

ПРЕПРИНТЫ ПОМИ РАН

ГЛАВНЫЙ РЕДАКТОР

С.В. Кисляков

РЕДКОЛЛЕГИЯ

В.М.Бабич, Н.А.Вавилов, А.М.Вершик, М.А.Всемирнов, А.И.Генералов, И.А.Ибрагимов,

Л.Ю.Колотилина, Б.Б.Лурье, Ю.В.Матиясевич, Н.Ю.Нецветаев, С.И.Репин, Г.А.Серегин

Учредитель: Санкт-Петербургское отделение Математического института

 им. В. А. Стеклова Российской академии наук

Свидетельство о регистрации средства массовой информации: ЭЛ №ФС 77-33560 от 16

октября 2008 г. Выдано Федеральной службой по надзору в сфере связи и массовых

коммуникаций

Контактные данные: 191023, г. Санкт-Петербург, наб. реки Фонтанки, дом 27

телефоны:(812)312-40-58; (812) 571-57-54

e-mail: admin@pdmi.ras.ru

http://www. pdmi.ras.ru /preprint/

Заведующая информационно-издательским сектором Симонова В.Н

mailto:admin@pdmi.ras.ru

PDMI PREPRINT — 18/2008

CIRCUIT COMPLEXITY OF MOD-FUNCTIONS1

Arist Kojevnikov Alexander S. Kulikov

St. Petersburg Department of the
Steklov Institute of Mathematics of the

Russian Academy of Sciences

http://logic.pdmi.ras.ru/{~arist,~kulikov}

Grigory Yaroslavtsev

Academic Physics and Technology University of the
Russian Academy of Sciences

http://logic.pdmi.ras.ru/~grigory

November 30, 2008

Abstract

In 1977, Stockemyer proved that any circuit over the full binary basis for a certain class of symmetric
Boolean functions including all MODn

m
functions (m ≥ 3) contains at least 2.5n − c gates. He also

presented an optimal circuit for MODn

4 . In this paper we give a modification of Stockmeyer’s proof
yielding a 2.5n− c lower bound for a different class of functions containing not only symmetric functions.
This class, in particular, contains the function MODn

3 . We also give a very simple proof of a 7n/3 lower
bound for a class of functions represented by high degree polynomials over GF(2). The key idea of this
proof is a combined complexity measure which assigns different weights to gates of different types. In
the end of the paper we present a circuit of size 3n for the function MODn

3 and briefly describe the way
it was found.

1Supported in part by Russian Foundation for Basic Research (grants 06-01-00502-a and 08-01-00640-a).

1 Introduction

Proving lower bounds on the circuit complexity of explicitly defined Boolean functions is one of the most
famous and difficult problems in theoretical computer science. Though easy counting shows that almost all
Boolean functions have only exponential size circuits, we still have no example of a simple function requiring
super linear circuit size. Moreover, only a few proofs of linear lower bounds are known. Namely, Schnorr [9]
proved a 2n − c lower bound for a class of functions with the property that by fixing the values of any two
variables one gets at least three different subfunctions. Then Paul [8] proved a 2.5n − c lower bound for a
modification of the storage access function. Stockmeyer [10] obtained the same lower bound for a class of
symmetric functions satisfying a certain simple property. Finally, Blum [1] slightly modified Paul’s function
and proved a 3n−o(n) bound on it. This bound was published in 1984 and is still the best result for circuits
over the full binary basis B2. The current record lower bound 5n− o(n) for the basis U2 = B2 \ {⊕,≡} was
given in 2001 by Iwama et al. [4].

All bounds mentioned above are proved by the gate elimination method. The main idea of this method
is the following: one considers a Boolean function on n variables from a certain class of functions and shows
that any optimal circuit contains a combination of gates which can be eliminated by assigning a value to a
variable. Usually, a gate is eliminated just because one of its inputs becomes a constant. In some cases, we
can also eliminate a gate by rebuilding a circuit. Though this method is essentially the only known method
for proving nontrivial lower bounds for general circuit complexity, as many authors note it is unlikely that
it will allow to prove nonlinear bounds.

