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ABSTRACT. The paper presents new two-sided bounds for the infinity norm of the inverse
for the so-called PM-matrices, which form a subclass of the class of nonsingular M-matrices
and contain the class of strictly diagonally dominant matrices. These bounds are shown to
be monotone with respect to the underlying partitioning of the index set, and the equality
cases are analyzed. Also an upper bound for the infinity norm of the inverse of a P H-matrix
(whose comparison matrix is a PM-matrix) is derived. The known Ostrowski, Ahlberg—
Nilson—Varah, Moraca, and Huang bounds are shown to be special cases of the upper bound
obtained. Bibliography: 14 titles.



1 Introduction and preliminaries

The problem of bounding the infinity norm of the inverse of a nonsingular matrix satisfying
certain assumptions was considered in a number of publications (e.g., see [1, 13, 14, 2, 12,
9, 10, 8, 5]).

The present paper considers the problem of bounding ||A™"|| for the so-called PM- and
PH-matrices A, which form subclasses of the classes of nonsingular M- and H-matrices,
respectively, and are defined below.

Let A = (a;;) € C™™, m > 1, and let

n
(m) :U M;, 1<n<m, (1.1)

i=1
be a partitioning of the index set (m) = {1,...,m} into disjoint nonempty subsets. Denote
Aij = AIM;, Mj], 4,5 =1,...,n, (1.2)

and represent A in the following block form:

All A12 Aln
A — A21 A22 A2n (13)
Anl An2 Ann

Throughout the paper, for a real ¢ x s matrix A = (a;;), we denote

ri(A) =) ay, i=1,....t, (1.4)
j=1

so that r;(A) stands for the ith row sum of the entries of A.
If A e C™™, m > 1, then its comparison matrix M(A) = (m;;) is defined by the

relations @ o
aij ) t=17,
mg; = .
Y { —lail, i # .
A complex matrix A is said to be an H-matrix if M(A) is a nonsingular M-matrix.
Recall that if A is an H-matrix, then (e.g., see [4, p. 131]) it is nonsingular. Furthermore,

by the Ostrowski theorem [11] (also see [4, p. 131]), the inverse matrices A~! and M(A)™!
are interrelated as follows.

Theorem 1.1. Let A € C™™, m > 1, be an H-matriz. Then
A1 < M(A) (1.5)

In (1.5) and throughout the paper, for A = (a;;) € C™*™ we set |A| = (]a;j|), and, in the
real case, matrix and vector inequalities are understood componentwise.
Introduce the following definitions, basic for the present paper.

Given a matrix A € C™*™ m > 1, and a partitioning of the index set (m) = {1,...,m},
n

(m) = UMi’ 1<n<m, (1.6)
i=1



into disjoint nonempty subsets, represent A in the form (1.2)—(1.3) and define the following
collection of my x --- x m,, aggregated matrices of order n:

i, (AH) i (Alg) A i, (Aln)
AGinein) = | TalAn) i(de) o (dm) e o )
Tz'n (Anl) ’I“in (Ang) e Tz'n (Ann)

Here, m; = |M;|, i=1,...,n.

We say that A is a PM-matriz (partitioned M-matrix) with respect to the partitioning
(1.6) if A is a Z-matrix (i.e., its off-diagonal entries are nonpositive) and all the matrices
Alesin) g€ My, k = 1,...,n, defined in accordance with (1.7) are nonsingular M-
matrices. Also we say that A is a PH-matriz (with respect to the partitioning (1.6)) if
M(A) is a PM-matrix (with respect to the same partitioning).

Obviously, a matrix A is a PM-matrix (P H-matrix) with respect to the finest (pointwise)
partitioning (m) = [J;~ {i} if and only if A is a nonsingular M-matrix (an H-matrix). On
the other hand, for the coarsest partitioning (m) = M; with n = 1, A is a PH-matrix if and
only if it is strictly diagonally dominant (sdd).

In [7], the following result was established.

Theorem 1.2. If A € C™*™ m > 1, is a PH-matriz with respect to a partitioning (m) =
Ui, M, 1 < n <m, of the index set into disjoint nonempty subsets, then A is an H-matriz.

