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ABSTRACT

The model that describes the internal degrees of freedom of the spinor Bose-
Einstein condensate with dipole-dipole interaction is solved up to its eigen-
states and eigenvalues. The representation of the Hamiltonian of the model
in terms of generators of su(1, 1) algebra allowed to develop the quantum in-
verse method for its investigation. The method of solution provides a general
framework within which many related problems can similarly be solved.
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1 Introduction

The theory of atomic Bose-Einstein condensates with internal degrees of free-
dom is an actively studied problem since the spin degree of freedom becomes
accessible in an optical traps. The novel dynamical effects such as fragmen-
tation, spin mixing and entanglement that can exhibit such systems have
initiated great interest in the physic beyond the mean-field approximation.
Because of the complexity of such systems the simplified—"toy” models ob-
tained under certain approximations of the original many-body problem play
an important role [1], [2], [3], [4], [5], [6], [7], [8]-

In our paper we study the "toy” model of the spinor condensate with
the long-range dipole-dipole interactions proposed in [5]. The representation
of the dynamical variables of the model as the generators of su(1, 1) algebra
allows to imbed the obtained Hamiltonian into the well established scheme of
the quantum inverse method [9] and to solve the model up to its eigenstates
and eigenvalues.

The advantage of the discussed approach is that one can simultaneously
solve a number of models with the different atom-atom interactions using
proper bosonic realizations of the su(1, 1) algebra [10]. The described method
allows, as well, to establish connection of the considered models with the ones
of the quantum optics [11].

This paper is organized as follows. In section 2 the system of bosonic
atoms with the hyperfine spin F' = 1 possessing the dipole interactions in
addition to the contact interactions is considered and the Hamiltonian writ-
ten in terms of the angular momentum operators is obtained. In section 3
different bosonic realizations of the su(1,1) algebra are used to express the
Hamiltonian through the generators of algebra. The quantum inverse scat-
tering approach is applied to the solution of the model in sections 4 and 5.
In section 7 the model is considered in the absence of the dipolar interaction.

2 Dipolar spinor condensate

Bosonic atoms with hyperfine spin /' = 1 and mass M are described by
the three component vector field ¢, (%) (o = —1,0,1) with the components
subject to the spin manifold. These fields satisfy the bosonic commutation
relations [1), (%), w;(f’)] = 0030 (Z — @"). The most general form of the Hamil-
tonian which describes the dynamics of a dilute gas of trapped bosonic atoms
at a very low temperatures including dipolar interaction may be written as
[5]:

H = Hgypq + Hgp, (1)



where the Hamiltonian H,, describes the interaction between atoms with the
d-function interaction in the external spin-independent trap potential V(%)

=% [ i@ (g Vel )
+/d3x : {§N2(f)+58(5)-sw)};, 2)

and the Hamiltonian for the dipole-dipole interactions Hg;, reads

Cd 3 3
Hdip = /d l’l/d l'2|x 7 |3
17— &2

x o {S(Z) - S(#y) — 35%(41)S*(#2)} - . (3)

It is supposed that the symmetry axis of the condensate is chosen to be along
the quantization axis, z, and ¢y is the coefficient of the dipolar interaction.
The symbol :: in these expressions denotes a normal ordering which places
the annihilation operators to the right of creation ones.

The spin-exchange term in (2) with the interaction parameter ¢; is equal
to

S(7) - S(7) = S*(2)5°(7) + 5 5*( )S(f)+%5(f)5+(f), (4)

where the spin density operators Sm( 7) are a pseudo-boson representations

of the spin matrix
T =) @ Fs(), (5)
a’ﬂ

and F75 being the matrix elements of the 3 x 3 spin-1 matrices:

0
0 |, Ft=v2

1
F* =10
0 -1

o O O
o O O

1 000
0 L, Fr=v211 0 0
0 010

O = O

The density operator N (Z) entering the density-density interaction term in
2 is a pseudo-boson representation of the 3 x 3 unity matrix

ZW dag (L) (6)