In this article, we study the circuit complexity of MOD-functions. Interestingly, for formulas and circuits
over the bases U2 and B2 it is known that the complexity of MODn

m, m = 3 or m ≥ 5, is not less than the
complexity of MODn

4 . However for none of this models it is known that MODn
3 or MODn

5 is strictly harder
than MODn

4 . Table 1 shows known lower and upper bounds for MODn
m in different computational models

(there, by C and L we denote the circuit and formula complexity, respectively).
We define the class of functions GMODn

m consisting of all Boolean functions f(x1, . . . , xn) whose value
depends on

∑n

i=1
αixi (mod m). We first observe that any function from GMODn

m, for a prime m ≥ 3,
is represented by a high-degree polynomial over GF(2). By using this fact we give a proof of a 7n/3 − c
lower bound on the circuit complexity of any such function. The proof is as simple as Schnorr’s proof of a
2n− c lower bound [9]. The key idea of this proof is a combined complexity measure which assigns different
weights to gates of different types. Another nice property of this proof is that it not only analyzes the top
of a circuit, but also uses some general information about it.

We then give a proof of 2.5n − c lower bound for a class of functions containing GMODn
3 which is a

modification of Stockmeyer’s proof [10]. Note that Stockmeyer proved a 2.5n − c lower bound for a MODn
m

functions (m ≥ 3), but his proof works only for symmetric functions. The main advantage of the class

m LU2
LB2

CU2
CB2

2
lower

Θ(n2) [5] n 3n + c [9] n − 1
upper

3
lower Ω(n2) [5] Ω(n log n) [3] 4n + c [12] 2.5n + c [10]

upper O(n2.58) [2] O(n2) [11] 7n + o(n) [6] 5n + o(n) [6]

4
lower Θ(n2) [5]

Ω(n log n) [3]
4n + c [12]

2.5n + c [10]
upper O(n2 log2 n)[3] 5n [12]

≥ 5
lower Ω(n2) [5] Ω(n log n) [3] 4n + c [12] 2.5n + c [10]

upper O(n4.57) [7] O(n3.13) [7] 7n + o(n) [6] 5n + o(n) [6]

Table 1: Known lower and upper bounds on the complexity of MODn
m in different computational models.

GMODm over the class MODm is that GMODm is invariant under substitutions like xi = xj .
In the end of the paper we present a circuit of size 3n for the class GMODn

3 which was found with the
help of SAT-solvers.

2 General Setting

2.1 The class GMODn

m

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A function f ∈ Bn is called symmetric
if its value depends only on the sum of the input bits. That is, there must exist a vector v ∈ {0, 1}n+1 such
that f(x1, . . . , xn) = vs where s =

∑n

i=1
xi. A typical symmetric function is a modular function MODn

m,k

defined as follows:

MODn
m,k(x1, . . . , xn) = 1 iff

n
∑

i=1

xi ≡ k (mod m) .

We also consider functions depending not on
∑

xi, but on arbitrary integer linear combination
∑

αixi.
Namely, by GMODn

m we mean the class of all functions f ∈ Bn for which there exist integers 1 ≤ α1, . . . , αn ≤
m − 1 and an integer k such that

f(x1, . . . , xn) = 1 iff

n
∑

i=1

αixi ≡ k (mod m) .

Note that if f ∈ GMODn
m and c ∈ {0, 1}, then either

f |xi=xj⊕c ∈ GMODn−1
m or f |xi=xj⊕c ∈ GMODn−2

m .

It is easy to see also that for a prime p and n ≥ p2 + 2 and any f ∈ GMODn
p , f is not a constant and there

are at least three different functions among

f |xi=0,xj=0, f |xi=0,xj=1, f |xi=1,xj=0, f |xi=1,xj=1 .

2.2 Degree of Boolean functions

Any Boolean function f : {0, 1}n → {0, 1} can be easily represented as a multilinear polynomial over GF(2),
i.e., a xor (sum) of conjunctions (monomials). It is usually called Zhegalkin polynomial. It is well-known that
such a representation is unique. Thus, in the following by χ(f) we denote the unique multilinear polynomial
over GF(2) representing f . The important characteristics of a function f is the degree of χ(f) denoted by
deg(f). Clearly, if a circuit contains only a few type-∧ gates, then it cannot compute a function of high
degree.

Lemma 2.1. Any circuit computing a Boolean function f : {0, 1}n → {0, 1} contains at least (deg(f) − 1)
type-∧ gates.

