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ABSTRACTThe model that desribes the internal degrees of freedom of the spinor Bose-Einstein ondensate with dipole-dipole interation is solved up to its eigen-states and eigenvalues. The representation of the Hamiltonian of the modelin terms of generators of su(1, 1) algebra allowed to develop the quantum in-verse method for its investigation. The method of solution provides a generalframework within whih many related problems an similarly be solved.
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1 IntrodutionThe theory of atomi Bose-Einstein ondensates with internal degrees of free-dom is an atively studied problem sine the spin degree of freedom beomesaessible in an optial traps. The novel dynamial e�ets suh as fragmen-tation, spin mixing and entanglement that an exhibit suh systems haveinitiated great interest in the physi beyond the mean-�eld approximation.Beause of the omplexity of suh systems the simpli�ed��toy� models ob-tained under ertain approximations of the original many-body problem playan important role [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄, [8℄.In our paper we study the �toy� model of the spinor ondensate withthe long-range dipole-dipole interations proposed in [5℄. The representationof the dynamial variables of the model as the generators of su(1, 1) algebraallows to imbed the obtained Hamiltonian into the well established sheme ofthe quantum inverse method [9℄ and to solve the model up to its eigenstatesand eigenvalues.The advantage of the disussed approah is that one an simultaneouslysolve a number of models with the di�erent atom-atom interations usingproper bosoni realizations of the su(1, 1) algebra [10℄. The desribed methodallows, as well, to establish onnetion of the onsidered models with the onesof the quantum optis [11℄.This paper is organized as follows. In setion 2 the system of bosoniatoms with the hyper�ne spin F = 1 possessing the dipole interations inaddition to the ontat interations is onsidered and the Hamiltonian writ-ten in terms of the angular momentum operators is obtained. In setion 3di�erent bosoni realizations of the su(1, 1) algebra are used to express theHamiltonian through the generators of algebra. The quantum inverse sat-tering approah is applied to the solution of the model in setions 4 and 5.In setion 7 the model is onsidered in the absene of the dipolar interation.2 Dipolar spinor ondensateBosoni atoms with hyper�ne spin F = 1 and mass M are desribed bythe three omponent vetor �eld ψα(~x) (α = −1, 0, 1) with the omponentssubjet to the spin manifold. These �elds satisfy the bosoni ommutationrelations [ψα(~x), ψ†
β(~x′)] = δαβδ(~x−~x′). The most general form of the Hamil-tonian whih desribes the dynamis of a dilute gas of trapped bosoni atomsat a very low temperatures inluding dipolar interation may be written as[5℄:

H = Hspd +Hdip, (1)2



where the HamiltonianHsp desribes the interation between atoms with the
δ-funtion interation in the external spin-independent trap potential Vext(~x)

Hspd =
∑

α

∫

d3xψ†
α(~x)

(

− ~2

2M
∇2 + Vext(~x)

)

ψα(~x)

+

∫

d3x :
{c0

2
N̂2(~x) +

c2
2

S(~x) · S(~x)
}

:, (2)and the Hamiltonian for the dipole-dipole interations Hdip reads
Hdip =

cd
2

∫

d3x1

∫

d3x2
1

|~x1 − ~x2|3
× : {S(~x1) · S(~x2) − 3Sz(~x1)S

z(~x2)} : . (3)It is supposed that the symmetry axis of the ondensate is hosen to be alongthe quantization axis, z, and cd is the oe�ient of the dipolar interation.The symbol :: in these expressions denotes a normal ordering whih plaesthe annihilation operators to the right of reation ones.The spin-exhange term in (2) with the interation parameter c2 is equalto
S(~x) · S(~x) = Sz(~x)Sz(~x) +

1

2
S+(~x)S−(~x) +

1

2
S−(~x)S+(~x), (4)where the spin density operators Sm(~x) are a pseudo-boson representationsof the spin matrix

Sm(~x) =
∑

α,β

ψ†
α(~x)Fm

αβψβ(~x), (5)and Fm
αβ being the matrix elements of the 3 × 3 spin-1 matries:

