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ABSTRACT

Let Hol(B,,) denote the space of holomorphic functions in the unit ball B, of C*, n > 1.
Given X C Hol(B,) and 0 < ¢ < oo, a well-known problem is to characterize the positive
measures 4 on B, such that X C L%(B,, ). We obtain such a characterization when X is
the Bloch space B(B,,) and p is a radial measure. Also, we solve the problem when X is the
growth space A718(B,) or X is the growth space A=#(B,), 8 > 0.
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1. INTRODUCTION

Let n € N and let Hol(B,,) denote the space of holomorphic functions in the unit ball
B,={2z€C": |z| <1}.

Carleson measures. Let X C Hol(B,) and let 0 < ¢ < oco. By definition, a positive
measure p on the ball B, is called g-Carleson for X if X C LY(B,, u). Given X C Hol(B,),
a well-known problem is to characterize the ¢-Carleson measures for X. Carleson [2] solved
the problem when X is the Hardy space H?(B;). By now, characterizations of the ¢g-Carleson
measures are known for various classical spaces X of holomorphic functions. In the present
paper, we study the ¢-Carleson measures for the Bloch space B(B,). Recall that f € B(B,)
if and only if f € Hol(B,) and

[f1l88.) = [£(0)] + sup (1 = [2])[Rf(2)] < oo,

z€B),

where

is the radial derivative of f. Remark that
Rf(2) = kfi(2), z€ By,
k=0

if f(z) =Y 1oy fu(2), 2 € B,, is the homogeneous expansion of f € Hol(B,). The Bloch
space B(B,,) is closely related with the growth space A~1°8(B,,). By definition, f € A~1°8(B,)
if and only if f € Hol(B,) and

) /()
1Fr0e = 500 3 = o)

< 00.

It is well-known that B(B,) C A~ 1°8(B,). Also, we consider the growth spaces A~?(B,),
B> 0. Given 3 > 0, the space A~9(B,,) consists of those f € Hol(B,) for which

1715 = sup 1)1 = [2l)° < oo,
z€B),
Remark that B(B,), A~¢(B,) and A~?(B,), 3 > 0, are Banach spaces with the above
norms.

Given 0 < ¢ < oo, Girela, Peldez, Pérez-Gonzilez and Réttyé [5] obtained various results
about the ¢g-Carleson measures for B(B;). Also, the g-Carleson measures for A~1°8(B;) are
characterized in [5]. In this paper, we focus our attention on the case of arbitrary dimension
n. For n € N, we describe the radial ¢g-Carleson measures for the Bloch space B(B,,), and we
obtain characterizations of the g-Carleson measures for A~°¢(B,,) and for A=#(B,), 3 > 0.
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Aleksandrov—Ryll-Wojtaszczyk polynomials. Ryll and Wojtaszczyk [10] constructed
holomorphic polynomials which proved to be very useful for many problems of function
theory in the unit ball (see, e.g., [9]). The results of the present paper are based on the
following improvement of the Ryll-Wojtaszczyk theorem.

Theorem 1.1 (Aleksandrov [1, Theorem 4]). Let n € N. Then there exist § = §(n) € (0,1)
and J = J(n) € N with the following property: For every d € N, there exist holomorphic
homogeneous polynomials W;[d] of degree d, 1 < j < J, such that

(1.1) IW;ldllle~@p,) < 1 and
(1.2) 1r£18L<XJ|VV[ 1(Q)] = 0 forall ¢ € OB,,.

2. CARLESON MEASURES FOR THE BLOCH SPACE

Proposition 2.1. Let 0 < g < oo and let u be a q-Carleson measure for B(B,,). Then

(2.1) / (log =P |)g du(z) < oo.

Proof. Let the constant 6(n) € (0,1) and the polynomials W;[d], 1 < j < J(n), d € N, be
those provided by Theorem 1.1. For k € Z, let Ry denote the Rademacher function:

Ry (t) = signsin(2¥17t), ¢ € [0,1].

For each non-diadic ¢t € [0, 1], consider the functions
= iRk(t)Wj[Qk](z), 2z € By, 1<j<J(n).
o
Estimate (1.1) guarantees that
(1= DR < (1~ ) 02l <21 ) Y " <2
k=0 m=1

for all z € B,. We have (RF};)(0) = 0, hence, ||Fj:||5,) < 2. By assumption, B(B,) C
L9(B,, i), thus, applying the closed graph theorem, we obtain

/ B2 dpu(z) < ClE; s, <€ 1< < J(n),
By

Changing the order of integration, we have

//| 2l dt dp(2) // Fu()tdu(z)dt <C, 1< < J(n).