It is not difficult to show that for any f ∈ GMODn
p , deg(f) ≥ n− p, for prime p and n ≥ p2. In order to

show this one first observes that for a Boolean function f : {0, 1}n → {0, 1}, deg(f) = n iff |f−1(1)| is odd.
This can be proved easily by induction by noting that

f−1(1) = (f |xi=1)
−1(1) ∪ (f |xi=0)

−1(1) , (1)

χ(f) = xi · χ(f |xi=1) + (1 − xi) · χ(f |xi=0) . (2)

One then shows that for any f ∈ GMODn
p , |f−1(1)| is odd. This can be proved again by induction by using

equality (2). Namely, we denote by cf ∈ {0, 1} the coefficient of the monomial x1 . . . xn in χ(f). Equality
(2) then implies that cf = cf ′ ⊕ cf ′′ for some f ′, f ′′ ∈ GMODn−1

p .

3

2.3 Circuits over B2

A circuit is a directed acyclic graph with nodes of in-degree 0 or 2. Nodes of in-degree 0 are marked by
variables from {x1, . . . , xn} and are called inputs. Nodes of in-degree 2 are marked by functions from B2

and are called gates. There is also a special output gate. The size of a circuit is its number of gates. We
call a function f ∈ Bn degenerated if it does not depend essentially on some of its variables, i.e., there is a
variable xi such that the subfunctions f |xi=0 and f |xi=1 are equal. It is easy to see that a gate computing
a degenerated function from B2 can be easily eliminated from a circuit without increasing its size (when
eliminating this gate one may need to change the functions computed at its successors). The set B2 contains
exactly ten non-degenerated functions f(x, y):

• eight functions of the form ((x⊕ a)∧ (y ⊕ b))⊕ c, where a, b, c ∈ {0, 1}; we call them type-∧ functions;

• two functions of the form x ⊕ y ⊕ a, where a ∈ {0, 1}; these are called type-⊕ functions.

The main difference between these two types of functions is that it is always possible to make a type-∧
function constant by assigning a Boolean value to any of its inputs (e.g., after replacing x by a one gets the
constant c; in this case we say that a gate is trivialized), while this is not possible for a type-⊕ function.
Thus, if there is a variable feeding two type-⊕ gates, then by assigning any value to it one eliminates only
these two gates. However, if at least one of the two successors of a variable is of type-∧, then by assigning
an appropriate value to it one eliminates both these gates and also all successors of this type-∧ gate. This
is the reason why currently best bounds for circuits over U2 are stronger than those for circuits over B2.

3 7n/3 Lower Bound

In this section, we give a proof of a 7n/3 − c lower bound which is as simple as Schnorr’s proof of a 2n − c
lower bound [9]. We first define a class of functions which is in fact the class used by Schnorr with the
additional restriction on the degree. Having this condition we have a lower bound (provided by Lemma 2.1)
on the number of type-∧ gates in any circuit computing a function from this class. We then define a circuit
complexity measure by putting different weights to type-⊕ and type-∧ gates and prove a lower bound for it,
which is then used to obtain a lower bound for the circuit complexity.

Definition 3.1. Let Sn
k,d be the class of all functions f ∈ Bn with the following properties:

1. if n ≥ k, then for any two variables xi and xj one obtains at least three different subfunctions of f by

fixing the values of xi and xj;

2. if n ≥ k, then for any variable xi and any constant c ∈ {0, 1}, f |xi=c ∈ Sn−1

k,d ;

3. deg(f) ≥ n − d.

In order to prove the stated lower bound we use the following circuit complexity measure: µ(C) =
3X(C) + 2A(C), where X(C) and A(C) denote, respectively, the number of type-⊕ and type-∧ gates in C.

Lemma 3.1. For any circuit C computing a function f ∈ Sn
k,d,

µ(C) ≥ 6(n − k − 1) .

Proof. We prove the statement by induction on n. The case n ≤ k + 1 is obvious. Assume that n > k + 1
and let C be an optimal (w.r.t. µ) circuit computing f . We show that it is possible to assign a value to one
of the variables such that µ is reduced by at least 6. Since the resulting subfunction belongs to Sn−1

k,d , the
required inequality follows by induction. Note that the resulting function is not a constant. Thus, if a gate
is replaced by constant during such a substitution, then this gate is not an output and hence has at least
one successor which is also eliminated.

