totics of mean value of N with respect to measure µx.

Lemma 3. Let measure µx be defined by decomposition (6) and bk satisfy (7). If
ρ1 < 1 then ExN ∼ b1ρ1f

′(x)/f(x) as x ր ρ1. If ρ1 ≥ 1 (if ρ1 = 1 in addition f
has a pole in 1) then as x ր 1

ExN ∼ Ω
ℓ(1/(1 − x))

(1 − x)β+1
, Ω =

∫ 1

0

(
| log u|β+1(h(u) + uh′(u)) − | log u|βh(u)

)
du

(11)
where h(u) = f ′(u)/f(u) is the logarithmic derivative of f , and ℓ, β are defined
in (7).

Proof. If F satisfies (6) then hk(u) = bkh(u) in (4) hence it can be rewritten as

ExN =

∞∑

k=1

kbkx
kh(xk) .
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If ρ1 < 1 then the only summand above which goes to infinity as x → ρ1 is the first
one, and the sum of all remaining summands is dominated by the convergent series
h(ρ2

1)
∑∞

k=2 kbkρ
k
1, so the statement holds.

Suppose ρ1 ≥ 1. Taking partial sum and using summation by parts yields

m∑

k=1

kbkx
kh(xk) = (m + 1)Bmxm+1h(xm+1)

+

m∑

k=1

Bk

(
kxkh(xk) − (k + 1)xk+1h(xk+1)

)
.

The first summand vanishes as m → ∞ for fixed x, so taking m large enough it
can be hold bounded. Since h is an analytic function in some disk including points
xk+1 and xk the mean value theorem allows to conclude that

kxkh(xk) − (k + 1)xk+1h(xk+1)

= kxkh(xk) − (k + 1)xk+1
(
h(xk) + h′(xκ)(xk+1 − xk)

)

= −xk+1h(xk) + k(1 − x)xkh(xk) + (1 − x)(k + 1)x2k+1h′(xκ)

where κ ∈ [k, k + 1]. Combining the above formulas we obtain

m∑

k=1

kbkx
kh(xk) = (m + 1)Bmxm+1h(xm+1) −

m∑

k=1

Bkx
k+1h(xk)

+ (1 − x)

m∑

k=1

Bk

(
kh(xk)xk + (k + 1)h′(xκ)x2k+1

)
.

Take T > 0 and put m = [T/(1 − x)]. Since B[t/(1−x)]/B[1/(1−x)] → tβ uni-
formly in t ∈ (0, T ] (see [3, Th. 1.5.2]), the sums above should be multiplied by
(1 − x)1+β/ℓ(1/(1 − x)) to become the Riemann sums for the convergent integrals∫ T
0 tβh(e−t)e−tdt and

∫ T
0 tβ+1

(
h(e−t)e−t + h′(e−t)e−2t

)
dt, correspondingly.1 Let-

ting T → ∞ and changing variable u = e−t finish the proof.

Proposition 2 shows that ergodicity in the grand canonical ensemble can not
take place for the case ρ1 < 1 if f has a pole in this point. Indeed, since

∑
k≥2 ExRk

is bounded as x ր ρ while ExN ∼ ExR1 is not one can take scaling αx ≡ 1 to get
a limit of scaled Young diagrams ϕx(t) = 1[0,1)(t)R with R a (nondegenerate) limit
of R1/ExR1. Thus in this case “almost all” partitions consist mostly of ones, and
all larger parts constitute a vanishing fraction of a sum. Further questions can be
asked about the distribution of larger parts etc. however they are beyond the scope
of this note.

1The integrals are convergent even if ρ1 = 1: since f has a pole at 1, h(e−t) has a simple pole
and h′(e−t) has a pole of order 2 at 0, so multiplication by tβ and tβ+1 kills both singularities.
To be completely rigorous, one should take integral from 1/T to T in order to speak about the
Riemann sum, and then use uniformness in T to exchange limits.
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Suppose ρ1 ≥ 1. The change of variables k ↔ t/(1 − x) made implicitly in the
proof of Lemma 3 suggests the choice of the scaling function αx = 1/(1 − x). The
following lemma states that the mean is not degenerate with this scaling.