It should be mentioned that the Hamﬂtonian (1) is invariant with respect to
exchange $1(7) < ¥_1(7), ¥](7) = v, (7).
The spin density operators S™ (¥ ) ( ) satisfy commutation relations
[S7(Z),57(@)] = 257(2)o(F — 1),
[5*(@), SH(7)] = £SH(D)o(F - T, (7)



and commute with the density operator (6)
[N(), 5*(&")] = [N(&), S*(7)] = 0 (8)

The operators of the total spin
S = /Sm(f)dgx, m =z, =+1, 9)

obey the standard commutation relations of su(2) algebra
[ST,S7] =287, [S%,SF] = £5%. (10)

It is easy to check that both the total number of atoms

N = / N(#)ds, (1)

and the z-component of the total spin (9) commute with the Hamiltonian
(1) and are therefore the integrals of motion.

It is assumed [5] that the density-density interaction part is strong com-
pared with the spin and the dipolar parts ¢y > |ca| > ¢4. This allows to use
the single mode approximation [1], [2] representing the field operators as

Va(Z) ~ a.0(@),
VL(E) ~ al¢(T),a==£1,0; (12)

where a,,al are annihilation, creation operators associated with the spin
mode satisfying usual commutation relations [a,, a;] = 0ap, and ¢(7) is the
spin-independent ground-state wave function of the symmetric Hamiltonian

Hopm = Z/dw (——v2+vm< >)wa<> © [ v

(13)
The function ¢(Z), normalized as [ |¢(Z)[*d*z = 1, is determined from the
extremum condition

5
56(7)

in the sector with the fixed number of particles. The Fock number state is
|N) = | N1, No, N_1), where N, are the occupation numbers of the correspon-
dent spin modes: ala,|N) = N,|N), and p is the chemical potential. This
condition leads to the Gross-Pitaevskii equation

(Vo = o [ 2N @IN) =0

C%WM%MOW>HWWNM)/Mﬂ (14)
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Under the single mode approximation the Hamiltonian (1) will take the
form

H = uN—: {goN2 — 928° + g4 (S — 3(52)2)} : (15)
— uN = goN(N — 1) + 2(S? — 2N) — g4 (s2 —3(S%)2+ N — 3agao) .

Here go, g2, gq are renormalized coupling constants 2g; = ¢; [ |¢(Z)[*d*x, (i =
0,2); 494 = cq | Px1d®zo|d(Z1)[*|9(@2)[*(1 — cos? 0) /|71 — @o|* with 6 being
the polar angle of (#; — #3). The total spin operators (9) are now

st = V2 (aag+aar), S = (57,
S* = (aJ{al — aT_la,1> . (16)
In (15) S? is the squared total angular momentum operator
S? = (S7)% + %(S*S + 8751, (17)

which is the Casimir operator of su(2) commuting with all total spin opera-
tors S™ (16).
The number operator

N =ala; +a'a_y + ala,. (18)

commutes with the Hamiltonian (15), so we may drop the terms depending on
the number operator in (15) responsible for the density-density interactions
and study the spin part of the model only [5]

Hyq= (g2 — gd)82 + 394 ((SZ)2 + a$a0> ) (19)

3 Dipolar spinor condensate as the su(1, 1) mod-
el

To solve the model for its eigenstates and eigenvalues it is convenient to
express Hamiltonian (19) in terms of generators of su(1, 1) algebra. The gen-
erators of this algebra satisfy commutation relations

(KO, KF] = K=, [KT, K] = —2K°. (20)
The Casimir invariant of su(1,1) is given by

K2 — (K0)? % (K*K + KK, (21)

5



There are several representations of su(1,1). Our interest will be confined to
the representations based on the usual bosonic operators.
The two-mode boson realization of this algebra is

1
K = i(alal +aja_y +1),
KJF = aiail s K = a1a_q . (22)

The Casimir operator for this realization can be written as

1
IC%( = Z(A2 - 1)a
A = alay—alja_y. (23)

From (16) it follows that the operator A is equal to the z-component of the
total spin A = S*. Obviously, A commutes with all the operators in (22) and
thus the population difference in the spin modes with o = +1 must differ by
some fixed amount, the eigenvalue of A. We denote this eigenvalue as m and
without loss of generality we take m to be a positive integer.