F z =





1 0 0
0 0 0
0 0 −1



 , F+ =
√

2





0 1 0
0 0 1
0 0 0



 , F+ =
√

2





0 0 0
1 0 0
0 1 0



 .The density operator N̂(~x) entering the density-density interation term in2 is a pseudo-boson representation of the 3 × 3 unity matrix
N(~x) =

∑

α,β

ψ†
α(~x)δαβψβ(~x). (6)It should be mentioned that the Hamiltonian (1) is invariant with respet toexhange ψ1(~x) ↔ ψ−1(~x), ψ†

1(~x) ↔ ψ†
−1(~x).The spin density operators Sm(~x) (5) satisfy ommutation relations

[S+(~x), S−(~x′)] = 2Sz(~x)δ(~x− ~x′),

[Sz(~x), S±(~x′)] = ±S±(~x)δ(~x− ~x′), (7)3



and ommute with the density operator (6)
[N(~x), Sz(~x′)] = [N(~x), S±(~x′)] = 0 (8)The operators of the total spin
Sm =

∫

Sm(~x)d3x, m = z,±1, (9)obey the standard ommutation relations of su(2) algebra
[S+, S−] = 2Sz, [Sz, S±] = ±S±. (10)It is easy to hek that both the total number of atoms

N̂ =

∫

N(~x)d3x, (11)and the z-omponent of the total spin (9) ommute with the Hamiltonian(1) and are therefore the integrals of motion.It is assumed [5℄ that the density-density interation part is strong om-pared with the spin and the dipolar parts c0 ≫ |c2| ≫ cd. This allows to usethe single mode approximation [1℄, [2℄ representing the �eld operators as
ψα(~x) ∼ aαφ(~x),

ψ†
α(~x) ∼ a†αφ̄(~x) , α = ±1, 0; (12)where aα, a

†
α are annihilation, reation operators assoiated with the spinmode satisfying usual ommutation relations [aα, a

†
β] = δαβ , and φ(~x) is thespin-independent ground-state wave funtion of the symmetri Hamiltonian

Hsym =
∑

α

∫

d3xψ†
α(~x)

(

− ~2

2M
∇2 + Vext(~x)

)

ψα(~x) +
c0
2

∫

d3x : N2(~x) : .(13)The funtion φ(~x), normalized as ∫

|φ(~x)|2d3x = 1, is determined from theextremum ondition
δ

δφ(~x)
〈N |Hsym − µ

∫

d3xN(~x)|N〉 = 0in the setor with the �xed number of partiles. The Fok number state is
|N〉 ≡ |N1, N0, N−1〉, where Nα are the oupation numbers of the orrespon-dent spin modes: a†αaα|N〉 = Nα|N〉, and µ is the hemial potential. Thisondition leads to the Gross-Pitaevskii equation

(

− ~2

2M
∇2 + Vext(~x)

)

φ(~x) + c0N |φ(~x)|2φ(~x) = µφ(~x). (14)4



Under the single mode approximation the Hamiltonian (1) will take theform
H = µN̂− :

{

g0N̂
2 − g2S

2 + gd

(

S
2 − 3(Sz)2

)

}

: (15)
= µN̂ − g0N̂(N̂ − 1) + g2(S

2 − 2N̂) − gd

(

S
2 − 3(Sz)2 + N̂ − 3a†0a0

)

.Here g0, g2, gd are renormalized oupling onstants 2gi = ci
∫

|φ(~x)|4d3x, (i =
0, 2); 4gd = cd

∫

d3x1d
3x2|φ(~x1)|2|φ(~x2)|2(1 − cos2 θ)/|~x1 − ~x2|3 with θ beingthe polar angle of (~x1 − ~x2). The total spin operators (9) are now

S+ =
√

2
(

a†1a0 + a†0a−1

)

, S− = (S+)†,

Sz =
(

a†1a1 − a†−1a−1

)

. (16)In (15) S
2 is the squared total angular momentum operator

S
2 = (Sz)2 +

1

2
(S+S− + S−S+), (17)whih is the Casimir operator of su(2) ommuting with all total spin opera-tors Sm (16).The number operator

N̂ = a†1a1 + a†−1a−1 + a†0a0. (18)ommutes with the Hamiltonian (15), so we may drop the terms depending onthe number operator in (15) responsible for the density-density interationsand study the spin part of the model only [5℄
Hsd = (g2 − gd)S