Lemma 4. Suppose that ρ1 ≥ 1 and for ρ1 = 1 additionally the singularity of f
in 1 is a pole. For the scaling function αx = 1/(1 − x) the mean value of scaled
Young diagram at point t > 0 is

ϕ(t) := lim
xր1

Exϕ̃x(t) =
1

Ω

(∫ e−t

0

(
h(u) + uh′(u)

)
| log u|βdu − tβh(e−t)e−t

)
(12)

where h(u) = f ′(u)/f(u) is the logarithmic derivative of f , Ω is defined in (11)
and ℓ, β are defined in (7). If ρ1 = 1 and β ∈ (0, 1] then ϕ(0) = ∞, otherwise it is
finite and the convergence takes place also for t = 0.

Proof. The proof is similar to that of Lemma 3 so we present only a sketch. The
partial sum is

m2∑

k=m1

ExRk = Bm2x
m2+1h(xm2+1) − Bm1−1x

m1h(xm1)

+

m2∑

k=m1

Bk

(
xkh(xk) − xk+1h(xk+1)

)
.

Expression in brackets under the summation sign can be represented as

xkh(xk) − xk+1h(xk+1) = (1 − x)(h(xk)xk + h′(xk)x2k+1) + 1
2(1 − x)2h′′(xκ)x3k+1

for κ ∈ [k, k + 1], so taking m1 = t/(1−x), m2 = T/(1− x) and representing sums
by integrals yields

m2∑

k=m1

ExRk ∼ ℓ(1/(1 − x))

(1 − x)β

(
T βe−T h(e−T ) − tβe−th(e−t)

+

∫ T

t
vβ
(
h(e−v) + h′(e−v)e−v

)
e−vdv

)

for t > 0. If β > 1 then the integral converges also for t = 0. To finish the proof it
remains ot change variable, divide by the asymptotic expression (11) for ExN and
let T → ∞.

The function ϕ defined by (12) is a candidate for the limit shape. To show that
the definition of ergodicity really holds we give a bound for probability of deviation
at a fixed point.

Lemma 5. Suppose that ρ1 ≥ 1, f has a pole in 1 if ρ1 = 1, and fix t, ε > 0. Then,
for x close to 1

µx

{
λ :
∣∣ϕ̃x;λ(t) − ϕ(t)

∣∣ > ε
}
≤ e−(1−x)−β/2

.

11



Proof. For fixed t > 0 and k > t/(1−x) there exist exponential moments ExeuRk =
f(xkeu)bk/f(xk)bk at least for u ∈ [0, t + log ρ1). Moreover, convexity of f implies
that exponential moments of

∑
k>t/(1−x) Rk also exist for such u: argument follows

the lines of the proof of Proposition 1. Hence for fixed ε > 0, u ∈ (0, t+log ρ1) and
x close enough to 1

µx

{
λ : ϕ̃x;λ(t) − ϕ(t) ≥ ε

}
= µx

{
λ : : euϕ̃x;λ(t) ≥ eu(ϕ(t)+ε)

}
≤ Exe

uϕ̃x(t)

eu(ϕ(t)+ε)

=
Exeu(ϕ̃x(t)−Exϕ̃x(t))

eu(ϕ(t)−Exϕ̃x(t)+ε)
= e−uε/2

∏

k>t/(1−x)

Ex exp

(
u(1 − x)β(1 + o(1))

Ωℓ(1/(1 − x))
(Rk − ExRk)

)

≤ e−uε/2
∏

k>t/(1−x)

Ex exp

(
2u(1 − x)β

Ωℓ(1/(1 − x))
(Rk − ExRk)

)
(13)

where we have used Markov’s inequality, Lemmas 3 and 4 and independence of Rk.

Denote for short δ = δ(x) = 2(1−x)β

Ωℓ(1/(1−x)) , note that δ(x) → 0 as x ր 1. Each factor

in the right-hand side of (13) is defined at least for u < (t + log ρ1)δ
−1, and the

product converges. Since

Ex exp

(
2u(1 − x)β

Ωℓ(1/(1 − x))
(Rk − ExRk)

)
= exp bk

(
log

f(xkeuδ(x))

f(xk)
− uδ(x)

xkf ′(xk)

f(xk)

)

the logarithm of k’th factor in (13) divided by bk can be bounded as follows:

log
f(xkeuδ)

f(xk)
− uδ

xkf ′(xk)

f(xk)
≤ log

(
1 +

f(xkeuδ) − f(xk)

f(xk)

)
− uδ

xkf ′(xk)

f(xk)

≤ f(xkeuδ) − f(xk)

f(xk)
− uδ

xkf ′(xk)

f(xk)

≤ xk(euδ − 1)f ′(xk)

f(xk)
− uδ

xkf ′(xk)

f(xk)
≤ (uδ)2

xkf ′(xk)

f(xk)

for u ≤ 1/δ since f ′(x) is nondecreasing function and ev − v − 1 ≤ v2 for v ∈ [0, 1].
Hence continuing (13) we obtain

µx

{
λ : ϕ̃x;λ(t) − ϕ(t) ≥ ε

}
≤ exp


(uδ)2




∑

k>t/(1−x)

bk
xkf ′(xk)

f(xk)


− uε/2


 .