Let Q be a top-gate of C and xi and xj be its input variables. Since there are at least three different
subfunctions of f w.r.t. xi and xj , one of them must feed at least one other gate. W.l.o.g. we assume that

4

xi xj

⊕P ⊕Q

xi xj

∧P Q

xi xj

∧Q

P

Figure 1: Different cases of Lemma 3.1.

xi feeds also a gate P 6= Q. If both P and Q are type-⊕ gates, we just assign a value to xi. Clearly µ is
reduced by at least 6. If one of P and Q is a type-∧ gate, we assign to xi the value which trivializes this
gate. This eliminates both P and Q and at least one of their successors (even if Q is the considered type-∧
gate and P is its only successor, we eliminate Q, P and all successors of P). Fig. 1 shows several possible
cases (note that here as well as in the next section only the types of gates are shown, but not the exact
functions computed at them). It is easy to see that µ is again reduced by at least 6.

Lemma 3.2. For any f ∈ Sn
k,d, C(f) ≥ 7n/3 − c(k, d).

Proof. Recall that the number of gates in a circuit C is equal to X(C)+A(C). The required inequality then
follows from the following two inequalities:

3X(C) + 2A(C) ≥ 6n − 6(k + 1) ,

A(C) ≥ n − (d + 1) .

By noting that GMODn
p ⊆ Sn

p2,p we get the following lower bound.

Corollary 3.3. For any f ∈ GMODn
p , C(f) ≥ 7n/3 − O(1).

4 A 2.5n Lower Bound for GMODn
3

We first define a class T n
k which is similar to Sn

k,d.

Definition 4.1. Let T n
k be the class of all functions f ∈ Bn with the following properties:

1. if n ≥ k, then for any two variables xi and xj one obtains at least three different subfunctions of f by

fixing the values of xi and xj;

2. if n ≥ k, then for any variable xi and any constant c ∈ {0, 1}, f |xi=c ∈ T n−1

k ;

3. if n ≥ k, then for any two variables xi and xj there is a constant c ∈ {0, 1} such that f |xi=xj⊕c ∈

T n−1

k and f |xi=xj⊕c⊕1 ∈ T n−2

k , i.e., the latter subfunction depends neither on xi nor on xj .

Theorem 4.1. For any circuit C computing a function f ∈ T n
k ,

C(f) ≥ 2.5n − 2.5(k + 2) .

Before proving the theorem we define the notion of a xor-chain which was first used by Paul [8]. For a
gate G0 of a circuit C we say that there is a xor-chain of length k in G0 iff there are k gates G1, . . . , Gk in
C such that

5

xi xj

⊕P ⊕Q ⊕R

Figure 2: The main case of the proof of Theorem 4.1.

1. for 1 ≤ i ≤ k, Gi is of type-⊕;

2. for 1 ≤ i ≤ k, Gi is the only successor of Gi−1;

3. there is no xor-chain in Gk, i.e., Gk is either the output of C, or has out-degree at least 2, or its only
succesor is of type-∧.

Proof. The proof is again by induction on n. For n ≤ k+2 the statement is true. Let now n > k+2. We are
going to either eliminate three gates and obtain a subfunction from T n−1

k or eliminate five gates and obtain
a subfunction from T n−2

k .
Consider an optimal circuit C computing the function f .
Case 1. C contains a variable of out-degree at least three. By assigning it a constant one gets a function

in T n−1

k and eliminates at least three gates.
Case 2. C contains a variable of out-degree 2 having a successor of type-∧. One assigns this variable

the constant which trivializes this gate. It is easy to see that at least three gates are eliminated.
Case 3. Each variable of C has either out-degree 1 or out-degree 2. Consider a top gate Q of C and

its input variables xi and xj . At least one of xi and xj must feed another gate, otherwise one would obtain
at most two different subfunctions by assigning xi and xj . W.l.o.g. assume that xi feeds a gate P . At this
point we conclude that both P and Q are of type-⊕ (otherwise case 2 is applicable). Thus, any top-gate of
C is of type-⊕.

Case 3.1. The gate Q has out-degree at least 2. We then replace xi by xj ⊕ c for an appropriate
constant c so that the resulting subfunction belongs to T n−1

k . This eliminates Q and all its successors, i.e.,
at least three gates.