2 + 3gd

(

(Sz)2 + a†0a0

)

. (19)3 Dipolar spinor ondensate as the su(1, 1) mod-elTo solve the model for its eigenstates and eigenvalues it is onvenient toexpress Hamiltonian (19) in terms of generators of su(1, 1) algebra. The gen-erators of this algebra satisfy ommutation relations
[K0,K±] = ±K±, [K+,K−] = −2K0. (20)The Casimir invariant of su(1, 1) is given by
K2 = (K0)2 − 1

2

(

K+K− + K−K+
)

. (21)5



There are several representations of su(1, 1). Our interest will be on�ned tothe representations based on the usual bosoni operators.The two-mode boson realization of this algebra is
K0 =

1

2
(a†1a1 + a†−1a−1 + 1),

K+ = a†1a
†
−1 , K− = a1a−1 . (22)The Casimir operator for this realization an be written as

K2
K =

1

4
(∆2 − 1),

∆ = a†1a1 − a†−1a−1. (23)From (16) it follows that the operator ∆ is equal to the z-omponent of thetotal spin ∆ ≡ Sz. Obviously, ∆ ommutes with all the operators in (22) andthus the population di�erene in the spin modes with α = ±1 must di�er bysome �xed amount, the eigenvalue of ∆. We denote this eigenvalue as m andwithout loss of generality we take m to be a positive integer.For a single-mode boson �eld the su(1, 1) algebra is realized by the oper-ators
B0 =

1

2
a†0a0 +

1

4
,

B+ = −1

2
(a†0)

2 , B− = −1

2
(a0)

2. (24)The Casimir operator for this realization takes on the value
K2

B = −3/16. (25)Expressed in terms of su(1, 1) generators the number operator (18) willtake the form
N̂ = 2(B0 +K0) − 3

2
, (26)while the squared momentum operator (17) will be equal to

S
2 = 4

{

1

4
(∆2 − 1) + 2B0K0 − B+K− − B−K+

}

. (27)The model Hamiltonian (19) �nally reads
Hsd = 4(g2 − gd)

{

2Ho +
∆2 − 1

4
− (∆2 − 1

2
)δ

} (28)6



with
2Ho = 2B0K0 −B+K− −B−K+ − 2δB0, (29)where δ = −3

4
g

1−g
, and g = gd/g2. Comparing equations (27) and (28) one�nds that squared momentum operator S

2 is equal to the Hamiltonian ofdipole-dipole interation (19), (28) Hsd in the absene of the dipole-dipoleinteration gd = 0:
S

2 =
1

g2
Hsd |δ=0≡

1

g2
Hsp. (30)The most obvious onserved quantities of the Hamiltonian (28), and re-spetively of (19), are the total number of partiles and the population dif-ferene in the modes with the opposite spins (the z-omponent of the totalspin):

[Hsd, N̂ ] = [Hsd,∆] = 0. (31)The ommutativity of the Hamiltonian with the Casimir operator (25)
[Hsd,K2

B] = 0, (32)means that the parity of the number of partiles in the spin mode with α = 0is the onserved quantity as well. These onservation laws follow diretlyfrom the fat that the Hamiltonian desribes the reation and annihilationof bosoni atoms in pairs.4 su(1, 1) loop algebra and the integrals of mo-tionTo apply algebrai Bethe ansatz to the solution of the model de�ned by theHamiltonian (28) let us de�ne the operators whih will play the ruial rolein our approah:
X0(λ) =

B0

δ − λ
− K0

λ
+ 1 ,

X±(λ) =
B±

δ − λ
− K±

λ
. (33)We shall show that the model Hamiltonian (28) and its eigenvetors may beonstruted with the help of these operators. In (33) λ is a omplex variablewhile δ is a onstant de�ned in the previous Setion.