We have already found the asymptotics of the sum above in the proof of Lemma 4:
it is asymptotically equivalent to ℓ(1/(1−x))

(1−x)β Ωϕ(t). Hence the upper bound takes

form exp(c1δ(x)u2 − uε/2) for some c1 > 0. Now we can choose u such that it
provides the best estimate. It is achieved at u = ε/(4c1δ(x)) which gives an upper
bound exp(−ε2/(16c1δ(x))) and at least for small ε all the calculations above are
valid. An observation that exp(−ε2/(16c1δ(x))) < exp(−(1 − x)β/2) for x close
enough to 1 finishes the proof.
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We combine the results about ergodicity in the grand canonical ensemble in the
next statement.

Theorem 6. Measures µx defined by (6) with bk satisfying (7) are ergodic if either
the radius of convergence ρ1 of function f is greater than 1 or if it is equal to 1 and f
has a pole at 1. The possible choice of scaling function in this case is αx = 1/(1−x)
which leads to the limit shape ϕ defined by (12).

If ρ1 < 1 and f has a pole at ρ1 then ergodicity does not hold.

Proof. Lemma 5 gives the exponential upper bound for the probability of deviation
greater than ε > 0 of ϕ̃x;λ(t) from ϕ(t). Consequently the probability of deviation
greater than ε in finite number of points still decays exponentially as x → 1.

The last statement follows from Proposition 2.

Remark. If ρ1 < 1 and f has an essential singularity at ρ1 then ergodic case is
possible: take, say, f(x) = e1/(1−2x) and bk = 1. We do not know examples of
nonergodic behavior in this case under conditions (6) and (7).

4 Ergodicity in the small canonical ensemble

In order to approximate measures µ(n) by measures µx we want to choose x de-
pending on n to maximize µxP(n) = anxn/F (x). Differentiation with respect to x
shows that it is achieved at x = xn, a solution of equation

n = ExnN =
xnF ′(xn)

F (xn)
. (14)

Note that this solution always exists and is unique since ExN strictly increase in x.
Lemma 3 and [3, Prop. 1.5.15] shows that there exists a slowly varying function ℓ1

such that

τn := 1 − xn =
ℓ1(n)

n1/(β+1)
. (15)

In the most simple case when ℓ(k) ≡ 1 this simplifies to 1−xn ∼ Ω1/(β+1)n−1/(β+1),
in the general case ℓ1 is connected to the de Bruijn conjugate of ℓ, see [3].

The next lemma gives a lower bound for µxnP(n).

Lemma 7. Let measures µx be defined by decomposition (6) where either the radius
of convergence ρ1 > 1 or ρ1 = 1 and additionally f has a pole at 1. Let the sequence
bk satisfy both conditions (7) and (9) and additionally either β > 2 or 0 < β ≤ 2
and (10) holds for some ζ > 1 − β/2. Then for n large enough

µxnP(n) ≥ n−γ for any γ >
β + 2

2β + 2
. (16)
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Proof. We start with the Cauchy formula where we take the circle of radius xn as
the integration path:

an =
1

2π

∫ π

−π
F (xneit)x−n

n e−intdt .

Using product representation (6) and expressing n in terms of f combining (14)
and (4) gives

µxnP(n) =
anxn

n

F (xn)
=

1

2π

∫ π

−π
e−int

∞∏

k=1

f(x k
neikt)bk

f(x k
n )bk

dt

=
1

2π

∫ π

−π
exp

(
∞∑

k=1

bk

(
log

f(x k
neikt)

f(x k
n )

− ikt
x k

nf ′(x k
n )

f(x k
n )

))
dt .