For a single-mode boson field the su(1,1) algebra is realized by the oper-
ators

1 1
BO = ia,ga/(] + 1,
1 1
Bt = —5(a5)2 , B_:—é(a0)2. (24)

The Casimir operator for this realization takes on the value
K% = —3/16. (25)

Expressed in terms of su(1, 1) generators the number operator (18) will
take the form 5
N =2(B°+ K°) — > (26)

while the squared momentum operator (17) will be equal to
1
S?2 =4 {Z(A2 —1)+2B°K" - B*K~ — B—K+} : (27)

The model Hamiltonian (19) finally reads

Ha = 40— g0) {21, + S0 - (82 - o) (29

6



with
2H,=2B°K’ - B*K~ — B~ K+ —26B°, (29)

where § = —%ﬁ, and g = gaq/g2. Comparing equations (27) and (28) one
finds that squared momentum operator S? is equal to the Hamiltonian of
dipole-dipole interaction (19), (28) H,, in the absence of the dipole-dipole

interaction gg = 0:
1 1

2 _
S s sd |6:0— 9 Hsp' (30)
The most obvious conserved quantities of the Hamiltonian (28), and re-
spectively of (19), are the total number of particles and the population dif-
ference in the modes with the opposite spins (the z-component of the total

spin): A
[Hsda N] = [Hsda A] =0. (31)

The commutativity of the Hamiltonian with the Casimir operator (25)
[Hua, K5] =0, (32)

means that the parity of the number of particles in the spin mode with v = 0
is the conserved quantity as well. These conservation laws follow directly
from the fact that the Hamiltonian describes the creation and annihilation
of bosonic atoms in pairs.

4 su(1,1) loop algebra and the integrals of mo-
tion
To apply algebraic Bethe ansatz to the solution of the model defined by the

Hamiltonian (28) let us define the operators which will play the crucial role
in our approach:

B KO
B* K*
XE\) = T (33)

We shall show that the model Hamiltonian (28) and its eigenvectors may be
constructed with the help of these operators. In (33) A is a complex variable
while ¢ is a constant defined in the previous Section.



The operators (33) satisfy the following commutation relations:

XFW XG0 = 5 (X0 = X)),
X0 XH ()] = (Y5 = X (). (34)
XFO X (0] = X0, X ()] = X0, X°(u)] = 0.

These equalities are checked by applying the commutation relations of oper-
ators (22), (24) and the equality

1 1 1 1
e ) (35)

Algebra (34) is known as su(1,1) loop algebra.
By the analogy with the Casimir operator (21) we introduce a family of
operators depending on the arbitrary complex number A :

1
HN) = (X°0)" = S (XTX () + X (VX)) (36)
The most important property of this operators is that they commute for the

arbitrary complex numbers A, p:

[t(A), t(p)] = 0. (37)

This property is checked by the direct calculation with the help of the commu-
tation relations (34). The operator ¢(A) may be considered as the generating
function of the integrals of motion.

Substituting (33) into (36) we have

() 1+< B° )2+<£0)2_B+B‘+B‘B+_K+K‘+K+K—
5\ A 200 — N2 3%

2KY  2B0 2B KO

D U S S ¢ SV I

Bt K- B~ K+

SN A TGN

(38)

_'_
(
The coefficient at the simple pole of this expressions when A\ = ¢ is equal to
1
Res|y=st(\) = 2B° — 5 {2B°K° - BYK* - B K}, (39)

and we have the following expression for the Hamiltonian (29)

QHO = —5R68|>\:5t()\).

8



The Casimir operators (23) and (25) are the coefficients at the poles of the
second order in (38), so for the Hamiltonian (28) we have

Hyy=4(92 — ga) {—5Res|)\5t()\) + A24_ L (A? — %)5} , (40)

From (38) and (37) it follows that
[t(N), Hoa] = [t(N), N] = [t(A), A] = [t(A), K] = 0. (41)

Knowing the eigenvectors and eigenvalues of the generating operator ¢(\)
(36) we may find the eigenenergies of the Hamiltonian H,y (28) applying the
equation (40).