[12, Chapter V, Theorem 8.4] guarantees that

Ln<§jwwj[2k1<z>|2> e <c/n/\ 2lidtdu(z) < C.
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Given positive numbers a;, 1 < j < J(n), we have

J(n) 2 J(n)

Zaj < Cyn Za}lﬂ.

j=1 j=1

Hence,
J(n) oo : J(n) o0 3
[ XY mier] de < e [ <Z|Wj[2’“](z)\2> (2)
n \ j=1 k=0 j=1“Bn \ k=0

< CJ(n)
< C.

Since W;[2¥] is a homogeneous polynomial of degree 2%, estimate (1.2) guarantees that

oo J(n) 19 o 2
m 1
S N W) =62 [T =60 2™ _ 2 log 2 € B,.
m
k=0 m=1

, 1—|z%
k=0 j=1
1 2

Finally, remark that 1 € B(B,,), thus, p is a finite measure. So, (2.1) holds. O

So,

)

Proposition 2.2. Let 0 < g < 0o and let

(2.2) / (log . _€|Z|)q dp(z) < oco.

Then w is a q-Carleson measure for B(By,).

Proof. 1f (2.2) holds, then A~1°8(B,) C L4(B,, n) by the definition of A~'°¢(B,,). It remains
to recall that B(B,) C A™1°8(B,). O

For n = 1, relations between (2.1) and (2.2) are discussed in [5].
Let o, denote the normalized Lebesgue measure on the sphere 0B,,. The following lemma
will be used to characterize the radial g-Carleson measures for B(B,,), n € N.

Lemma 2.3. Let 0 < g < co. Then

N

(2.3 [ 10010 (6) < s (1og

for all f € B(B,).

e
> , 0<r<l,
1—r
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n). Given ¢ € B, put fc(A) = f(X() for A € B;. So, fc € Hol(By).
¢) = Afi(N), hence,

'\ < 4
\ﬁ;af/%'fd ) < 4l flls.)

Proof. Let f € B(B
Remark that (Rf)(

by the maximum principle. Also, we have
sup (1= [AD[fA)] <2 sup (1= [ACDIRAQ] < 2/ fll5s.)-

1/2<]A|<1 1/2<]A|<1

Since f¢(0) = f(0), we obtain || f¢||ss,) < C| fllas,) for all ( € 0B5,.
Now, remark that Clunie and MacGregor [3] and Makarov [6] proved (2.3) for n = 1. So,
applying [8, Proposition 1.4.7], we obtain

[ iearane = [ [ oo dn )

¢ [ Vel (1os 755 ) dot)

o\
< Clfllaca, (106 =)

for 0 <r < 1, as required. O

IN

A

Theorem 2.4. Let 0 < g < oo and let p be a positive measure on [0,1). Then the following
properties are equivalent:

(2.4) / /a FErON don(Q) dp(r) < oo for all f € B(B.);

(2.5) /01 <log1ir)gdp(r) < .

Proof. Let (2.5) holds. Assume that f € B(B,,), then

[ ] 1o, ds < s, [ (los 151 ) " dotr) <o
0 0By, 0

by Lemma 2.3. So, (2.5) implies (2.4). It remains to remark that the converse implication
holds by Proposition 2.1. O

3. CARLESON MEASURES FOR GROWTH SPACES

The following assertion is the key technical tool for the study of growth spaces. If n =1,
then the first part of Lemma 3.1 is obtained in [7] and [4] for § = 1 and for all § > 0,
respectively. The second part of Lemma 3.1 is obtained in [5] for n = 1.

Lemma 3.1. Let n € N. Then there exists M = M(n) such that the following properties
hold.



(i) Let 8> 0. Then there exist functions f,, € AP(B,), 0 <m < M, such that

(3.1) Z | fn(2) ﬁ 2 € B,.

(ii) There exist functions g, € A~'°¢(B,), 0 < m < M, such that

Z|gm |>logL, z € B,.
2]

The proof of Lemma 3.1 is given in Section 4.

Theorem 3.2. Let 0 < ¢ < oo and let p be a positive measure on B,,.
(i) Let 3> 0. Then p is a q-Carleson measure for A=P(B,) if and only if

dp(2)
(3.2) /Bn 1= |27 < 00

(i) p is a g-Carleson measure for A~'°%(B,,) if and only if

/n <1og1_€‘z|)q du(z) < oco.