(17)

The function under the integral sign in (17) sends negative values of t to complex
conjugates. Thus taking the real part does not change the value of the integral and
changing the integration interval to [0, π] halves its value. So we can write

µxnP(n) = I1 + I2 + I3 + I4 ≥ I1 − |I2| − |I3| − |I4|

where for some 0 = δ0(n) ≤ δ1(n) ≤ δ2(n) ≤ δ3(n) ≤ δ4(n) = π we denote

Ij =
1

π

∫ δj(n)

δj−1(n)
Re exp

(
∞∑

k=1

bk

(
log

f(x k
neikt)

f(x k
n )

− ikt
x k

nf ′(x k
n )

f(x k
n )

))
dt , j = 1, 2, 3, 4.

(18)
Before specifying the exact values of δj(n), j = 1, 2, 3, we investigate asymptotics
of Varx N as x → 1. Recalling formula (5) yields that

Varx N =

∞∑

k=1

bkk
2(xkh(xk) + x2kh′(xk)) ∼ ℓ(1/(1 − x))

(1 − x)β+2
σ2 (19)

where

σ2 =

∫ 1

0

(
2| log u|β+1

(
h(u) + uh′(u)

)
− | log u|β+2

(
h(u) + 3uh′(u) + u2h′′(u)

))
du.

The argument repeats that of proof of Lemma 3; note that the integral is convergent
even if ρ1 = 1 because in this case h′(u) has a pole of order 2 and h′′(u) has a pole of
order 3 at u = 1 and both

∫ 1 | log u|β+1h′(u)du and
∫ 1 | log u|β+2h′′(u)du converge.

Consequently

Varxn N = ℓ2(n)n−β+2
β+1 (20)

where ℓ2(n) = σ2ℓ
(
n1/(β+1)/ℓ1(n)

)
/ℓ1(n)β+2 is slowly varying.

We define δi(n) in terms of τn (defined by (15)). Namely we take

δ1(n) = τ1+β/2−α1
n , δ2(n) = τn, δ3(n) = τα3

n

14



where the obvious inequalities which provide the right order for δi are 0 < α1 ≤ β/2
and 0 < α3 ≤ 1.

First we show that α1 can be chosen so that for any γ > β+2
2β+2 and large n

inequality I1 ≥ n−γ holds. Since 0 < t < δ1(n) ց 0 as n → ∞, in order to estimate
the sum in the exponent in equation (18) for j = 1 we are going to find k0 = k0(n)
such that for k ≤ k0 each summand can be estimated using the Taylor formula and
the sum over k > k0 is small. To this end we take k0(n) =

⌊
τ−1−ε1
n

⌋
for some ε1 > 0

which exact value will be specified later. Then for all k ≥ k0

xk
n = (1 − τn)k = (1 − τn)τ−1

n kτn ≤ e−kτn ≤ e−τ
−ε1
n → 0

in view of inequality (1− y)1/y ≤ e−1 valid for y ∈ (0, 1]. Consequently for all such
k and for all t inequality |f(x k

neikt) − 1| < c1x
k
n holds uniformly in k ≥ k0 and t.

Here and below cj , j = 1, 2, . . . , are some positive constants. It follows that the
absolute value of the k-th summand in (17) is bounded by c2bkx

k
n , hence the whole

sum over k ≥ k0 is bounded by c3x
k0
n /(1 − xn)β+1 ≤ e−nε1/2 → 0.

On the other hand, if 0 ≤ t ≤ δ1(n) and 1 ≤ k ≤ k0(n) then tk0 ≤ τ
β/2−α1−ε1
n

vanish if α1 +ε1 < β/2 so each summand can be estimated by its Taylor expansion.
Utilizing again notation h(z) = f ′(z)/f(z) for the logarithmic derivative of f gives

log
f(x k

neikt)

f(x k
n )

− ikt
x k

nf ′(x k
n )

f(x k
n )

= −(x k
nh(x k

n ) + x 2k
n h′(x k

n ))
k2t2

2
− i

2

∫ t

0
h1(x

k
neiks)k3(t − s)2ds

where h1(z) = zh(z) + 3z2h′(z) + z3h′′(z). Multiplying (x k
nh(x k

n ) + x 2k
n h′(x k

n ))k2

by bk and summing over all k one gets Varxn N as can be seen from (5); cutting
off the series at k0 gives exponentially small error as it was shown in the previous
paragraph. Hence