7



The operators (33) satisfy the following ommutation relations:
[X+(λ), X−(µ)] = − 2

λ− µ

(

X0(λ) −X0(µ)
)

,

[X0(λ), X±(µ)] = ± 1

λ− µ

(

X±(λ) −X±(µ)
)

, (34)
[X+(λ), X+(µ)] = [X−(λ), X−(µ)] = [X0(λ), X0(µ)] = 0.These equalities are heked by applying the ommutation relations of oper-ators (22), (24) and the equality

1

(ǫ− λ)(ǫ− µ)
=

1

λ− µ

(

1

ǫ− λ
− 1

ǫ− µ

)

. (35)Algebra (34) is known as su(1, 1) loop algebra.By the analogy with the Casimir operator (21) we introdue a family ofoperators depending on the arbitrary omplex number λ :

t(λ) =
(

X0(λ)
)2 − 1

2

(

X+(λ)X−(λ) +X−(λ)X+(λ)
)

. (36)The most important property of this operators is that they ommute for thearbitrary omplex numbers λ, µ:
[t(λ), t(µ)] = 0. (37)This property is heked by the diret alulation with the help of the ommu-tation relations (34). The operator t(λ) may be onsidered as the generatingfuntion of the integrals of motion.Substituting (33) into (36) we have

t(λ) = 1 +

(

B0

δ − λ

)2

+

(

K0

λ

)2

− B+B− +B−B+

2(δ − λ)2
− K+K− +K+K−

2λ2

−2K0

λ
+

2B0

δ − λ
− 2B0

(δ − λ)

K0

λ
(38)

+
B+

(δ − λ)

K−

λ
+

B−

(δ − λ)

K+

λ
.The oe�ient at the simple pole of this expressions when λ = δ is equal to

Res|λ=δt(λ) = 2B0 − 1

δ

{

2B0K0 −B+K+ −B−K−
}

, (39)and we have the following expression for the Hamiltonian (29)
2Ho = −δRes|λ=δt(λ).8



The Casimir operators (23) and (25) are the oe�ients at the poles of theseond order in (38), so for the Hamiltonian (28) we have
Hsd = 4(g2 − gd)

{

−δRes|λ=δt(λ) +
∆2 − 1

4
− (∆2 − 1

2
)δ

}

, (40)From (38) and (37) it follows that
[t(λ), Hsd] = [t(λ), N ] = [t(λ),∆] = [t(λ),K2

B] = 0. (41)Knowing the eigenvetors and eigenvalues of the generating operator t(λ)(36) we may �nd the eigenenergies of the Hamiltonian Hsd (28) applying theequation (40).5 Solution of the modelTo develop the algebrai sheme of the diagonalization of the generating fun-tion t(λ) (36) �rst we have to remind that the basis of the unitary irreduiblerepresentation of the su(1, 1) algebra is formed by the eigenvetors |n〉ν ofoperator K0 and Casimir operator K2:
K0|n〉ν = (n + ν)|n〉ν ,
K2|n〉ν = ν(ν − 1)|n〉ν , (42)where ν is the so-alled Bargmann index. The operators K± at as the ris-ing and lowering operators, respetively, on the eigenstates of K0. The non-normalized states |n〉ν may be onstruted by the suessive ation of oper-ator K+ from the generating vetor |0〉ν de�ned by the equation

K−|0〉ν = 0. (43)These states are equal to
|n〉ν =

(

K+
)n |0〉ν. (44)The representation spae of the two-mode realization (22,23) of the su(1, 1)algebra onsists of two-mode Fok states whih are the diret produt of thenumber states of spin modes with α = ±1. The generating vetor of thisrealization is de�ned by the equation

K−|0〉ν2
= 0. (45)9



We may hoose |0〉ν2
≡ |m〉(1) ⊗ |0〉(−1) either |0〉ν2

≡ |0〉(1) ⊗ |m〉(−1), (m =
0, 1, ...) .The Bargmann index of this realization is ν2 = m+1

2
. It follows from(22) that these states are the eigenstates of the operator ∆:

∆|0〉ν2
= αm|0〉ν2

. (46)The representation spae in the single-mode realization (24) is deom-posed into the diret sum of two irreduible omponents spanned by thestates |2n+ s〉 with an even number of partiles (s = 0) or by the states withan odd number of partiles (s = 1). The Bargmann index of this realizationis ν1 = 2s+1
4

and the generating vetor (43) is de�ned by the equation
B−|0〉ν1

= 0. (47)The spae with ν1 = 1
4
(s = 0) is built from the Fok vauum |0〉ν1

≡ |0〉(0),and the spae with ν1 = 3
4
(s = 1) is built from the one partile state

|0〉ν1
≡ |1〉(0) respetively. The generating spae satis�es the relation

B0|0〉ν1
=

2s+ 1

4
|0〉ν1

(48)From the de�nition of the operators X±(λ), X0(λ) (33) and the numberoperator N̂ (26) it follows that
N̂X±(λ) = X±(λ)