5 Solution of the model

To develop the algebraic scheme of the diagonalization of the generating func-
tion ¢(A) (36) first we have to remind that the basis of the unitary irreducible
representation of the su(1,1) algebra is formed by the eigenvectors |n), of
operator K° and Casimir operator K%

Kon), = (n+v)n),

K*n), = v(v—1)n),, (42)
where v is the so-called Bargmann index. The operators K* act as the ris-
ing and lowering operators, respectively, on the eigenstates of K°. The non-

normalized states |n), may be constructed by the successive action of oper-
ator KT from the generating vector |0), defined by the equation

K~10Y, = 0. (43)
These states are equal to
n), = (K*)"0).. (44)

The representation space of the two-mode realization (22,23) of the su(1, 1)
algebra consists of two-mode Fock states which are the direct product of the
number states of spin modes with @« = +1. The generating vector of this
realization is defined by the equation

K7|0),, = 0. (45)



We may choose |0),, = |m)® @ |0)=V either |0),, = [0)V) @ |m)Y, (m =
0,1,...) .The Bargmann index of this realization is v, = mT“ It follows from
(22) that these states are the eigenstates of the operator A:

A|0),, = am|0),,. (46)

The representation space in the single-mode realization (24) is decom-
posed into the direct sum of two irreducible components spanned by the
states |2n + s) with an even number of particles (s = 0) or by the states with
an odd number of particles (s = 1). The Bargmann index of this realization

2541

is v1 = == and the generating vector (43) is defined by the equation

B~|0),, = 0. (47)

The space with v, = 1 (s = 0) is built from the Fock vacuum [0),, = [0)(©,
and the space with v, = 2 (s = 1) is built from the one particle state

|0),, = 1) respectively. The generating space satisfies the relation

2541
BO|0>V1 = 4

10}, (48)

From the definition of the operators X=(\), X°()) (33) and the number
operator N (26) it follows that

NXEO) = XE(\) (fv + 2) , (49)

and
NX°(\) = X°(A\)N. (50)

So X*()\) acts as a creation (annihilation) operator of the pair of boson
quasi-particles.
The state which is the direct product of the generating states (47) and
(45)
€2) = 10)1, ©[0)w,, (51)

which we shall call the vacuum state, satisfies the following equations
X-Ie) = o, (52)
X' = a9,

where the vacuum eigenvalue of the X°()\) operator is equal to:

1241 1%0)




where vy, 15 are the Bargmann indices of a single- and two-mode representa-
tions respectively. The vacuum state is an eigenstate of the number operator
(26)

NIQ) = (s +m)|Q), (54)
and of the z-component of the total spin
A2y = am|Q). (55)

It is easy to verify that the vacuum state (51) is an eigenvector of the gener-
ating function ¢(\)
LA = kN)|), (56)

with the eigenvalue

2
1241 1%5) 141 1))

E(A\) =11 - - — . 57

) (+6—)\ )\) (ESNEDE (57)

Due to the conservation laws (41) the eigenvectors of the generating oper-

ator t(\) depend on the total number of particles in the system N, the value

m of the absolute value of the z-component of the total spin, and the parity

s of the a = 0 spin mode. We shall look for these eigenvectors in the form of
the Bethe vectors

Np
|(I)N,m,s()‘17)\27"~7)‘Np)> = HXJF()\])‘Q) (58)
j=1

Due to (49), the number of particles in this state is

NI®y s, Agy s An,)) = N|@ns (A, Ay oo A, ),
N = 2N, +s+m, (59)

and the number of operators Xt (\) in the product (58), which corresponds
to a number of pairs of the boson quasi-particles in the system, is equal to
2N, = N —m — s. The state (58) clearly satisfies the relations

A‘(I)N7m7s()\1,)\2,...,)\]\7p)> = am\@N7m7s()\1,)\2,...,)\Np)), (60)
(DN BN s A1y Agy s A,)) = (— 1) @ms (A Agy ooy A, )

For a given number of particles NV, the possible values of quantum numbers
mand sare 0 <m+s < N.