−
k0∑

k=1

bk(x
k
nh(x k

n ) + x 2k
n h′(x k

n ))
k2t2

2
∼ − t2

2
Varxn N

as n → ∞.
The error term can be bounded as follows. Since
∣∣∣∣∣

∞∑

k=1

ibk

2

∫ t

0
h1(x

k
neiks)k3(t − s)3ds

∣∣∣∣∣ ≤
∫ t

0

∞∑

k=1

k3bk|h1(x
k
neiks)|(t − s)2ds

and for large n the sum in the right-hand side is uniformly bounded by

∞∑

k=1

k3bk|h1(x
k
neiks)| ≤ c4ℓ(τ

−1
n )τ−β−3

n ≤ τ−β−3+ε2
n
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for any ε2 > 0 (this bound is valid even if ρ1 = 1 because h1(x) has a pole of order 3
and the corresponding integral converges), the inequality

∣∣∣∣∣

∞∑

k=1

ibk

2

∫ t

0
h1(x

k
neiks)k3(t − s)3ds

∣∣∣∣∣ ≤
t3

3
τ−β−3−ε2
n

≤ t2

2
δ1(n)τ−β−3−ε2

n =
t2

2
τ−β/2−2−ε2−α1
n

holds for all t ∈ [0, δ1(n)]. Consequently, for any ε2 ∈ (0, 4β/(9β+9)) and γ > β+2
2β+2

I1 =
1

π

∫ δ1(n)

0
Re exp

(
∞∑

k=1

bk

(
log

f(x k
neikt)

f(x k
n )

− ikt
x k

nf ′(x k
n )

f(x k
n )

))
dt

=
1

π

∫ δ1(n)

0
Re exp

(
− t2 Varxn N

2

(
1 + O

(
τ
−β/2−2−ε2−α1
n

Varxn N

)))
dt

=
1

π
√

Varxn N

∫ δ1(n)
√

Varxn N

0
Re exp

(
−s2

2

(
1 + o

(
τβ/2−2ε2−α1
n

)))
dt

∼ 1

n(β+2)/(2β+2)
√

2πℓ2(n)

≥ n−γ

for large enough n if 4ε2 + 2α1 < β.

The bounds for I2, I3 and I4 are based on the same estimate:

|Ij| ≤
1

π

∫ δj(n)

δj−1(n)

∣∣∣∣∣exp

∞∑

k=1

bk log
f(x k

neikt)

f(x k
n )

− ikt
x k

nf ′(x k
n )

f(x k
n )

∣∣∣∣∣ dt

≤ 1

π

∫ δj(n)

δj−1(n)
exp

(
∞∑

k=1

bk Re log
f(x k

neikt)

f(x k
n )

)
dt

=
1

π

∫ δj(n)

δj−1(n)
exp

(
∞∑

k=1

bk log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣

)
dt .

(21)

Since the Taylor coefficients of f are nonnegative, each summand in the exponent
is nonpositive. Moreover, since the first Taylor coefficient g1 > 0 and thus for all
y ∈ (0, 1) and real t

− log

∣∣∣∣
f(yeis)

f(y)

∣∣∣∣ = − log

(
1 − f(y) − |f(yeis)|

f(y)

)

≥ f(y) − |f(yeis)|
f(y)

=
f(y)2 − |f(yeis)|2

f(y)(f(y) + |f(yeis)|) ≥ g1y(1 − cos s)

f(y)2
(22)
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because

f(y)2 − |f(yeis)|2 = 2
∑

j>k≥0

gjgky
j+k(1 − cos((j − k)s)) ≥ 2g0g1y(1 − cos s) .

If ρ1 > 1 then f(y) is bounded in the left neighborhood of 1; if ρ1 = 1 and f(y) has
a pole of order m then f(y) ≤ c6(1 − y)−m. Taking m = 0 if ρ1 > 1 implies that
for some x̃ ∈ (0, 1) and all y ∈ [x̃, 1)

g1y

f(y)2
≥ c7(1 − y)2m. (23)

On the other hand, for small y there exists a constant c8 > 0 such that

g1y

f(y)2
≥ c8y (24)

It can be shown that this inequality can be extended to the set y ∈ (0, x̃] with the
same x̃ as above (but with smaller c8, possibly), however we do not rely on this
fact.

In order to find constraints on |I2|, |I3| and |I4| it suffices to take just some
summands in the sum in the right-hand part of (21) (and bound all other summands
by zero). The right choice differs for these integrals, and we start with the simpler
case of |I2|.

Inequality 1 − cos y ≥ 2y2/π2 holds for y ∈ [−π, π]. Since t ≤ δ2(n) is small,
for large n a lot of values kt get into this interval and it suffices to sum only over
these k. Namely, we take k ≤ k1(n) =

⌊
ητ−1

n

⌋
where η = min{| log x̃|/(2 log 2), π}.