In particular, for a PM-matrix, which is a Z-matrix by definition, Theorem 1.2 implies
the following result.

Corollary 1.1. If A € R™™ m > 1, is a PM-matriz with respect to a partitioning
(my = Ui_, M;, 1 < n < m, of the index set into disjoint nonempty subsets, then A is a
nonsingular M-matrix.

Thus, PM- and P H-matrices are nonsingular, and the problem of bounding their inverses
naturally arises. This problem is considered in the present paper, which is organized as
follows. Section 2 deals with PM-matrices. The first main result (Theorem 2.1) states that
the infinity norm of the inverse of a PM-matrix satisfies the following two-sided bounds in
terms of the aggregated matrices (1.7):

min [[[AT] T < AT | < max |[[AG) T (1.8)
01 yeenyln 1yeensin
For an irreducible matrix A, the cases of equalities in (1.8) are also described.

The second result on PAM-matrices (Theorem 2.2) states that the bounds (1.8) are mono-
tone with respect to the underlying partitioning of the index set, i.e., the finer the partitioning
the tighter the bounds. This result is based on the fact that if a matrix A4 is a PM-matrix
with respect to a partitioning (m) = (J;_, M;, then it also is a PM-matrix with respect to
every partitioning (m) = U:il M/, n’ > n, that is finer than the original one.

Section 3 considers the case of PH-matrices. Based on Theorem 1.1, for a PH-matrix A
from Theorems 2.1 and 2.2 we infer the upper bound

1A oo < max [[[M(A)E] 7|, (1.9)

21 yee0sln

conjectured in [6], and also the monotonicity of this bound with respect to the underlying
partitioning.



Section 4 compares the bounds (1.8) and (1.9) with some known results, obtained in
[1, 13, 3, 9, 10, 6, 5].

We conclude this introduction with two relevant remarks. First, if AT is a PM-matrix
(P H-matrix), then the results established obviously yield two-sided bounds (an upper bound)
for [|[A7!]];. Second, if both A and A" are PH-matrices with respect to some partitionings
of the index set, which may be different, then, in the same way as in [13], one immediately
obtains an upper bound for the spectral norm of A~!, i.e., a lower bound for the smallest
singular value of the original matrix A.

2 Two-sided bounds for PM-matrices

The first main result of this paper is the following theorem.

Theorem 2.1. If A € R™™ m > 1, is a PM-matriz with respect to a partitioning (m) =
U, M;, 1 <n <m, of the index set into disjoint nonempty subsets, then it is a nonsingular
M -matriz, and its inverse satisfies the two-sided bounds

min [[(ACm) Tl < AT | < max [|(ATS) T (2.1)
11 yenyln 1y-05ln
where the minimum and mazimum are taken over all i, € My, k= 1,...,n. Furthermore,
if A is irreducible, then either inequality in (2.1) is an equality if and only if

(A7te),, =cp forall iy € My, k=1,...,n, (2.2)

k

where e = [1,...,1]" is the unit vector of appropriate dimension; otherwise both inequalities
in (2.1) hold strictly.

In order to prove Theorem 2.1, we follow [7] and introduce into consideration the (m —
1) x (m — 1) matrices Agl) and AZ@) that are defined as follows:

Iifl 0 0 Ii,l 0 0
A 0 1 0 o 10
AW = A, o1 o | AP = 4 0 1 o (2.3)
0 0 Ipia 0 0 Iyt

Here and below, [j is the identity matrix of order k, and for a matrix B € C™s, with
t > 2and s > 1, by B; we denote its (f — 1) x s submatrix obtained by deleting the jth
row, j = 1,...,t. The passage from A to the pair AZ(-I), AEZ) is referred to as aggregation
of columns ¢ and 7 + 1 of A. Obviously, the matrices Agl) and AEZ) form the collection of
aggregated matrices associated with the partitioning (m) = (J;',' My, where My, = {k}, k =
L,...,i—=1; My ={i,i+1}; My ={k+1}, k =i+ 1,...,m — 1, and, in terms of the
matrices (1.7), we have
A(_l) _ A(l,...,i,i+2,...,m) A(_2) _ A(l,...,z’—l,i—l—l,...,m).

