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Abstract

Let Hol(Bn) denote the space of holomorphic functions in the unit ball Bn of Cn, n ≥ 1.
Given X ⊂ Hol(Bn) and 0 < q < ∞, a well-known problem is to characterize the positive
measures µ on Bn such that X ⊂ Lq(Bn, µ). We obtain such a characterization when X is
the Bloch space B(Bn) and µ is a radial measure. Also, we solve the problem when X is the
growth space A− log(Bn) or X is the growth space A−β(Bn), β > 0.
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1. Introduction

Let n ∈ N and let Hol(Bn) denote the space of holomorphic functions in the unit ball
Bn = {z ∈ Cn : |z| < 1}.

Carleson measures. Let X ⊂ Hol(Bn) and let 0 < q < ∞. By definition, a positive
measure µ on the ball Bn is called q-Carleson for X if X ⊂ Lq(Bn, µ). Given X ⊂ Hol(Bn),
a well-known problem is to characterize the q-Carleson measures for X. Carleson [2] solved
the problem when X is the Hardy space Hq(B1). By now, characterizations of the q-Carleson
measures are known for various classical spaces X of holomorphic functions. In the present
paper, we study the q-Carleson measures for the Bloch space B(Bn). Recall that f ∈ B(Bn)
if and only if f ∈ Hol(Bn) and

‖f‖B(Bn) = |f(0)| + sup
z∈Bn

(1 − |z|)|Rf(z)| < ∞,

where

Rf(z) =
n
∑

j=1

zj
∂f

∂zj
(z), z ∈ Bn,

is the radial derivative of f . Remark that

Rf(z) =
∞
∑

k=0

kfk(z), z ∈ Bn,

if f(z) =
∑∞

k=0 fk(z), z ∈ Bn, is the homogeneous expansion of f ∈ Hol(Bn). The Bloch
space B(Bn) is closely related with the growth space A− log(Bn). By definition, f ∈ A− log(Bn)
if and only if f ∈ Hol(Bn) and

‖f‖− log = sup
z∈Bn

|f(z)|

log(e/(1 − |z|))
< ∞.

It is well-known that B(Bn) ⊂ A− log(Bn). Also, we consider the growth spaces A−β(Bn),
β > 0. Given β > 0, the space A−β(Bn) consists of those f ∈ Hol(Bn) for which

‖f‖−β = sup
z∈Bn

|f(z)|(1 − |z|)β < ∞.

Remark that B(Bn), A− log(Bn) and A−β(Bn), β > 0, are Banach spaces with the above
norms.

Given 0 < q < ∞, Girela, Peláez, Pérez-González and Rättyä [5] obtained various results
about the q-Carleson measures for B(B1). Also, the q-Carleson measures for A− log(B1) are
characterized in [5]. In this paper, we focus our attention on the case of arbitrary dimension
n. For n ∈ N, we describe the radial q-Carleson measures for the Bloch space B(Bn), and we
obtain characterizations of the q-Carleson measures for A− log(Bn) and for A−β(Bn), β > 0.
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Aleksandrov–Ryll–Wojtaszczyk polynomials. Ryll and Wojtaszczyk [10] constructed
holomorphic polynomials which proved to be very useful for many problems of function
theory in the unit ball (see, e.g., [9]). The results of the present paper are based on the
following improvement of the Ryll–Wojtaszczyk theorem.

Theorem 1.1 (Aleksandrov [1, Theorem 4]). Let n ∈ N. Then there exist δ = δ(n) ∈ (0, 1)
and J = J(n) ∈ N with the following property: For every d ∈ N, there exist holomorphic
homogeneous polynomials Wj [d] of degree d, 1 ≤ j ≤ J , such that

‖Wj [d]‖L∞(∂Bn) ≤ 1 and(1.1)

max
1≤j≤J

|Wj [d](ζ)| ≥ δ for all ζ ∈ ∂Bn.(1.2)

2. Carleson measures for the Bloch space

Proposition 2.1. Let 0 < q < ∞ and let µ be a q-Carleson measure for B(Bn). Then

(2.1)

∫

Bn

(

log
e

1 − |z|

)
q
2

dµ(z) < ∞.

Proof. Let the constant δ(n) ∈ (0, 1) and the polynomials Wj [d], 1 ≤ j ≤ J(n), d ∈ N, be
those provided by Theorem 1.1. For k ∈ Z+, let Rk denote the Rademacher function:

Rk(t) = sign sin(2k+1πt), t ∈ [0, 1].

For each non-diadic t ∈ [0, 1], consider the functions

Fj,t(z) =
∞
∑

k=0

Rk(t)Wj [2
k](z), z ∈ Bn, 1 ≤ j ≤ J(n).