For these k and n large enough, on the one hand

x k
n = ek log(1−τn) ≥ e−2kτn log 2 ≥ e−| log x̃| = x̃

since log(1 − τ) ≥ −2τ log 2 for τ ∈ [0, 1/2], and on the other hand kt ≤ π for
t ≤ δ2(n). Hence the bound (23) applies and taking y = x k

n and s = kt in (22)
yields

− log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣ ≥ c7(1 − x k
n )2m 2(kt)2

π2
.

It is easier to utilize the Stieltjes integrals instead of summation by parts in this
case and we introduce B(u) = B⌊u⌋ for this purpose. Integration by parts gives

k1∑

k=1

bk(1 − x k
n )2mk2 =

∫ k1+
1
2

1
2

(1 − xu
n )2m u2dB(u)

= (1 − xu
n )2m (u2B(u) − 2B1(u)

)∣∣∣
k1+ 1

2

u= 1
2

− 2m| log xn|
∫ k1+

1
2

1
2

(
u2B(u) − 2B1(u)

)
xu

n (1 − xu
n )2m−1 du

(25)
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where

B1(u) =

∫ u

1
2

vB(v) dv ∼ ℓ(u)uβ+2

β + 2
, u → ∞ .

The first summand

(1 − xu
n )2m (u2B(u) − 2B1(u)

)∣∣∣
k1+

1
2

u= 1
2

∼ β

β + 2

(
1 − e−η

)2m
ℓ(k1)k

β+2

and for m = 0 (25) gives the desired asymptotics. For positive m more work is
needed to show that the difference in the right-hand part of (25) does not vanish and
lower the growth rate. To this end we use the following observation: for any ε > 0
and for large enough k1 inequality u2B(u) − 2B1(u) < (1 + ε)βℓ(k1)k

2+β
1 /(2 + β)

holds for all u ≤ k1 hence

2m| log xn|
∫ k1+

1
2

1
2

(
u2B(u) − 2B1(u)

)
xu

n (1 − xu
n )2m−1 du

= 2m| log xn|
(∫ k1+1

2

1
2

+

∫ k1+
1
2

k1+1
2

)
(
u2B(u) − 2B1(u)

)
xu

n (1 − xu
n )2m−1 du

≤ (1 + ε)2m| log xn|ℓ(k1)

×
(

(k1 + 1)β+2

2β+2

∫ k1+1

2

1
2

+(k1 + 1
2)β+2

∫ k1+
1
2

k1+1
2

)
xu

n (1 − xu
n )2m−1 du

≤ (1 − ε1)
β

β + 2

(
1 − max{x̃, e−π}

)2m
ℓ(k1)k

β+2

for the suitable choice of ε1 > 0. Consequently for t ≤ δ2(n)

−
∞∑

k=1

bk log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣ ≥ c9t
2ℓ(τ−1

n )τ−β−2
n .

It follows that for all t ∈ [δ1(n), δ2(n)] the exponential bound from below on |I2|
holds.

Let us proceed now with I4. Suppose that δ3(n) ≤ t ≤ π. For all k ≥ k2 =⌊
τ−1
n | log x̃| + 1

⌋
the inequality x k

n < x̃ holds and hence bound (24) applies. Thus
for any ε = ε(n) > 0

−
∞∑

k=1

bk log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣ ≥ c10ε

∞∑

k=k2
1−cos kt>ε

bkx
k
n .

The strategy is to add also summands for which 1−cos kt ≤ ε and to choose ε small
enough so that condition (9) guarantees that additional summands do not change
the asymptotics too much. The sum over all k starting from k2 can be bounded
from below by c11τ

−β
n . Take ε = δ3(n)2/4, if 1 − cos kt ≤ ε then there exists j ∈ Z
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such that kt − 2πj ∈ [− arccos(1 − ε), arccos(1 − ε)] and consequently k ∈ K2π/t

(recall definition (8)). Now apply the assumption (9) to see that

c10ε
∞∑

k=k2
1−cos kt>ε

bkx
k
n ≥ c12(1 − χ)ετ−β

n .

If α3 < β/2 the right-hand side of the above inequality grows to ∞ providing a
proper bound for |I4|.

If β > 2 we can take α3 = 1 and still have an exponential bound for |I4|. But
this choice of α3 implies δ2(n) = δ3(n) and I3 = 0. Hence the theorem is proved
for the case β > 2.