(

N̂ ± 2
)

, (49)and
N̂X0(λ) = X0(λ)N̂. (50)So X±(λ) ats as a reation (annihilation) operator of the pair of bosonquasi-partiles.The state whih is the diret produt of the generating states (47) and(45)
|Ω〉 = |0〉ν1

⊗ |0〉ν2
, (51)whih we shall all the vauum state, satis�es the following equations

X−(λ)|Ω〉 = 0, (52)
X0(λ)|Ω〉 = x(λ)|Ω〉,where the vauum eigenvalue of the X0(λ) operator is equal to:
x(λ) = 1 +

ν1

δ − λ
− ν2

λ
, (53)10



where ν1, ν2 are the Bargmann indies of a single- and two-mode representa-tions respetively. The vauum state is an eigenstate of the number operator(26)
N̂ |Ω〉 = (s+m)|Ω〉, (54)and of the z-omponent of the total spin

∆|Ω〉 = αm|Ω〉. (55)It is easy to verify that the vauum state (51) is an eigenvetor of the gener-ating funtion t(λ)
t(λ)|Ω〉 = k(λ)|Ω〉, (56)with the eigenvalue

k(λ) =

(

1 +
ν1

δ − λ
− ν2

λ

)2

− ν1

(δ − λ)2
− ν2

λ2
. (57)Due to the onservation laws (41) the eigenvetors of the generating oper-ator t(λ) depend on the total number of partiles in the system N , the value

m of the absolute value of the z-omponent of the total spin, and the parity
s of the α = 0 spin mode. We shall look for these eigenvetors in the form ofthe Bethe vetors

|ΦN,m,s(λ1, λ2, ..., λNp
)〉 =

Np
∏

j=1

X+(λj)|Ω〉. (58)Due to (49), the number of partiles in this state is
N̂ |ΦN,m,s(λ1, λ2, ..., λNp

)〉 = N |ΦN,m,s(λ1, λ2, ..., λNp
)〉,

N ≡ 2Np + s+m, (59)and the number of operators X+(λ) in the produt (58), whih orrespondsto a number of pairs of the boson quasi-partiles in the system, is equal to
2Np = N −m− s. The state (58) learly satis�es the relations

∆|ΦN,m,s(λ1, λ2, ..., λNp
)〉 = αm|ΦN,m,s(λ1, λ2, ..., λNp

)〉, (60)
(−1)N̂−|∆||ΦN,m,s(λ1, λ2, ..., λNp

)〉 = (−1)s|ΦN,m,s(λ1, λ2, ..., λNp
)〉.For a given number of partiles N , the possible values of quantum numbers

m and s are 0 ≤ m+ s ≤ N .The vetors (58) are the eigenvalues of t(λ) if parameters λj satisfy Betheequations
1 +

ν1

δ − λj

− ν2

λj

=

Np
∑

l 6=j

1

λj − λl

; j = 1, ..., Np. (61)11



We shall show in the Appendix that there are Np+1 sets {

λσ
j

}Np

j=1
of solutionsof these Np equations (σ = 1, 2, ..., Np + 1). They are real, λj ∈ R, positive,all di�erent and not equal to δ and 0.The N-partile eigenvalues Θσ

N,m,s(µ) of the generating funtion t(µ) (36)are equal to
Θσ

N,m,s(µ) = k(µ) −
Np
∑

j=1

2ν1

(δ − µ)(δ − λσ
j )

−
Np
∑

j=1

2ν2

µλσ
j

, (62)with k(µ) given by the relation (57), and λσ
j ∈

{

λσ
j

}Np

j=1
.From the equation (40) it follows that the N-partile eigenenergies of theHamiltonian Hsd (28) with the �xed value of the third spin omponent mand parity s are equal to