Thus, by Corollary 1.1, if both AEI) and AZ(-2) are nonsingular M-matrices, then A also is a

nonsingular M-matrix.
The proof of Theorem 2.1 is based on the following lemma.



Lemma 2.1. Let A € R™"™, m > 2, be a nonsingular M-matrix such that for a certain
i, 1 <i<m —1, both matrices AZ(-I) and AZ(-Q) defined in (2.3) are nonsingular M-matrices.
Then

. (k) -1 < -1 < (_lc) -1
min [|(Af) o < 147 oo < ma | (A7)l (24)

Furthermore, if A is irreducible, then either inequality in (2.4) is an equality if and only if
(A7re)i = (A7 e)irs; (2.5)
otherwise both inequalities in (2.4) are strict.

Proof. Permuting (if necessary) the rows and columns of A, we may assume, without loss of
generality, that + = 1 and that

g1 S g2, (26)

where we set ¢ = A~'e. Using (2.3) and (2.6) and taking into account that A is a Z-matrix,
we derive the right-hand-side inequality in (2.4) in the following way:

0]
R 1 0 zz X g2 ) -
APgpi=A |1 0 | =4 B | < Ag=(Ag), =ér. (2.7)
0 Im—2 )
Im o

Since, by assumption, ASZ) is a nonsingular M-matrix, we have (A?))_1 > 0, and (2.7)
implies that
g < (A7) e, (2:8)

whence, with account for (2.6), we obtain
_ ~ 2)\—1 ~ 2)\ —
1A oo = [lglloo = Nd1]loo < I(AP) 1 ]l00 = [[(AP) !l oo.

This proves the right-hand-side inequality in (2.4).
In order to prove the left-hand-side inequality in (2.4), we similarly deduce

vl
10 . o _
AVg=A, 1 0 Dl =A | 9| = Ay = (Ag), = 6, (2.9)
0 1,9 ’
Im | gm |
implying that
> (A0 e 210

By using (2.6) and (2.10), we obtain

_ ~ 1)\ —1 ~ 1)\ —
1A oo = lglloe > ldalloe > (AM) es]l00 = [[(AS) 7Y o

This completes the proof of inequalities (2.4).
In order to analyze the cases of equalities in (2.4), we assume that A is irreducible and
that
147 e = 10AT) !l (2.11)

5



Set

Then we have

]
Uz
1 0 Uz
@, _ i U3 i D
e=A"u=4,1 0 o =A | us | = (A4a),, (2.12)
0 Jnes : :
U, [ |
where we denote
U = [ug, U, Us . . ., Uy
From (2.12) it immediately follows that
«
1
Au=| . | =e+ (a—1ey, (2.13)
1

where e; is the ¢th column of the identity matrix I. Since A is an irreducible M-matrix, its
inverse is positive, and A7 'e; is a positive vector. By (2.13), we have

i=A"e+(a—1DA e =g+ (a—1)A e
Suppose o > 1. Then @ > g and

”ﬂHoo > Hg”oo = HAil”oo’

which contradicts (2.11), because

~ 2)\ —
lifloo = [l = (AP) oo

In a similar fashion, we ascertain that the case o < 1 is impossible as well. Thus, if equality
(2.11) holds true, then o = 1, i.e., & = A~ 'e = g, which implies that g; = go.

Conversely, if g; = go, then §; = g5, and both (2.7) and (2.9) are strings of equalities,
implying that (A)~le = (4!")~te, whence both inequalities in (2.4) are equalities.

The case [|A~!||oo = [[(AY)7Y|o is treated similarly. O

From the proof of Lemma 2.1, we readily infer the following useful result.

Corollary 2.1. If, under the assumptions of Lemma 2.1, the matriz A is irreducible, then
the inequality
2)\— 1)\ —
1A o > 1(A487) oo

18 equivalent to the inequality
gi < Git1, where g= A'e.

Note also that in the second part of Lemma 2.1, the assumption that A is irreducible can
be weakened as follows.