Case 3.2. The gate Q has out-degree 1. Assume that the out-degree of xj is also 2, otherwise the
analysis is simpler, see. Fig. 2.

We first substitute xj by xi ⊕ c so that the resulting subfunction belongs to T n−2

k . The resulting sub-
function does not depend on both xi and xj , but the circuit still contains the variable xi. This means that
one can substitute xi by any function which does not depend on xi. After the substitution xj = xi ⊕ c the
variable xi feeds two type-⊕ gates (in case xj has out-degree 1 in the original circuit, xi will feed only one
gate in the resulting circuit). Denote these two gates by P and R and consider xor-chains P1, . . . , Pp and
R1, . . . , Rr starting at P and R, respectively (p and r may be zero), see Fig. 3(a). W.l.o.g. we assume that
there is no path from Pp to Rr. This means that there is also no path from xi to Tk (0 ≤ k ≤ r). Indeed any
path from xi must go through either Pp or Rr. But a path from xi to Tk through Rr would create a cycle
in the circuit, while a path through Pp could be extended to Rr which would contradict our assumption.

We now rebuild the circuit as shown at Fig. 3(b) and then replace xi by a function computed at the other
input of Rr or its negation. As shown above this function does not depend on xi. Since in the reconstructed
circuit there is no xor-chain in Rr (which means that either the out-degree of Rr is at least 2 or the only
successor of Rr is a type-∧ gate), at least three gates are eliminated.

If the out-degree of xj is 1, then after substituting xj by xi ⊕ c the out-degree of xi is 1. We eliminate
a xor-chain in this gate and then replace xi by a function computed at the other input of this gate. This
function obviously does noy depend on xi, so the substitution is correct.

It is easy to show that GMODn
3 ⊆ T n

9 , so we get the following corollary.

Corollary 4.2. For every f ∈ GMODn
3 , C(f) ≥ 2.5n − c.

6

(a) (b)

xi T0

T1

Tr

⊕P ⊕R

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

xi T0

T1

Tr

⊕P ⊕R

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

Figure 3: Eliminating a xor-chain.

5 A 3n Upper Bound for GMODn
3

In this section we present a construction implying a 3n+O(1) upper bound for GMODn
3 . The main building

block of a circuit of size 3n + O(1) (as well as its truth table) is given in Fig. 4. It takes as input three new

variables xk+1, xk+2, xk+3 and the value of
∑k

i=1
xi (mod 3) encoded by a pair of bits (z1, z2) as follows:

k
∑

i=1

xi (mod 3) =











0, if (z1, z2) = (0, 0),

1, if (z1, z2) = (0, 1),

2, if z1 = 1.

The output of the block is the pair of bits (z′1, z
′
2) encoding the value of

∑k+3

i=1
xi (mod 3). Obviously a

circuit of size 3n + O(1) for MODn
3 can be built from such blocks. Moreover, this also gives a circuit of size

3n + O(1) for GMODn
3 . Indeed, for any function f ∈ GMODn

3 there exists a partition of {1, 2, . . . , n} into
two disjoint sets I1, I2 of indices such that

f(x1, . . . , xn) = 1 iff
∑

i∈I1

xi + 2
∑

i∈I2

xi ≡ r (mod 3)

(for some r). It is easy to see that one can construct a circuit of size 3|I1|+ 3|I2|+ O(1) for such a function.
Since any type-⊕ gate can be replaced by three type-∧ gates, this construction also gives us a 7n upper
bound for the basis U2. A surprising property of the described circuit for GMODn

3 is that it contains about
n type-∧ gates. Hence the lower bound on the number of type-∧ gates given in Sect. 2 is in fact tight.
Another interesting property is that about 2n/3 of all input variables of the circuit have out-degree 1.

We used SAT-solvers in order to find the block given in Fig. 4. Namely, we encoded a statement of
existence of a circuit computing a particular function and having a particular number of gates as a CNF
formula and then ran different SAT-solvers on it. Interestingly, it is a very difficult task for modern SAT-
solvers to find a circuit containing even a small number of gates. This is because the number of different
circuits as a function of the number of gates grows extremely fast. We found the presented block by a
long sequence of experiments with different restrictions on the considered circuits. For example, we put the
following restrictions: a) there is a path through all the gates of the block; b) the out-degree of any gate is
at most 2.