Estimate (1.1) guarantees that

(1 − |z|)|(RFj,t)(z)| ≤ (1 − |z|)

∞
∑

k=0

2k|z|2
k

≤ 2(1 − |z|)

∞
∑

m=1

|z|m ≤ 2

for all z ∈ Bn. We have (RFj,t)(0) = 0, hence, ‖Fj,t‖B(Bn) ≤ 2. By assumption, B(Bn) ⊂
Lq(Bn, µ), thus, applying the closed graph theorem, we obtain

∫

Bn

|Fj,t(z)|q dµ(z) ≤ C‖Fj,t‖
q
B(Bn) ≤ C, 1 ≤ j ≤ J(n).

Changing the order of integration, we have
∫

Bn

∫ 1

0

|Fj,t(z)|q dt dµ(z) =

∫ 1

0

∫

Bn

|Fj,t(z)|q dµ(z) dt ≤ C, 1 ≤ j ≤ J(n).

[12, Chapter V, Theorem 8.4] guarantees that

∫

Bn

(

∞
∑

k=0

|Wj[2
k](z)|2

)
q
2

dµ(z) ≤ C

∫

Bn

∫ 1

0

|Fj,t(z)|q dt dµ(z) ≤ C.



4

Given positive numbers aj , 1 ≤ j ≤ J(n), we have





J(n)
∑

j=1

aj





q
2

≤ Cq,n

J(n)
∑

j=1

a
q/2
j .

Hence,

∫

Bn





J(n)
∑

j=1

∞
∑

k=0

|Wj [2
k](z)|2





q
2

dµ(z) ≤ C

J(n)
∑

j=1

∫

Bn

(

∞
∑

k=0

|Wj[2
k](z)|2

)
q
2

dµ(z)

≤ CJ(n)

≤ C.

Since Wj [2
k] is a homogeneous polynomial of degree 2k, estimate (1.2) guarantees that

∞
∑

k=0

J(n)
∑

j=1

|Wj[2
k](z)|2 ≥ δ2

∞
∑

k=0

|z|2
k+1

≥ δ2
∞
∑

m=1

|z|2m

m
= δ2 log

1

1 − |z|2
, z ∈ Bn.

So,
∫

Bn

(

log
1

1 − |z|2

)
q
2

dµ(z) < ∞.

Finally, remark that 1 ∈ B(Bn), thus, µ is a finite measure. So, (2.1) holds. �

Proposition 2.2. Let 0 < q < ∞ and let

(2.2)

∫

Bn

(

log
e

1 − |z|

)q

dµ(z) < ∞.

Then µ is a q-Carleson measure for B(Bn).

Proof. If (2.2) holds, then A− log(Bn) ⊂ Lq(Bn, µ) by the definition of A− log(Bn). It remains
to recall that B(Bn) ⊂ A− log(Bn). �

For n = 1, relations between (2.1) and (2.2) are discussed in [5].
Let σn denote the normalized Lebesgue measure on the sphere ∂Bn. The following lemma

will be used to characterize the radial q-Carleson measures for B(Bn), n ∈ N.

Lemma 2.3. Let 0 < q < ∞. Then

(2.3)

∫

∂Bn

|f(rζ)|q dσn(ζ) ≤ C‖f‖B(Bn)

(

log
e

1 − r

)
q
2

, 0 ≤ r < 1,

for all f ∈ B(Bn).
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Proof. Let f ∈ B(Bn). Given ζ ∈ Bn, put fζ(λ) = f(λζ) for λ ∈ B1. So, fζ ∈ Hol(B1).
Remark that (Rf)(λζ) = λf ′

ζ(λ), hence,

max
|λ|≤1/2

|f ′
ζ(λ)| ≤ 4‖f‖B(Bn)

by the maximum principle. Also, we have

sup
1/2<|λ|<1

(1 − |λ|)|f ′
ζ(λ)| ≤ 2 sup

1/2<|λ|<1

(1 − |λζ |)|(Rf)(λζ)| ≤ 2‖f‖B(Bn).

Since fζ(0) = f(0), we obtain ‖fζ‖B(B1) ≤ C‖f‖B(Bn) for all ζ ∈ ∂Bn.
Now, remark that Clunie and MacGregor [3] and Makarov [6] proved (2.3) for n = 1. So,

applying [8, Proposition 1.4.7], we obtain
∫

∂Bn

|f(rζ)|q dσn(ζ) =

∫

∂Bn

∫

∂B1

|fζ(rw)|q dσ1(w) dσn(ζ)

≤ C

∫

∂Bn

‖fζ‖B(B1)

(

log
e

1 − r

)
q
2

dσn(ζ)

≤ C‖f‖B(Bn)

