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BOUNDS FOR THE INFINITY NORM OF THE INVERSE FOR CERTAINM- AND H-MATRICES

L. Yu. KolotilinaSt.Petersburg Department of the Steklov Mathemati
al InstituteNab. Fontanki 27,St.Petersburg, Russialiko�pdmi.ras.ruMay 2008
ABSTRACT. The paper presents new two-sided bounds for the in�nity norm of the inversefor the so-
alled PM -matri
es, whi
h form a sub
lass of the 
lass of nonsingularM -matri
esand 
ontain the 
lass of stri
tly diagonally dominant matri
es. These bounds are shown tobe monotone with respe
t to the underlying partitioning of the index set, and the equality
ases are analyzed. Also an upper bound for the in�nity norm of the inverse of a PH-matrix(whose 
omparison matrix is a PM -matrix) is derived. The known Ostrowski, Ahlberg{Nilson{Varah, Mora�
a, and Huang bounds are shown to be spe
ial 
ases of the upper boundobtained. Bibliography: 14 titles.
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1 Introdu
tion and preliminariesThe problem of bounding the in�nity norm of the inverse of a nonsingular matrix satisfying
ertain assumptions was 
onsidered in a number of publi
ations (e.g., see [1, 13, 14, 2, 12,9, 10, 8, 5℄).The present paper 
onsiders the problem of bounding ‖A−1‖∞ for the so-
alled PM - andPH-matri
es A, whi
h form sub
lasses of the 
lasses of nonsingular M - and H-matri
es,respe
tively, and are de�ned below.Let A = (aij) ∈ Cm×m; m ≥ 1, and let
〈m〉 = n

⋃i=1 Mi; 1 ≤ n ≤ m; (1:1)be a partitioning of the index set 〈m〉 = {1; : : : ; m} into disjoint nonempty subsets. DenoteAij = A[Mi;Mj℄; i; j = 1; : : : ; n; (1:2)and represent A in the following blo
k form:A = 







A11 A12 : : : A1nA21 A22 : : : A2n: : : : : : : : : : : :An1 An2 : : : Ann 







: (1:3)Throughout the paper, for a real t× s matrix A = (aij), we denoteri(A) = s
∑j=1 aij; i = 1; : : : ; t; (1:4)so that ri(A) stands for the ith row sum of the entries of A.If A ∈ Cm×m; m ≥ 1, then its 
omparison matrix M(A) = (mij) is de�ned by therelations mij = {

|aij|; i = j;
−|aij|; i 6= j:A 
omplex matrix A is said to be an H-matrix if M(A) is a nonsingular M -matrix.Re
all that if A is an H-matrix, then (e.g., see [4, p. 131℄) it is nonsingular. Furthermore,by the Ostrowski theorem [11℄ (also see [4, p. 131℄), the inverse matri
es A−1 and M(A)−1are interrelated as follows.Theorem 1.1. Let A ∈ Cm×m; m ≥ 1, be an H-matrix. Then

|A−1| ≤ M(A)−1: (1:5)In (1.5) and throughout the paper, for A = (aij) ∈ Cm×n we set |A| = (|aij|), and, in thereal 
ase, matrix and ve
tor inequalities are understood 
omponentwise.Introdu
e the following de�nitions, basi
 for the present paper.Given a matrix A ∈ Cm×m; m ≥ 1, and a partitioning of the index set 〈m〉 = {1; : : : ; m},
〈m〉 = n

⋃i=1Mi; 1 ≤ n ≤ m; (1:6)2



into disjoint nonempty subsets, represent A in the form (1.2){(1.3) and de�ne the following
olle
tion of m1 × · · · ×mn aggregated matri
es of order n:A(i1;i2;:::;in) = 







ri1(A11) ri1(A12) : : : ri1(A1n)ri2(A21) ri2(A22) : : : ri2(A2n): : : : : : : : : : : :rin(An1) rin(An2) : : : rin(Ann) 