6 Conclusions and further directions

The first natural question is to find the exact circuit complexity of MODn
3 . To do this one has to prove either

a greater lower bound or a smaller upper bound. One way to prove a stronger than 2.5n lower bound
is, for example, to prove that 5X(C) + 4A(C) ≥ 12n. This would imply a 2.6n lower bound. Note that
eliminating five type-⊕ gates by assigning two variables reduces such a measure by 25 while eliminates only
2.5 gates for each of the eliminated variables. In other words, the measure captures the fact that the cases

7

xk+1 xk+2 xk+3z1z2

≡g1

∨g2

⊕g3

⊕g4

≡g5

∧g6

¬

≡g7

≡g8

∧g9

¬

z′2z′1

xk+1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xk+2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

xk+3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

g2 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

g3 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

g4 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

g5 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1

g6 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0

g7 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

g8 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1

g9 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′2 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

Figure 4: An inductive block for MOD3 and its truth table.

8

when only type-⊕ gates are eliminated are good for us, since we know that a circuit must contain about n
type-∧ gates. One of the cases for which we currently cannot guarantee the required complexity decrease is
the case when a xor of a big number of variables is computed at the top of a circuit. Of course, one could
use other coefficients for X(C) and A(C). One could also try to use the idea proposed by Zwick [12]: the
measure depends also on the number of out-degree 1 variables of a circuit (note however that it is used for
the basis U2).

We made a lot of experiments, but have failed to find an inductive block providing smaller than 3n upper
bound for MODn

3 . An optimal circuit however is not necessarily constructed from inductive blocks. Note
also that our method of finding such blocks will not work for bigger values of p, just because one needs many
bits to encode a large number. In most cases however SAT-solvers were not able to solve a formula that
we constructed, just because our reduction produces large formulas. Probably the reduction we used can
be somehow improved. Also, it would be interesting to implement an efficient program for finding optimal
circuits without using reductions to SAT. As said in the introduction, we still do not know the relation
between C(MODn

p) and C(MODn
q) for primes p < q. Intuitively, it seems that MODn

p is not harder than
MODn

q . Recall also that all symmetric functions can be computed by circuits of size at most 5n + o(n).
A similar question about depth of such functions is stated in [2]. An apparently simpler question is the
following: Is it true that all functions from GMODn

p have roughly the same circuit complexity? I.e., does
there exist a constant c = c(p) such that for any two functions f1, f2 ∈ GMODn

p , |C(f1) − C(f2)| ≤ c?

Acknowledgments

The authors would like to thank Edward A. Hirsch for valuable comments.

References

[1] Norbert Blum. A Boolean function requiring 3n network size. Theoretical Computer Science, (28):337–
345, 1984.

[2] Andrew Chin. One the depth complexity of the counting functions. Information Processing Letters,
35:325–328, 1990.

[3] Michael J. Fischer, Albert R. Meyer, and Michael S. Paterson. Ω(n log n) lower bounds on length of
Boolean formulas. SIAM Journal on Computing, 11:416–427, 1982.

[4] Kazuo. Iwama, Oded Lachish, Hiroki Morizumi, and Ran Raz. An explicit lower bound of 5n− o(n) for
boolean circuits. In Proceedings of 33rd STOC, pages 399–408, 2001.

[5] Valerii M. Khrapchenko. Complexity of the realization of a linear function in the case of Π-circuits.
Math. Notes Acad. Sciences, 9(1):35–40, 1971.

[6] Roshal G. Nigmatullin. Slognost’ bulevikh funktsii. M. Nauka, 1991. In Russian.

[7] Michael S. Paterson and Uri Zwick. Shallow circuits and concise formulae for multiple addition and
multiplication. Computational Complexity, 3:262–291, 1993.

[8] Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean functions. SIAM

Journal of Computing, 6(3):427–433, 1977.

[9] Claus-Peter Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Com-

puting, 13:155–171, 1974.

[10] Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean functions. Math-

ematical Systems Theory, 10:323–336, 1977.

9

[11] Dirk Cornelis van Leijenhorst. A note on the formula size of the “mod k” functions. Information

Processing Letters, 24:223–224, 1987.

[12] Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric boolean functions
over the basis of unate dyadic Boolean functions. SIAM Journal on Computing, 20:499–505, 1991.

10