Corollary 2.2. Let A be a nonsingular M-matriz and let AZ@) be a nonsingular M-matriz.
If A~'e; is a positive vector, then

A Yoo = [1(AP) Yoo

if and only if g; = giv1.

Proof of Theorem 2.1. From definitions (1.7) and (2.3) it readily follows that for an arbitrary
partitioning (m) = [JI, M;, with 1 < n < m, each of the aggregated matrices A1) from
the collection (1.7) can be obtained from A as a result of successively aggregating pairs of
consecutive columns. Thus, for every fixed partitioning (m) = (JI_, M;, we obtain a sequence
(which is in general not uniquely determined) of partitionings of the index set, starting with
the entrywise partitioning (m) = |J;*,{i} and terminating with the given one. Note that
the order of the associated aggregated matrices successively decreases from m to n, and, by
Corollary 1.1, all the intermediate aggregated matrices are nonsingular M-matrices. Thus,
the bounds (2.1) stem from Lemma 2.1.

In order to prove the second assertion of Theorem 2.1, let. A be irreducible. First assume
that

JA oo = max [|(ACin)) 71 . (2.14)
Bl yeeeyln

We will show that (2.14) implies (2.2). To this end, it is obviously sufficient to demonstrate
that if | M| > 2, where 1 < k < n, then for all i, j € My, i # j, we have (A 'e); = (A te);.
Without loss of generality, we may assume that

In this case, it is sufficient to show that from (2.14) it follows that for all i, j, < i <
Je + IMk| -1,
(A_le)i = (A_le)H_l. (215)

Indeed, by Lemma 2.1 and (2.1), we have

147" e < max [|(A”) oo < max [[(A0H) o (2.16)
=1, 1

sy ln

From (2.16) and (2.14) we immediately obtain that

-1 _ (Dy-1
47 o = g 1AL) s
and, consequently, (2.15) holds by Lemma 2.1.

The fact that equality on the left-hand side of (2.1) implies (2.2) is established similarly.

Finally, assume that condition (2.2) is fulfilled. Then, by Lemma 2.1, aggregation of
columns ¢ and ¢ + 1, where 7,7 + 1 belong to the same set M, does not change the infinity
norm of the inverse. In addition, each of the inverse matrices (A{")~! and (A?)~1 still
satisfies (2.2), with My replaced by My \ {i+1} and M\ {i}, respectively. Thus, proceeding
by induction, we conclude that both inequalities in (2.1) are equalities.

Theorem 2.1 is proved completely. O

Following [7], we say that a partitioning

(m) = U M; (2.17)



of the set (m) into disjoint nonempty subsets is finer than a partitioning

(m) =i, (2.18)

and (2.18) is coarser than (2.17) if n > n' and each of the sets M/, i =1,...,n/, is a union
of some sets M;, i =1,...,n.

In this terminology, from the proof of Theorem 2.1 we infer the following monotonicity
result.

Theorem 2.2. Let A € R™ ™, m > 1, be a PM-matriz with respect to a partitioning
(2.17). Then A is a PM-matriz with respect to every finer partitioning (2.18), and the
following inequalities hold:

min [[(A%0) 7| < min [[(AT) T o < AT | (2.19)
11y.e09ln Z/l""7i:1/
and o o
1A oo < max [[(AT57) oo < max || (AT)) 7. (2.20)
,1,...,1;:74, 215.005tn
Here, the minima and mazima are taken over all @), € M, k = 1,...,n', and all iy €

Mk, kzl,...,n.

3 An upper bound for PH-matrices
In view of Theorems 1.1 and 1.2, the following upper bound for the infinity norm of the
inverse of a PH-matrix is an immediate consequence of Theorem 2.1.

Theorem 3.1. If A € C™*™ m > 1, is a PH-matriz with respect to a partitioning (m) =
Ui, M;, 1 < n <m, of the index set into disjoint nonempty subsets, then it is an H-matriz,
and its inverse satisfies the upper bound

1A oo < max (M(A) ), (3.1)

21yeensln

The following monotonicity property of the upper bound (3.1) readily stems from Theo-
rem 2.2.