Proof. Assume that (3.2) holds. If f € A=%(B,), then
d
| e <, [ 25 <o

To prove the converse implication, suppose that A~°(B,) C L%u). Let the number
M = M (n) and the functions f,,, 0 < m < M, be those provided by Lemma 3.1. Given
positive numbers a,,, 0 < m < M, we have

(3.3) (Zam> < Z al, .
Using (3.1) and (3.3), we obtain
du(z)
Loz < L, <Z'fm ) ie)

S [ o) dutc)

< o0

because f,, € AP(B,) C Li(u). So, (i) holds. The proof of (ii) is analogous, so, we omit
it. U



4. PROOF OF LEMMA 3.1

Proof of Lemma 3.1(1). Let the constant 6(n) € (0,1) and the polynomials W;[d], 1 < j <
J(n), d € N, be those provided by Theorem 1.1. Put

2)=>_ QU MWQF(2), z€ By, 1<) < J(n),
k=0
where ) € N is sufficiently large. Considering the slice functions (F}). € Hol(By), ¢ € 0B,,
and applying (1.1) and the main result in [11], we infer that
IRF;(2)|(1—|2))) <C, z¢€B,.
In other words, RF; € A~#(B,), 1 < j < J(n). Now, put

o0

fi(z) = RF;(2) = Y QMW;[Q"(2), z€ By, 1<j<J(n).

k=0

Claim. For all @) € N large enough, we have

. C
(4.1) ; |£i(2)] = a=1z? for
(4.2) 1-QF<|z|<1-Q */2  LeN.

Proof of the claim. The argument below is similar to that used in the proof of [7, Proposi-
tion 5.4].
For any 2z € B,,, we have

J(n) J(n)

Z\fj 2 ﬁkZIW [@*1(= ZQ"”"IZ\QM J(n) Yy Q="

m=k-+1
- 20—2,—&, ke N.

Remark that, by (1.2),
(4.3) S > 6Q%%2|9, keN.

Below we assume that (4.2) holds. So, we have

Q71/2
k+1/2
(1— Q—k)Qk < |Z|Qk < ((1 _ Q—(k—l—l/Q))Q + ) . keN.

Thus, if @ is large enough, then

1/2

(4.4) 1/3< |29 <279 k €N.
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Therefore, X > 6Q% /3 by (4.3). Also, we have

k—1
WA
m=0

Now, consider the third term. Remark that
2]@7@D < [2|@"@D form >k +1, z € B,.

So, the ratio of two successive terms in > is not greater that the ratio of the first two terms.
Hence, the series X, is dominated by the geometric series having the same first two terms.
Thus, putting © = |z\Qk, we obtain

o

k+1 k+2_ ok+1y\ ™
S0 /J(n) < QUFIILRTT ST <Qﬁ|2|(Q+ Q*))

m=0

Q(/Hrl)ﬂ|Z|Q’“+1
1 — QB|z|(@2-Q 1)

o e
1_Qﬁx(Q2*Q)
_N1/2

< Q27

1 — QB2AQ*—Q¥?)

by (4.4). In sum, we have

) 1
1> 208 — Bk+1/2) ~
Z'fj 19 = 2
if () is sufficiently large and z satisfies (4.2). The proof of the claim is complete. O
Similarly, let
Frmei(2) =D QUETVIWQMP)(2), z€ B,, 1<j < J(n).
k=0

where @ = ¢* and ¢ € N. If ¢ is sufficiently large, then f;(,+; € A™?(B,) and

J(n) C
(4.5) Z | frmy+i(2)] = A= [2)7? for
(4.6) 1-Q <’“+1/2> <lz] <1-Q * Y keN.

The proof of the above estimate is analogous to that of the claim; so, we omit it.
Now, fix @) so large that (4.1) and (4.5) hold under assumptions (4.2) and (4.6), respec-
tively. Put M = 2J(n) and multiply the functions f,,, 1 < m < M, by a sufficiently large



constant. Then

Z‘fm \_ ||) for 1 - Q' <|z] < 1.

It remains to define fo Q. The proof of Lemma 3.1(i) is complete. O
Proof of Lemma 3.1(ii). Put

=S QW) € By 1< < J(n),
k=0

where the notation from the proof of Lemma 3.1(i) is used. Then g; € A7°8(B,), 1 <
Jj < J(n), by Theorem 12 from [5]. The argument used in the proof of Theorem 2 from [5]
guarantees that

J(n)

> lg;(2)] = Clog

J=1

for 1 — Q9" < |z <1-Q """ keN,

1
1= ||

if @ € N is large enough (see also the proof of Lemma 3.1(i)).
Similarly, let

Gromss(2) = S QEIWQAG) e By 1< < J(n).
k=0

where Q = ¢? and ¢ € N. If ¢ is large enough, then g;(,); € A~'°8(B,,) and

1
Z|gJ(n+] |>Clog ‘ | fOl"l—Q_Q(k+1/2)<| |<1_Q Qk+1) L cN.
z
To ﬁmSh the proof, put M = 2J(n) and fy = C' > 0, where the constant C' is sufficiently
large. Al
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