1

4(g2 − gd)
Eσ

N,m,s = −δRes|µ=δΘ
σ
N,m,s(µ) +

m2 − 1

4
− (m2 − 1

2
)δ.The substitution of (62) into this expression gives

1

4(g2 − gd)
Eσ

N,m,s = −2δν1 + 2ν1ν2 +

Np
∑

j=1

2ν1δ

δ − λσ
j

+
m2 − 1

4
− (m2 − 1

2
)δ

=
1

4
(m+ 1)(m+ 2s) − δ(m2 + s) +

Np
∑

j=1

2ν1δ

δ − λσ
j

(63)where λj are the solutions of Bethe equations (61), and the de�nitions 2ν2 =
m − 1, 4ν1 = 2s + 1 were used. The equality (m + 1)(m + 2s) = (N −
2Np +1)(N − 2Np) is valid for s = 0, 1 and the alternative expression for theeigenenergy is

1

4(g2 − gd)
Eσ

N,m,s =
1

4
[N(N + 1) − 2Np(2N − 2Np + 1)]

−δ [N − 2Np +m(m− 1)] +

Np
∑

j=1

2ν1δ

δ − λσ
jThe other expression for the eigenenergies might be obtained in the followingway. Multiplying the equation (61) by λj and then summing up it by j oneobtains

Np
∑

j=1

λj +

Np
∑

j=1

ν1λj

δ − λj

−Npν2 =
1

2
Np(Np − 1), (64)12



with the help of the following relation
Np
∑

j=1

Np
∑

i6=j

λj

λj − λi

=
1

2
Np(Np − 1).The seond term in (64) is expressed as

Np
∑

j=1

ν1λj

δ − λj

=

Np
∑

j=1

ν1δ

δ − λj

− ν1Np.And �nally
Np
∑

j=1

2ν1δ

δ − λj

= Np (Np − 1 + 2ν1 + 2ν2) − 2

Np
∑

j=1

λj

= Np

(

Np + s+m+
1

2

)

− 2

Np
∑

j=1

λj

= Np

(

N −Np +
1

2

)

− 2

Np
∑

j=1

λj (65)So the eigenenergies of the Hamiltonian (28) may be written in the form
1

4(g2 − gd)
Eσ

N,m,s = −(s+m2)δ +
1

4
(m+ 1)(m+ 2s)

+
1

4
(N −m− s)(N +m+ s+

1

2
) − 2

Np
∑

j=1

λσ
j

= −δ [N − 2Np +m(m− 1)] +
1

4
N(N + 1) − 2

Np
∑

j=1

λσ
j . (66)The eigenenergies EN,m,s are real numbers, and the solutions of Bethe equa-tions (61) λj may be interpreted as the energies of the boson pairs.In order to study the behavior of the solutions of Bethe equations (61)it is reasonable to onsider the polynomials de�ned by the solution of thisequation

P (λ) = C

Np
∏

j=1

(λσ
j − λ), (67)13



where C−1 =
∏Np

j=1 λ
σ
j . This polynomial satis�es the seond order di�erentialequation

P ′′(λ) − 2x(λ)P ′(λ) + 2
N

∑

j=1

x(λ) − x(λj)

λ− λj

P (λ) = 0, (68)where x(λ) is the vauum eigenvalue (53) of the X0(λ) operator. The substi-tution of (53) into this expression together with the equalities (65) and (66)gives the equation
λ(δ − λ)P ′′(λ) − 2 [λ(δ − λ) + ν1λ− ν2(δ − λ)]P ′(λ)

+
[

Eσ
N,m,s + 2(δ − λ)Np

]

P (λ) = 0 (69)where
Eσ

N,m,s =
1

4(g2 − gd)
Eσ

N,m,s + (s+m2)δ − 1

4
(m+ 1)(m+ 2s).The alternative formulation of an eigenvalue problem for the Hamiltonian(28) is the following: the eigenenergies EN,m,s are de�ned by the onditionthat the equation (69) has the polynomial solution of the degree Np withoutmultiple zeros.6 Spinor ondensateIn the absene of the dipolar interation the Hamiltonian of the model is(30):