Theorem 3.2. Let A € C™*™, m > 1, be a PH-matrix with respect to a partitioning
(m) = U M;, 1<n<m, (3.2)
i=1

of the index set into disjoint nonempty subsets. Then A is a PH -matriz with respect to an
arbitrary partitioning

(m) = UM{, 1 <n' <m, (3.3)
i=1
that is finer than (3.2), and
A oo < max [[(M(A)F5) 7 | < max [[(M(A)Em)) 7|, (3.4)
where the mazima are taken over all iy, € My, k=1,...,n, and all i), € M}, k=1,...,n'.



4 Comparison with known results

First we note that if n» = m, i.e., no nontrivial block partitioning is imposed on A, then
Alein) = A and the upper bound of Theorem 3.1 reduces to the Ostrowski result (1.5).

If n =1, then A is a PH-matrix if and only if

pZ(A) = |Cl“‘ —Z\aij\ >0, 1=1,...,m, (41)
o
i.,e., A is a strictly diagonally dominant matrices, and the upper bound of Theorem 3.1
reduces to the classical Ahlberg—Nilson—Varah bound (see [1, 13])

[A o < Z,rg%{l/pi(z‘l)}- (4.2)

In addition, for a PM-matrix A, Theorem 2.1 supplements the upper bound (4.2) with its
lower counterpart

A oo > min {1/pi(A)}, (4.3)

which is almost trivial and was presented in [10]. Furthermore, if A is an irreducible PM-
matrix, then, by Theorem 2.1, the bounds (4.2) and (4.3) simultaneously hold with equality
if and only if

A e = ce,

where ¢ is a positive constant; otherwise both of them hold strictly.

Since the trivial partitioning (m) = M; is coarser than any partitioning (3.2) with n > 2,
by Theorem 3.2 we have

47 e < ma [M(A)) oo < max{1/pi(4)). (4.4

i1yeenyin

Thus, Theorem 3.2 provides an improvement of the Ahlberg—Nilson—Varah upper bound
(4.2), which is, in addition, applicable under milder assumptions on A (because if A is
sdd, then all the matrices A(@) are sdd as well). Furthermore, if A is a PM-matrix
with respect to a partitioning with n > 2, then, by Theorem 2.2, we also have the lower
counterpart of inequalities (4.4), namely,

A7 oo 2 min [J(AC) e > min 1/ ) (4.5

In the case where n = 2 and (m) = M; U My, a matrix A € C"™*™ m > 2, represented

as 4
A= 11 A2
{ Agp A

is a PH-matrix if and only if all the matrices

:| y where Aij = A[Mi,Mj], Z,] = ]_,2,

pi(All) —Ti(‘A12|) ] . .
Ai' = ) 1<i<|M ) 1 S S M )
! { —7i([Aal)  pj(A) si< My J < M|

are nonsingular M-matrices, or, equivalently,

pi(A11) >0 forall 4, 1 <i<|[M],

9



and
pi(A11)p;(As2) > 1i(|Awa])rj(|A|) forall d,5, 1 <i < [My|, 1 <j < | M.

Such matrices were studied in a number of papers (e.g., see [9, 6] and the references therein).
In this case, the upper bound of Theorem 3.1 reduces to the bound

47 e < max 45 o (1.6)

which was first proved in [6]. However, it should be mentioned that the bound (4.6) actually
coincides with the bound established in [9], which is in terms of the entries of A and suggests
no extension to the case n > 2. Note that in [5] the same upper bound as in [9] was
proved for the narrower class consisting of matrices that are PH-matrices with respect to
the specific partitioning of the index set into two subsets one of which corresponds to the
strictly diagonally dominant rows, whereas the other corresponds to the rows that are not
strictly diagonally dominant.
The lower counterpart of (4.6),

147 oo = min [l 45" [lc, (4.7)

valid for a PM-matrix A by Theorem 2.1, and the analysis of the equality cases in (4.6) and
(4.7) for a PM-matrix A are new.