; ik ∈ Mk; k = 1; : : : ; n: (1:7)Here, mi = |Mi|; i = 1; : : : ; n.We say that A is a PM -matrix (partitioned M -matrix) with respe
t to the partitioning(1.6) if A is a Z-matrix (i.e., its o�-diagonal entries are nonpositive) and all the matri
esA(i1;:::;in); ik ∈ Mk; k = 1; : : : ; n, de�ned in a

ordan
e with (1.7) are nonsingular M -matri
es. Also we say that A is a PH-matrix (with respe
t to the partitioning (1.6)) if
M(A) is a PM -matrix (with respe
t to the same partitioning).Obviously, a matrix A is a PM -matrix (PH-matrix) with respe
t to the �nest (pointwise)partitioning 〈m〉 = ⋃mi=1{i} if and only if A is a nonsingular M -matrix (an H-matrix). Onthe other hand, for the 
oarsest partitioning 〈m〉 = M1 with n = 1, A is a PH-matrix if andonly if it is stri
tly diagonally dominant (sdd).In [7℄, the following result was established.Theorem 1.2. If A ∈ Cm×m; m ≥ 1, is a PH-matrix with respe
t to a partitioning 〈m〉 =
⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then A is an H-matrix.In parti
ular, for a PM -matrix, whi
h is a Z-matrix by de�nition, Theorem 1.2 impliesthe following result.Corollary 1.1. If A ∈ Rm×m; m ≥ 1, is a PM-matrix with respe
t to a partitioning
〈m〉 = ⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then A is anonsingular M-matrix.Thus, PM - and PH-matri
es are nonsingular, and the problem of bounding their inversesnaturally arises. This problem is 
onsidered in the present paper, whi
h is organized asfollows. Se
tion 2 deals with PM -matri
es. The �rst main result (Theorem 2.1) states thatthe in�nity norm of the inverse of a PM -matrix satis�es the following two-sided bounds interms of the aggregated matri
es (1.7):mini1;:::;in ‖[A(i1;:::;in)℄−1‖∞ ≤ ‖A−1‖∞ ≤ maxi1;:::;in ‖[A(i1;:::;in)℄−1‖∞: (1:8)For an irredu
ible matrix A, the 
ases of equalities in (1.8) are also des
ribed.The se
ond result on PM -matri
es (Theorem 2.2) states that the bounds (1.8) are mono-tone with respe
t to the underlying partitioning of the index set, i.e., the �ner the partitioningthe tighter the bounds. This result is based on the fa
t that if a matrix A is a PM -matrixwith respe
t to a partitioning 〈m〉 = ⋃ni=1Mi, then it also is a PM -matrix with respe
t toevery partitioning 〈m〉 = ⋃n′i=1M ′i ; n′ ≥ n, that is �ner than the original one.Se
tion 3 
onsiders the 
ase of PH-matri
es. Based on Theorem 1.1, for a PH-matrix Afrom Theorems 2.1 and 2.2 we infer the upper bound

‖A−1‖∞ ≤ maxi1;:::;in ‖[M(A)(i1;:::;in)℄−1‖∞; (1:9)
onje
tured in [6℄, and also the monotoni
ity of this bound with respe
t to the underlyingpartitioning. 3



Se
tion 4 
ompares the bounds (1.8) and (1.9) with some known results, obtained in[1, 13, 3, 9, 10, 6, 5℄.We 
on
lude this introdu
tion with two relevant remarks. First, if AT is a PM -matrix(PH-matrix), then the results established obviously yield two-sided bounds (an upper bound)for ‖A−1‖1. Se
ond, if both A and AT are PH-matri
es with respe
t to some partitioningsof the index set, whi
h may be di�erent, then, in the same way as in [13℄, one immediatelyobtains an upper bound for the spe
tral norm of A−1, i.e., a lower bound for the smallestsingular value of the original matrix A.2 Two-sided bounds for PM-matri
esThe �rst main result of this paper is the following theorem.Theorem 2.1. If A ∈ Rm×m; m ≥ 1, is a PM-matrix with respe
t to a partitioning 〈m〉 =
⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then it is a nonsingularM-matrix, and its inverse satis�es the two-sided boundsmini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≤ ‖A−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞; (2:1)where the minimum and maximum are taken over all ik ∈ Mk; k = 1; : : : ; n. Furthermore,if A is irredu
ible, then either inequality in (2.1) is an equality if and only if(A−1e)ik = 
k for all ik ∈ Mk; k = 1; : : : ; n; (2:2)where e = [1; : : : ; 1℄T is the unit ve
tor of appropriate dimension; otherwise both inequalitiesin (2.1) hold stri
tly.In order to prove Theorem 2.1, we follow [7℄ and introdu
e into 
onsideration the (m−1)× (m− 1) matri
es A(1)i and A(2)i that are de�ned as follows:A(1)i = Âi+1 