Hsp = g2S
2, (70)where S

2 is the squared total angular momentum operator (17).The operators
X± = B± +K± ≡ −λX±(λ), (71)
X0 = B0 +K0 ≡ λ− λX0(λ),where X±(λ), X0(λ) are (33) with δ = 0, satisfy the su(1, 1) algebra ommu-tation relations and generate the tensor produt group SU(1, 1) ⊗ SU(1, 1)[12℄. The Casimir operator of this group is

K2
X = (X0)2 − 1

2

(

X+X− +X−X+
) (72)

= Ho + K2
B + K2

K ,14



where Ho is (29) with δ = 0. Sine Casimir operator ommutes with theoperators (71) the Hamiltonian
Hsp = 4g2(K2

X −K2
B) (73)possess the symmetry

[Hsp, X
±] = [Hsp, X

0] = 0. (74)In the ase under onsideration the generating funtion (36) is equal to t(λ) =
λ2(K2

X + 1 − 2X0), and thus t(λ) does not possess the symmetry relations(74).The basis of the SU(1, 1) ⊗ SU(1, 1) representation we shall denote as
|n〉ν , while the basis states of the two- and single-mode representations as
|n2〉ν2

and |n1〉ν1
respetively. Aording to (42) we have

X0|n〉ν = (n+ ν)|n〉ν , (75)
K2

X |n〉ν = ν(ν − 1)|n〉ν ,and the generating vetor of the representation |0〉ν satisfy
K−

X |0〉ν = 0. (76)The tensor produt of two representations D(ν1) and D(ν2) redues to thesum of irreduible representations aording to the SU(1, 1) Clebsh-Gordondeomposition
D(ν1) ⊗D(ν2) =

∞
∑

l=0

D(ν1+ν2+l), (77)where ν1 + ν2 + l ≡ ν is the Bargmann index of the orrespondent represen-tation.We an look for the non-normalized generating vetor |0〉ν in the form
|0〉ν =

l
∑

k=0

Al
k(K

+)k(B+)l−k|0〉ν2
⊗ |0〉ν1

. (78)From (76) it follows that the oe�ients satisfy the reurrent relation
Al

k+1(2ν2 + k)(k + 1) + Al
k(2ν1 + l − k − 1)(l − k) = 0,with Al

0 = 1, and are equal to
Al

k = (−1)kCk
l

k−1
∏

p=0

2ν1 + l − 1 − p

2ν2 + p
, (79)15



where the binomial oe�ient Ck
l = l!

(l−k)!k!
.The states |n〉ν are generated from the vauum vetor (78) aording to

(X+)n|0〉ν = |n〉ν . (80)The number of partiles in the state |n; ν〉, as it follows from (75), are equalto
N̂ |n〉ν =

(

2X0 − 3

2

)

|n〉ν =

(

2(n + v1 + ν2 + l) − 3

2

)

|n〉ν (81)
= (2(n+ l) +m+ s) |n〉ν .For the �xed number of pairs of partiles Np = n + l the index l takes thevalues l = 0, 1, ..., Np.From (73) it follows that the eigenvalues of the Hamiltonian

Hsp|n〉ν = El
n,ν,ν1

|n〉ν (82)are equal to
El

n,ν,ν1
= 4g2 (ν(ν − 1) − ν1(ν1 − 1)) (83)
= 4g2 (ν2(ν2 − 1) + l(l − 1) + 2ν1ν2 + 2l(ν1 + ν2)) .Unlike the model with the dipole interation with δ 6= 0 the onsideredase is degenerate and in the setor with the �xed number of partiles N wehave the set of the vauum states (78) |0; ν1 + ν2 + l〉 with l = 0, 1, ..., (N −

m− s)/2.For the �xed number of partiles N in a system (N = 2(n+ l) +m+ s)the energy (83) is equal to:
El

n,ν,ν1
= g2 [N(N + 1) − 2n(2N + 1 − 2n)] . (84)The ground state of the model is de�ned by the sign of the interationonstant g2. In the antiferromagneti ase g2 > 0 the ground state is de�nedby the ondition l = 0 and 2n = N − s and is equal to

|G〉AF = (X+)
N−s

2 |0〉ν , (85)
|0〉ν = |s〉(0) ⊗ |0〉(1) ⊗ |0〉(−1).where s = 0, 1 depending on the parity of N . From (84) it follows that theeigenenergy of the ground state is zero: EAF = 0.16