If 0 < β ≤ 2 we still have to estimate I3 and we can manage to do it under
additional assumption (10) on ℓ, that is ℓ(k) = θ + O(k−ζ), ζ > 1 − β/2. Choose
α3 such that 1 − ζ < α3 < β/2 and suppose t ∈ [δ2(n), δ3(n)]. In order to estimate
|I3| we consider a sum over k for which 1− cos kt is large enough but x k

n is still not
too small.

To be more precise, let us introduce intervals Ij = [π(6j+1)/(3t), π(6j+5)/(3t)];
k ∈ Ij implies 1 − cos kt > 1/2 for any j. If j > j0 = ⌊| log x̃|t/(2πτn)⌋ + 1 then
for any k ∈ Ij one has x k

n < x̃ and thus inequality (24) applies with y = x k
n . Take

j1 = 2j0. Then

−
∞∑

k=1

bk log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣ ≥
j1∑

j=j0

∑

k∈Ij

2c8x
k
n (1 − cos kt)

≥ c8

j1∑

j=j0

(
Bm1(j) − Bm0(j)

)
xm1(j)

where m0(j) = ⌊π(6j + 1)/(3t)⌋ and m1(j) = ⌊π(6j + 5)/(3t)⌋. Detailed asymp-
totics (10) for Bk implies that

Bm1(j) − Bm0(j) ≥ θ
(
⌊π(6j + 5)/(3t)⌋β − ⌊π(6j + 1)/(3t)⌋β

)
− c13

jβ−ζ

tβ−ζ

≥ c14
jβ−1

tβ
− c13

jβ−ζ

tβ−ζ
= c14

jβ−1

tβ

(
1 − c13

c14
j1−ζtζ

)
.

Since j < j1 ≤ | log x̃|t/(πτn) + 2 and t < τα3
n the expression in brackets above is

bounded from below by 1 − c15τ
α3+ζ−1
n and tends to 1 as n → ∞ by the choice of

α3. At the same time x
m1(j)
n ≥ x̃4 for j < j1. Thus Bm1(j) − Bm0(j) ≥ c16j

β−1t−β

and

−
∞∑

k=1

bk log

∣∣∣∣
f(x k

neikt)

f(x k
n )

∣∣∣∣ ≥ c17j
β
0 t−β ≥ c18τ

−β
n

grows to infinity. This observation finishes the proof.
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Remark. A little more effort allows to prove the local limit theorem for N in the
settings of Lemma 7. It remains to find the exact asymptotics for I1 instead of
providing a lower bound. However we do not need it.

Theorem 8. Let measures µ(n) induce measures in the grand canonical ensemble
such that the decomposition of F in product can be written in form (6) with bk

satisfying (7). Suppose also that for some γ > 0 inequality (16) holds (in particular,
if assumptions of Lemma 7 hold).

In these settings if ρ1 ≥ 1 then measures µ(n) are ergodic with the scaling func-
tion α(n) = 1/(1 − xn) where xn is the solution of equation (14). This choice of
scaling function leads to the limit shape ϕ defined by (12).

Conjecture. If ρ < 1 then the possible choice of the scaling function could be
α(n) ≡ 1 and it leads to the degenerate limit shape ϕ(t) = 1(t ∈ [0, 1]).

Proof. Lemma 5 gives the exponential bound for µx

{
λ :

∣∣ϕ̃x;λ(t) − ϕ(t)
∣∣ > ε

}
.

Evaluation at x = xn taking (15) into account gives

µxn

{
λ :
∣∣ϕ̃xn;λ(t) − ϕ(t)

∣∣ > ε
}
≤ e−n−β/(3(β+1))

. (26)

Let α(n) = αxn . Then for λ ∈ P(n) ϕ̃
(n)
λ (t) ≡ ϕ̃xn;λ(t) and

µ(n)
{

λ :
∣∣ϕ̃(n)

λ (t) − ϕ(t)| > ε
}

=
µxn

({
λ :
∣∣ϕ̃xn;λ(t) − ϕ(t)| > ε

}
∩ P(n)

)

µxnP(n)

≤ µxn

{
λ :
∣∣ϕ̃xn;λ(t) − ϕ(t)| > ε

}

µxnP(n)
.