Ii−1 0 00 1 00 1 00 0 Im−i−1 







; A(2)i = Âi 


Ii−1 0 00 1 00 1 00 0 Im−i−1 







: (2:3)Here and below, Ik is the identity matrix of order k, and for a matrix B ∈ Ct×s, witht ≥ 2 and s ≥ 1, by B̂j we denote its (t − 1) × s submatrix obtained by deleting the jthrow, j = 1; : : : ; t. The passage from A to the pair A(1)i , A(2)i is referred to as aggregationof 
olumns i and i + 1 of A. Obviously, the matri
es A(1)i and A(2)i form the 
olle
tion ofaggregated matri
es asso
iated with the partitioning 〈m〉 = ⋃m−1k=1 Mk, whereMk = {k}; k =1; : : : ; i − 1; Mi = {i; i + 1}; Mk = {k + 1}; k = i + 1; : : : ; m − 1, and, in terms of thematri
es (1.7), we haveA(1)i = A(1;:::;i;i+2;:::;m); A(2)i = A(1;:::;i−1;i+1;:::;m):Thus, by Corollary 1.1, if both A(1)i and A(2)i are nonsingular M -matri
es, then A also is anonsingular M -matrix.The proof of Theorem 2.1 is based on the following lemma.4



Lemma 2.1. Let A ∈ Rm×m; m ≥ 2, be a nonsingular M-matrix su
h that for a 
ertaini; 1 ≤ i ≤ m − 1, both matri
es A(1)i and A(2)i de�ned in (2.3) are nonsingular M-matri
es.Then mink=1;2 ‖(A(k)i )−1‖∞ ≤ ‖A−1‖∞ ≤ maxk=1;2 ‖(A(k)i )−1‖∞: (2:4)Furthermore, if A is irredu
ible, then either inequality in (2.4) is an equality if and only if(A−1e)i = (A−1e)i+1; (2:5)otherwise both inequalities in (2.4) are stri
t.Proof. Permuting (if ne
essary) the rows and 
olumns of A, we may assume, without loss ofgenerality, that i = 1 and that g1 ≤ g2; (2:6)where we set g = A−1e. Using (2.3) and (2.6) and taking into a

ount that A is a Z-matrix,we derive the right-hand-side inequality in (2.4) in the following way:A(2)1 ĝ1 = Â1 



1 01 00 Im−2 













g2g3...gm










= Â1 













g2g2g3...gm














≤ Â1g = (̂Ag)1 = ê1: (2:7)
Sin
e, by assumption, A(2)1 is a nonsingular M -matrix, we have (A(2)1 )−1 ≥ 0, and (2.7)implies that ĝ1 ≤ (A(2)1 )−1e; (2:8)when
e, with a

ount for (2.6), we obtain

‖A−1‖∞ = ‖g‖∞ = ‖ĝ1‖∞ ≤ ‖(A(2)1 )−1ê1‖∞ = ‖(A(2)1 )−1‖∞:This proves the right-hand-side inequality in (2.4).In order to prove the left-hand-side inequality in (2.4), we similarly dedu
eA(1)1 ĝ2 = Â2 



1 01 00 Im−2 













g1g3...gm










= Â2 













g1g1g3...gm














≥ Â2g = (̂Ag)2 = ê2; (2:9)implying that ĝ2 ≥ (A(1)1 )−1ê2: (2:10)By using (2.6) and (2.10), we obtain
‖A−1‖∞ = ‖g‖∞ ≥ ‖ĝ2‖∞ ≥ ‖(A(1)1 )−1ê2‖∞ = ‖(A(1)1 )−1‖∞:This 
ompletes the proof of inequalities (2.4).In order to analyze the 
ases of equalities in (2.4), we assume that A is irredu
ible andthat