The vectors (58) are the eigenvalues of ¢(\) if parameters \; satisfy Bethe
equations

N,
v v L 1 )
Y cj=1,..,N,. (61)

1+ =y ——
SN N NN

11



We shall show in the Appendix that there are N,+1 sets {)\‘]’ }jip ) of solutions
of these N, equations (¢ =1,2,..., N, + 1). They are real, \; € R, positive,
all different and not equal to ¢ and 0.

The N-particle eigenvalues ©F; , () of the generating function #(x) (36)
are equal to

Np Np

214 215
@(va,m,s(ﬂ) - k(ﬂ) - ; (5 _ M)((s _ )\?) - Z ,u)\‘]?’ (62)

j=1

with k() given by the relation (57), and A € {A;’}jv:pl

From the equation (40) it follows that the N-particle eigenenergies of the
Hamiltonian Hg, (28) with the fixed value of the third spin component m
and parity s are equal to

1 m? — 1 , 1

——————E{ s = —O0Res|,—s0% (1) + —(m*— =)o
4<g2 _gd) N,m, ‘u é N,m, (ILL) 4 ( 2)
The substitution of (62) into this expression gives

N,

1 22146 m? — 1 1
——FE{,,. = —2011+ 211+ + — (m*—2)0
4(g2 = ga) ™ L ;6—/\;‘. M3

N,
1 2 - 21/1(5
= (m+1)(m +2s) — 5(m +s)+;5_A? (63)

where ); are the solutions of Bethe equations (61), and the definitions 21, =
m — 1, 4v; = 2s + 1 were used. The equality (m + 1)(m + 2s) = (N —
2N, +1)(N —2N,,) is valid for s = 0,1 and the alternative expression for the
eigenenergy is

1 1
—E%,. =~ [N(N +1) = 2N, (2N — 2N, + 1
s — ) Rem. 7 [V ) = 2N, ( p+1)]
s 2U15
—5[N—2Np+m(m—1)]+z(5_)\a
j=1 J

The other expression for the eigenenergies might be obtained in the following
way. Multiplying the equation (61) by A; and then summing up it by j one
obtains

Np Np A\ 1

V1A;
ZAﬁZé_i = Ny = 5 Np(N, = 1), (64)
j=1 j=1 J

12



with the help of the following relation

Zz/\_)\ 5 p(Np_l)-

J=1 i#j

The second term in (64) is expressed as

Ny Ny

j=1 j=1

And finally
all 2110 ol
;5_Aj = Np(Np—1+2y1+2u2)—2;Aj

= N, (N +s+m+ ) 2ZA
= N, (N N, + >—2ZA (65)

So the eigenenergies of the Hamiltonian (28) may be written in the form

1
4(92 - gd)

1 ag
+ 1(N—m—s)(N+m+s+ —22)\

1
Efipms=—(s+ m?)6 + Z(m +1)(m + 2s)

= SN = 2N, +m(m— )]+ TN(N + 1) —QZX’ (66)

The eigenenergies Ey ., s are real numbers, and the solutions of Bethe equa-
tions (61) A\; may be interpreted as the energies of the boson pairs.

In order to study the behavior of the solutions of Bethe equations (61)
it is reasonable to consider the polynomials defined by the solution of this

equation
NP
=CJJ7 -, (67)
j=1

13



where C~1 = vaﬁl A7. This polynomial satisfies the second order differential
equation

P"(N) = 25(A)P'(\) +2 MP(A) =0, (68)

where z()\) is the vacuum eigenvalue (53) of the X°(\) operator. The substi-
tution of (53) into this expression together with the equalities (65) and (66)
gives the equation

MO = A)P"(A) = 2[A6 = A) + 14X — 15(6 — N)] P'(N)
+ [EXms + 200 = NN, P(A) = 0 (69)

where

1 1
EG, = E%, A+ (s+m?)0 — = (m+1)(m + 2s).
Foms = 5757 Efm + (5 m)8 = 3+ 1)m + 29

The alternative formulation of an eigenvalue problem for the Hamiltonian
(28) is the following: the eigenenergies Ey,, s are defined by the condition
that the equation (69) has the polynomial solution of the degree N, without
multiple zeros.