Inequalities (26) and (16) imply that this probability tends to 0 as n → ∞. Prob-
ability of deviations greater than ε in finite number of points is bounded by the
number of points times the maximal probability of deviation greater than ε and
also tends to 0, proving the ergodicity.

5 Examples

In this section we introduce three examples of families of multiplicative measures.
They are obtained from the well-known measures by distinct deformations. These
deformations can be combined to produce another examples, and also a different
measure can be taken as a starting point.

Weighted partitions

Let us consider the measures µ(n) which are proportional to some constant y > 0 to
the power of the number of summands in partition. It corresponds to the following
decomposition (2) of F :

F (x) =

∞∏

k=1

1

1 − yxk
.
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Similar measures were considered in [19]. If y ≤ 1 the convergence radius ρ1 ≥ 1
and the limit shape is defined by

ϕ(t) =
− log(1 − ye−t)

Li2 y

with scaling α(n) =
√

n/Li2 y where the dilogarithm Li2 y is the normalizing factor.
Taking y = 1 makes all weights equal and leads to the uniform measures on parti-
tions. In this case it is more natural to take symmetric scaling α(n) =

√
n which

leads to the celebrated limit shape for the uniform measure on partitions defined
by

e−cϕ(t) + e−ct = 1, c =
π√
6

,

mentioned in the Introduction.
If y > 1 there is no limit shape in the grand canonical ensemble of partitions: the

distribution of N is asymptotically equivalent to that of R1, so taking scaling αx = 1
leads to the scaled Young diagram close to the rectangle of unit width and random
(asymptotically exponentially distributed) height. In the small canonical ensemble,
however, there is a degenerate ergodicity, as can be easily shown combinatorially.
With the same scaling α(n) = 1 the scaled Young diagram looks like the unit square,
i.e. “almost all” parts in “almost all” partitions are ones, and larger parts do not
comprise notable ratio to the weight, in the asymptotic sense.

Partitions with restricted part sizes

Another possibility is to take bk = 1(k ∈ S) for a certain set S of positive integers.
This choice of bk makes µ(n) the uniform measure on partitions of n with all parts
from S.

The distribution of the number of parts in such partitions has been studied
recently in [8] under some assumptions on growth of Bk. Namely its is shown that
if Bk − ckβ , β ∈ (0, 1), satisfies some additional condition then the number of parts
in a random partition of n behaves like a nondegenerate random variable (explicitly
specified in [8]) multiplied by n1/(1+β). Theorem 6 shows that if just summands
greater than tn1/(β+1) are counted then their number is much less: it is proportional
to nβ/(1+β) and the coefficient converges in probability to a constant (depending
on t). It means that in this case a generic partition has plenty of small summands
which do not contribute a notable part to the whole sum. This is related to a
physical effect known as Bose–Einstein condensation, see [18].

Permutations with marked cycles

As it was mentioned in the Introduction, the uniform measure on permutations
induces a multiplicative measure on partition by considering partition on cycle
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lengths. It is defined by decomposition

F (x) =
1

1 − x
=

∞∏

k=1

exk/k =
∞∏

k=1

(
exk
)1/k

and hence satisfies (6) with bk = 1/k but not (7) since β = 0. Taking different
bk in a form bk = ck/k with integer ck corresponds to marking cycles of length k
in one of ck ways. In particular, taking ck = k can be interpreted as choosing the
first element in each cycle, or, in the other words, making a set of ordered lists
from a permutation. The numbers of such objects is sequence A000262 in [13]. If
one does not insist on a combinatorial interpretation, it is possible to take real ck,
say, ck = θkβ for β, θ > 0. It leads to the fulfillment of the condition (7) (and
even (10)) with ℓ(k) = θ/β + O(k−1). Under this assumptions taking the scaling
function α(n) = (θΓ(β + 1))−1/(β+1)n1/(β+1) leads to the limit shape

ϕ(t) =
Γ(β + 1, t) − te−t

βΓ(β + 1)

where Γ(β, t) =
∫∞
t uβ−1e−udu is the incomplete Gamma function.

If β = θ = 1 (i.e. the measure is induced by the uniform measure on partitions
of the set {1, . . . , n} into ordered lists) the limit shape is the exponent function
(ϕ(t) = e−t) in the scaling α(n) =

√
n. Farther, formally letting β ց 0 and

keeping θ fixed we approach the Poisson–Dirichlet distribution PD(θ). However
the limit shape becomes degenerate (infinity at 0 and zero at t > 0). It reflects the
nonergodicity of the limiting distribution.
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