In conclusion, we show that the upper bounds of Theorems 2.1 and 3.1 are is general
incomparable with an old-known block bound, which is recalled below.
Given a block-partitioned matrix (1.3), define the matrix

1451 “lAnlleo - =l Ao
N(A) — _||A21||oo ||A22 ||oo _||A2n||oo (4.8)
—[Anlle =lAnlloe - 1A IIS

As is known (see [3]), if N(A) is a nonsingular M-matrix, then A is nonsingular, and the
nonnegative matrix

[Allee - [[Alle
N(A™Y = : (4.9)
[R5 Y R [P A [
where we denote A~" = (A};)7;_,, satisfies the inequality
N(A™Y < N(A)™. (4.10)
On the other hand, we trivially have
1A oo < 1IN (A loc- (4.11)

Thus, in view of (4.10) and (4.11), for ||[A™!||» we have the block bound
1A oo < IN(A) oo (4.12)
Note that (4.12) and the Ahlberg—Nilson—Varah bound (4.2) immediately imply the bound

[13]
1

min i< {45 I — 325 [1Ailleo}

10

A oo < (4.13)



generalizing the bound (4.2) to the block case.

Relation (4.12) is an upper bound for ||A™!||,, in terms of the infinity norm of the inverse
to the n x n matrix N(A), which is assumed to be a nonsingular M-matrix. Thus, it is
natural to attempt to compare (4.12) with the upper bounds provided by Theorems 2.1 and
3.1, which are stated in terms of the aggregated n x n matrices. To this end, we consider
two examples.

First let n = 1 and let A be an m x m, m > 2, nonsingular M-matrix. In this case,
N(A) = [|[A7Y||Z}, so that (4.12) obviously holds with equality. On the other hand, if, in

o0 )

addition, A is sdd, then Theorem 2.1 yields

min {1/pi(4)} < 1A oo < max{1/pi(4)},

and if A is irreducible and p(A) = (p;(A)) is not a constant vector, then both inequalities are
strict. Thus, in the case considered, the bound (4.12) is applicable under weaker assumptions
and is, in general, better than the upper bound of Theorem 2.1.

However, if we assume that n > 1, A is a PM-matrix, and

Aiie = Gi6, Ci > 07 L= 17 - N, (414)
then, obviously,
A7 oo = 45 elloe = 1/, i=1,...,n,

whence the diagonal entries of the matrix N (A), defined in (4.8), coincide with the respective
diagonal entries of each of the matrices Alt-in) Since, in addition, we have

Tin(Aj) = =73, (| Akj|) > — | Akjlloss ik € My, Kk # J,
we conclude that
Alivesin) > N(A) forall iy € My, k=1,...,n. (4.15)

Thus, it may happen that A is a PM-matrix, but the matrix N(A) is not a nonsingular
M-matrix. Furthermore, under the assumption that N(A) is a nonsingular M-matrix, from
(4.15) it follows (e.g., see [4, p. 131]) that

N(A)™' > (AG=)= forall 4, € My, k=1,...,n, (4.16)

and, consequently, . o
IV (A)™ oo > max [[(AG)) 7| (4.17)
1

Thus, in this case, the bound (4.12) is not necessarily applicable and is no better than the
upper bound of Theorem 2.1. Furthermore, as is not difficult to realize, inequality (4.17)
may hold strictly. For instance, it is strict for the matrix

30 -2 —1
0 3 -1 —«
A=lo0 1 o |» @>b
00 0 1

which is a PM-matrix with respect to the partitioning {1,2,3,4} = {1,2} U {3} U {4}.
Indeed, for this partitioning we have

i 3 -2 —a 3 -2 -1 3 -1 —a
NA=|0 1 o0 |, ABY=|0 1 0 |, A®Y=|0 1 o0 |,
0 0 1 0 0 1 0 0 1

11



whence

1/3 2/3 /3
NAtT=| 0 1 0 |,
o 0 1
1/3 2/3 1/3 1/3 1/3 /3
A= =1 0 1 0 |, A®) = 0 1 o0 |,
0 0 1 0o 0 1

and
HN(A)*IHOO =1+«a/3 > max{1+1/3, 2/3+«a/3} = max{H(A(l’&‘l))*lHoo, H(A(Z’?’A))*IHOO} )

The above examples demonstrate that the bound (4.12) is in general incomparable with
with the upper bounds of Theorems 2.1 and 3.1.
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