(

log
e

1 − r

)
q
2

for 0 ≤ r < 1, as required. �

Theorem 2.4. Let 0 < q < ∞ and let ρ be a positive measure on [0, 1). Then the following
properties are equivalent:

∫ 1

0

∫

∂Bn

|f(rζ)|q dσn(ζ) dρ(r) < ∞ for all f ∈ B(Bn);(2.4)

∫ 1

0

(

log
e

1 − r

)
q
2

dρ(r) < ∞.(2.5)

Proof. Let (2.5) holds. Assume that f ∈ B(Bn), then
∫ 1

0

∫

∂Bn

|f(rζ)|q dσn(ζ) dρ(r) ≤ C‖f‖B(Bn)

∫ 1

0

(

log
e

1 − |z|

)
q
2

dρ(r) < ∞

by Lemma 2.3. So, (2.5) implies (2.4). It remains to remark that the converse implication
holds by Proposition 2.1. �

3. Carleson measures for growth spaces

The following assertion is the key technical tool for the study of growth spaces. If n = 1,
then the first part of Lemma 3.1 is obtained in [7] and [4] for β = 1 and for all β > 0,
respectively. The second part of Lemma 3.1 is obtained in [5] for n = 1.

Lemma 3.1. Let n ∈ N. Then there exists M = M(n) such that the following properties
hold.
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(i) Let β > 0. Then there exist functions fm ∈ A−β(Bn), 0 ≤ m ≤ M , such that

(3.1)

M
∑

m=0

|fm(z)| ≥
1

(1 − |z|)β
, z ∈ Bn.

(ii) There exist functions gm ∈ A− log(Bn), 0 ≤ m ≤ M , such that

M
∑

m=0

|gm(z)| ≥ log
e

1 − |z|
, z ∈ Bn.

The proof of Lemma 3.1 is given in Section 4.

Theorem 3.2. Let 0 < q < ∞ and let µ be a positive measure on Bn.

(i) Let β > 0. Then µ is a q-Carleson measure for A−β(Bn) if and only if

(3.2)

∫

Bn

dµ(z)

(1 − |z|)βq
< ∞.

(ii) µ is a q-Carleson measure for A− log(Bn) if and only if
∫

Bn

(

log
e

1 − |z|

)q

dµ(z) < ∞.

Proof. Assume that (3.2) holds. If f ∈ A−β(Bn), then
∫

Bn

|f(z)|q dµ(z) ≤ ‖f‖q
−β

∫

Bn

dµ(z)

(1 − |z|)βq
< ∞.

To prove the converse implication, suppose that A−β(Bn) ⊂ Lq(µ). Let the number
M = M(n) and the functions fm, 0 ≤ m ≤ M , be those provided by Lemma 3.1. Given
positive numbers am, 0 ≤ m ≤ M , we have

(3.3)

(

M
∑

m=0

am

)q

≤ Cq,n

M
∑

m=0

aq
m.

Using (3.1) and (3.3), we obtain

∫

Bn

dµ(z)

(1 − |z|)βq
≤

∫

Bn

(

M
∑

m=0

|fm(z)|

)q

dµ(z)

≤ Cq,n

M
∑

m=0

∫

Bn

|fm(z)|q dµ(z)

< ∞

because fm ∈ A−β(Bn) ⊂ Lq(µ). So, (i) holds. The proof of (ii) is analogous, so, we omit
it. �
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4. Proof of Lemma 3.1

Proof of Lemma 3.1(i). Let the constant δ(n) ∈ (0, 1) and the polynomials Wj[d], 1 ≤ j ≤
J(n), d ∈ N, be those provided by Theorem 1.1. Put

Fj(z) =

∞
∑

k=0

Q(β−1)kWj [Q
k](z), z ∈ Bn, 1 ≤ j ≤ J(n),

where Q ∈ N is sufficiently large. Considering the slice functions (Fj)ζ ∈ Hol(B1), ζ ∈ ∂Bn,
and applying (1.1) and the main result in [11], we infer that

|RFj(z)|(1 − |z|)β ≤ C, z ∈ Bn.

In other words, RFj ∈ A−β(Bn), 1 ≤ j ≤ J(n). Now, put

fj(z) = RFj(z) =
∞
∑

k=0

QβkWj[Q
k](z), z ∈ Bn, 1 ≤ j ≤ J(n).

Claim. For all Q ∈ N large enough, we have

(4.1)

J(n)
∑

j=1

|fj(z)| ≥
C

(1 − |z|)β
for

(4.2) 1 − Q−k ≤ |z| ≤ 1 − Q−(k+1/2), k ∈ N.

Proof of the claim. The argument below is similar to that used in the proof of [7, Proposi-
tion 5.4].