In the onsidered ase the solutions of Bethe equations are the energiesof the boson pairs in the ground state. When δ = 0 the equation (61) for theground state has the form
1 − 2s+ 3

4λj

=

Np
∑

l 6=j

1

λj − λl

; j = 1, ..., Np, (86)and is the equation on the zeros of the Lagerr polynomialP (λ) = LN (2λ; 2s−1
4

).The solution of this equation is unique and λj are all di�erent and positive:
λj > 0.When α > −1 for the big values of N the asymptotis of Lagerr polyno-mials is

LN (2x;α) ∼ π− 1

2 exx−
α
2
− 1

4N
α
2
− 1

4 cos
{

2
√

2Nx− π

4
(2α+ 1)

}

.From this expression it follows that the energies of the boson pairs in theground state behave like
λj =

1

N

π2

32

{

2j +
s− 3

2

}2

, j = 1, 2, . . . , N.For the ferromagneti ase g2 < 0 the ground state is de�ned by theondition n = 0. The eigenenergy of the state is
EF = g2N(N + 1). (87)The ground state vetors are given by the expression (78) with m and lonneted by the equality 2l + m + s = N , and the state is 2N + 1 folddegenerate.7 ConlusionThe model disussed in this paper belongs to a lass of the integrable so-alledpairing models introdued into the theory of Bose-Einstein ondensation byRihardson [13℄. The algebrai approah to the solution of suh systems wasdeveloped by Gaudin [14℄.The knowledge of the eigenfuntions of the model allows to study the spinmixing dynamis and the quantum phases of the spinor Bose gas with thedipole-dipole interation in details. We hope to report further results in thisonnetion elsewhere.This work was supported by RFBR projet 07-01-00358.17



8 AppendixThe Bethe equations (61) belong to the type of harateristi equations ap-pearing in the theory of ellipsoidal harmoni funtions. To prove that thesolutions λj of Bethe equations (61)
1 +

ν1

δ − λj

− ν2

λj

=

Np
∑

l 6=j

1

λj − λl

; j = 1, ..., Np.are real numbers: λj ∈ R let us onsider the funtion
Fj(λ) = 1 +

ν0

δ − λ
− ν2

λ
−

Np
∑

l 6=j

1

λ− λl

.The zeros of this funtion are the solutions of Bethe equations Fj(λj) = 0. If
λj ∈ C , then the omplex onjugated solutions satisfy the equation F ∗

j (λj) =
0. So

Np
∑

j=1

(λj − λ∗j )
(

Fj(λj) − F ∗
j (λj)

)

≡ 0. (88)From the equality
∑

j 6=l

uj(uj − ul) =
1

2

∑

j 6=l

(uj − ul)
2,it follows that

∑

j 6=l

(λj − λ∗j )

{

1

λj − λl

− 1

λ∗j − λ∗l

}

= −
∑

j 6=l

(λj − λ∗j)
(λj − λ∗j ) − (λl − λ∗l )

|λj − λ∗l |2
=

−
∑

j 6=l

(

(λj − λ∗j) − (λl − λ∗l )
)2

|λj − λ∗l |2
.We also have

∑

j

(λj−λ∗j)
{

ν0

δ − λj

− ν2

λj

− ν0

δ − λ∗j
+
ν2

λ∗j

}

=
∑

j

(λj−λ∗j )2

{

ν0

|δ − λj |2
+

ν2

|λj|2
}

.Finally, the equality (88) will take the form
∑

j

(λj − λ∗j )
2

{

ν0

|δ − λj|2
+

ν2

|λj|2
}

+
∑

j 6=l

(

(λj − λ∗j) − (λl − λ∗l )
)2

|λj − λ∗l |2
≡ 0,18



and hene λj = λ∗j .The solutions of Bethe equations λj 6= 0, δ. It may be proved in a standardway [15℄ with a help of di�erential equation (69). Really if one of the roots
λj = 0 or λj = δ then P ′(λj) = 0 and from (69) it follows that all higherderivatives must be equal to zero at the same points, but it is not true. Inthe same way it may be proved that there are no multiple zeros. It may beproved that 0 < λj < δ, j = 1, ..., Np.To prove that there are Np+1 sets {

λσ
j

}Np

j=1
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