6 Spinor condensate

In the absence of the dipolar interaction the Hamiltonian of the model is
(30):
H,, = g,S%, (70)

where S? is the squared total angular momentum operator (17).
The operators

X* = BF 4+ K*f=-\XF()), (71)
XY = B4+ K'=)X-)X°),

where X=(X), X°()\) are (33) with § = 0, satisfy the su(1,1) algebra commu-
tation relations and generate the tensor product group SU(1,1) ® SU(1,1)
[12]. The Casimir operator of this group is

1
Kyx = (X°?% - 3 (XX +X XT) (72)
= H,+K3+ K%,

14



where H, is (29) with 6 = 0. Since Casimir operator commutes with the
operators (71) the Hamiltonian

Hg = 492(1@( - ’CQB) (73)
possess the symmetry
[Hp, X¥] = [Hyp, X°] = 0. (74)

In the case under consideration the generating function (36) is equal to t(\) =
AN (K% + 1 —2X9), and thus ¢(\) does not possess the symmetry relations
(74).

The basis of the SU(1,1) ® SU(1,1) representation we shall denote as
|n),, while the basis states of the two- and single-mode representations as
|n2),, and |nq),, respectively. According to (42) we have

X'n), = (n+v)n), (75)
KxIn), = v(v—=1)ln).,

and the generating vector of the representation |0), satisfy

K%|0), = 0. (76)

The tensor product of two representations D*) and D2 reduces to the
sum of irreducible representations according to the SU(1, 1) Clebsch-Gordon
decomposition

D) ® D®2) ZD V1+V2+l) (77)

where v + 15 + [ = v is the Bargmann 1ndex of the correspondent represen-
tation.
We can look for the non-normalized generating vector |0), in the form

l

0), =Y ALE ) (BT) 740}, @10}, (78)

From (76) it follows that the coefficients satisfy the recurrent relation
A Cuu+ k) (k+ 1)+ AL +1—k—=1)(1—k) =0,

with A} = 1, and are equal to

o -1 —p
k 1

15



where the binomial coefficient Cl"“ = (l%'),k,

The states |n), are generated from the vacuum vector (78) according to
(XT)"10)y = [n)y- (80)

The number of particles in the state |n;v), as it follows from (75), are equal
to

Nln), = <2X0 — ;) In), = <2(n to ) — ;) In),  (81)
= 2(n+1)+m+s)|n),.

For the fixed number of pairs of particles IV, = n 4 [ the index [ takes the
values [ = 0,1, ..., N,.
From (73) it follows that the eigenvalues of the Hamiltonian

Hypln), = E,, ,,,I0) (82)

n,v,v1

are equal to

By = 42 (v(v = 1) = 11(11 = 1)) (83)
= 49 (a(re — 1)+ 11 = 1) + 240 + 20(v1 + 1)) .

Unlike the model with the dipole interaction with § # 0 the considered
case is degenerate and in the sector with the fixed number of particles N we
have the set of the vacuum states (78) |0;14 + v + 1) with [ =0,1,..., (N —
m—s)/2.

For the fixed number of particles N in a system (N = 2(n+1) +m + s)
the energy (83) is equal to:

El ., =9[NN+1)—-2n2N +1-2n)]. (84)

The ground state of the model is defined by the sign of the interaction
constant go. In the antiferromagnetic case go > 0 the ground state is defined
by the condition [ = 0 and 2n = N — s and is equal to

N—s

|GYar = (XT) 2 00),, (85)
0, = [9)@®|0)" & |0)D.

where s = 0,1 depending on the parity of N. From (84) it follows that the
eigenenergy of the ground state is zero: E4r = 0.
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In the considered case the solutions of Bethe equations are the energies
of the boson pairs in the ground state. When § = 0 the equation (61) for the
ground state has the form

25+3 A 1
4

1 cj=1,..,N, (86)

i E TN

and is the equation on the zeros of the Lagerr polynomial P(\) = Ly (2); 271).