For any z ∈ Bn, we have

J(n)
∑

j=1

|fj(z)| ≥ Qβk

J(n)
∑

j=1

|Wj [Q
k](z)| − J(n)

k−1
∑

m=0

Qβm|z|Q
m

− J(n)

∞
∑

m=k+1

Qβm|z|Q
m

= Σ0 − Σ− − Σ+, k ∈ N.

Remark that, by (1.2),

(4.3) Σ0 ≥ δQβk|z|Q
k

, k ∈ N.

Below we assume that (4.2) holds. So, we have

(1 − Q−k)Qk

≤ |z|Q
k

≤

(

(

1 − Q−(k+1/2)
)Qk+1/2

)Q−1/2

, k ∈ N.

Thus, if Q is large enough, then

(4.4) 1/3 ≤ |z|Q
k

≤ 2−Q−1/2

, k ∈ N.
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Therefore, Σ0 ≥ δQβk/3 by (4.3). Also, we have

Σ− ≤ J(n)

k−1
∑

m=0

Qβm ≤
J(n)Qβk

Q − 1
.

Now, consider the third term. Remark that

|z|Q
m(Q−1) ≤ |z|Q

k+1(Q−1) for m ≥ k + 1, z ∈ Bn.

So, the ratio of two successive terms in Σ+ is not greater that the ratio of the first two terms.
Hence, the series Σ+ is dominated by the geometric series having the same first two terms.

Thus, putting x = |z|Q
k
, we obtain

Σ+/J(n) ≤ Q(k+1)β |z|Q
k+1

∞
∑

m=0

(

Qβ|z|(Q
k+2−Qk+1)

)m

=
Q(k+1)β |z|Q

k+1

1 − Qβ|z|(Qk+2−Qk+1)

= Qkβ QβxQ

1 − Qβx(Q2−Q)

≤ Qkβ Qβ2−Q1/2

1 − Qβ2(Q1/2−Q3/2)

by (4.4). In sum, we have

J(n)
∑

j=1

|fj(z)| ≥
δ

4
Qβk =

δ

4Qβ/2
Qβ(k+1/2) ≥

δ

4Qβ/2

1

(1 − |z|)β

if Q is sufficiently large and z satisfies (4.2). The proof of the claim is complete. �

Similarly, let

fJ(n)+j(z) =

∞
∑

k=0

Qβ(k+1/2)Wj [Q
k+1/2](z), z ∈ Bn, 1 ≤ j ≤ J(n).

where Q = q2 and q ∈ N. If q is sufficiently large, then fJ(n)+j ∈ A−β(Bn) and

J(n)
∑

j=1

|fJ(n)+j(z)| ≥
C

(1 − |z|)β
for(4.5)

1 − Q−(k+1/2) ≤ |z| ≤ 1 − Q−(k+1), k ∈ N.(4.6)

The proof of the above estimate is analogous to that of the claim; so, we omit it.
Now, fix Q so large that (4.1) and (4.5) hold under assumptions (4.2) and (4.6), respec-

tively. Put M = 2J(n) and multiply the functions fm, 1 ≤ m ≤ M , by a sufficiently large
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constant. Then
M
∑

m=1

|fm(z)| ≥
1

(1 − |z|)β
for 1 − Q−1 ≤ |z| < 1.

It remains to define f0 ≡ Q. The proof of Lemma 3.1(i) is complete. �

Proof of Lemma 3.1(ii). Put

gj(z) =
∞
∑

k=0

QkWj [Q
Qk

](z), z ∈ Bn, 1 ≤ j ≤ J(n),

where the notation from the proof of Lemma 3.1(i) is used. Then gj ∈ A− log(Bn), 1 ≤
j ≤ J(n), by Theorem 12 from [5]. The argument used in the proof of Theorem 2 from [5]
guarantees that

J(n)
∑

j=1

|gj(z)| ≥ C log
1

1 − |z|
for 1 − Q−Qk

≤ |z| ≤ 1 − Q−Q(k+1/2)

, k ∈ N,

if Q ∈ N is large enough (see also the proof of Lemma 3.1(i)).
Similarly, let

gJ(n)+j(z) =
∞
∑

k=0

Q(k+1/2)Wj [Q
Q(k+1/2)

](z), z ∈ Bn, 1 ≤ j ≤ J(n).

where Q = q2 and q ∈ N. If q is large enough, then gJ(n)+j ∈ A− log(Bn) and

J(n)
∑

j=1

|gJ(n)+j(z)| ≥ C log
1

1 − |z|
for 1 − Q−Q(k+1/2)

≤ |z| ≤ 1 − Q−Q(k+1)

, k ∈ N.

To finish the proof, put M = 2J(n) and f0 ≡ C > 0, where the constant C is sufficiently
large. �
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