The solution of this equation is unique and A; are all different and positive:
)‘j > 0.

When a > —1 for the big values of N the asymptotics of Lagerr polyno-
mials is

Ln(2x;00) ~ T35 TINE T cos {2\/2]\7 — %(20[ + 1)} .

From this expression it follows that the energies of the boson pairs in the
ground state behave like

1 72 -3)?
A.——”—{2j+s },j:l,Q,...,N.

2

For the ferromagnetic case go < 0 the ground state is defined by the
condition n = 0. The eigenenergy of the state is

Ep=gaN(N +1). (87)

The ground state vectors are given by the expression (78) with m and I
connected by the equality 2/ + m + s = N, and the state is 2NV + 1 fold
degenerate.

7 Conclusion

The model discussed in this paper belongs to a class of the integrable so-called
pairing models introduced into the theory of Bose-Einstein condensation by
Richardson [13]. The algebraic approach to the solution of such systems was
developed by Gaudin [14].

The knowledge of the eigenfunctions of the model allows to study the spin
mixing dynamics and the quantum phases of the spinor Bose gas with the
dipole-dipole interaction in details. We hope to report further results in this
connection elsewhere.

This work was supported by REFBR project 07-01-00358.
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8 Appendix

The Bethe equations (61) belong to the type of characteristic equations ap-
pearing in the theory of ellipsoidal harmonic functions. To prove that the
solutions \; of Bethe equations (61)
N,
1241 1%5) £ 1

1+5—A._7:Zm;j:1,...,Np,
T s Y

are real numbers: \; € R let us consider the function

NP
B Vo Vo 1
FJ(A)_H(S—A A ;A—)\l'

The zeros of this function are the solutions of Bethe equations Fj(\;) = 0. If
Aj € C, then the complex conjugated solutions satisfy the equation F}();) =
0. So

Np

S0y = X) (B(0) — Fr () = 0. (88)

J=1

From the equality

> uiluy —w) = 5> (u; —w)?,

#l #l
it follows that
1 1 (A= X)) = (N =A))
A — N - = S0 - N J -
2 J){/\j—Az /\}f—/\f} 25 =%) 1A = A7[?

J#l

e (=== )?
2 A = AP

i#l

We also have

N Vo Vs Vo Vo £12 Vo 2
Ai— )\ - = — i Qe A=\
2.0 J){(S—)\j Aj 5—>\§+)\}f} 2 A=X) {|5—)\j|2+\>\j|2

J

J

Finally, the equality (88) will take the form

A=A = (A= An)°
/\‘_)\*'2{ 140 + 1/2}+ ((] j l EO,
2 =) 6 — N2 A2 2 1A = A7[?

J JF#l
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and hence \; = A7,

The solutions of Bethe equations \; # 0, 4. It may be proved in a standard
way [15] with a help of differential equation (69). Really if one of the roots
Aj = 0or \j = ¢ then P'()\;) = 0 and from (69) it follows that all higher
derivatives must be equal to zero at the same points, but it is not true. In
the same way it may be proved that there are no multiple zeros. It may be
proved that 0 < \; <6, j=1,...,N).

To prove that there are /V,+1 sets {)\j}jvzpl of solutions of Bethe equations
one should notice that the equation with number m is of order N, + 1 with
respect to \,,, while the rest unknowns \;,/ # m have degree equal to 1. In
all the rest equations \,, enters in the first degree. Excluding \;,l # m we
shall get the equation of order N,(NN, + 1) with respect to \,,. But since in
the equation with the arbitrary number IV, — 1 unknowns are given, the last
unknown is defined uniquely. Hence, the obtained N,(V, 4+ 1) roots of the
system are divided into N, 4 1 sets.
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