‖A−1‖∞ = ‖(A(2)1 )−1‖∞: (2:11)5



Set u = [u2; : : : ; um℄T = (A(2)1 )−1e:Then we have e = A(2)1 u = Â1 



1 01 00 Im−2 













u2u3...um










= Â1 













u2u2u3...um














= (̂A~u)1; (2:12)where we denote ~u = [u2; u2; u3 : : : ; um℄T :From (2.12) it immediately follows thatA~u = 









�1...1 









= e+ (�− 1)e1; (2:13)where ei is the ith 
olumn of the identity matrix I. Sin
e A is an irredu
ible M -matrix, itsinverse is positive, and A−1e1 is a positive ve
tor. By (2.13), we have~u = A−1e+ (�− 1)A−1e1 = g + (�− 1)A−1e1:Suppose � > 1. Then ~u > g and
‖~u‖∞ > ‖g‖∞ = ‖A−1‖∞;whi
h 
ontradi
ts (2.11), be
ause

‖~u‖∞ = ‖u‖∞ = ‖(A(2)1 )−1‖∞:In a similar fashion, we as
ertain that the 
ase � < 1 is impossible as well. Thus, if equality(2.11) holds true, then � = 1, i.e., ~u = A−1e = g, whi
h implies that g1 = g2.Conversely, if g1 = g2, then ĝ1 = ĝ2, and both (2.7) and (2.9) are strings of equalities,implying that (A(2)1 )−1e = (A(1)1 )−1e, when
e both inequalities in (2.4) are equalities.The 
ase ‖A−1‖∞ = ‖(A(1)1 )−1‖∞ is treated similarly.From the proof of Lemma 2.1, we readily infer the following useful result.Corollary 2.1. If, under the assumptions of Lemma 2.1, the matrix A is irredu
ible, thenthe inequality
‖(A(2)i )−1‖∞ > ‖(A(1)i )−1‖∞is equivalent to the inequality gi < gi+1; where g = A−1e:Note also that in the se
ond part of Lemma 2.1, the assumption that A is irredu
ible 
anbe weakened as follows. 6



Corollary 2.2. Let A be a nonsingular M-matrix and let A(2)i be a nonsingular M-matrix.If A−1ei is a positive ve
tor, then
‖A−1‖∞ = ‖(A(2)i )−1‖∞if and only if gi = gi+1.Proof of Theorem 2.1. From de�nitions (1.7) and (2.3) it readily follows that for an arbitrarypartitioning 〈m〉 = ⋃ni=1Mi, with 1 ≤ n < m, ea
h of the aggregated matri
es A(i1;:::;in) fromthe 
olle
tion (1.7) 
an be obtained from A as a result of su

essively aggregating pairs of
onse
utive 
olumns. Thus, for every �xed partitioning 〈m〉 = ⋃ni=1Mi, we obtain a sequen
e(whi
h is in general not uniquely determined) of partitionings of the index set, starting withthe entrywise partitioning 〈m〉 = ⋃mi=1{i} and terminating with the given one. Note thatthe order of the asso
iated aggregated matri
es su

essively de
reases from m to n, and, byCorollary 1.1, all the intermediate aggregated matri
es are nonsingular M -matri
es. Thus,the bounds (2.1) stem from Lemma 2.1.In order to prove the se
ond assertion of Theorem 2.1, let A be irredu
ible. First assumethat

‖A−1‖∞ = maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:14)We will show that (2.14) implies (2.2). To this end, it is obviously suÆ
ient to demonstratethat if |Mk| ≥ 2, where 1 ≤ k ≤ n, then for all i; j ∈ Mk; i 6= j, we have (A−1e)i = (A−1e)j.Without loss of generality, we may assume thatMk = {jk; : : : ; jk + |Mk| − 1}:In this 
ase, it is suÆ
ient to show that from (2.14) it follows that for all i; jk ≤ i <jk + |Mk| − 1, (A−1e)i = (A−1e)i+1: (2:15)Indeed, by Lemma 2.1 and (2.1), we have
‖A−1‖∞ ≤ maxl=1;2 ‖(A(l)i )−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:16)From (2.16) and (2.14) we immediately obtain that

‖A−1‖∞ = maxl=1;2 ‖(A(l)i )−1‖∞;and, 
onsequently, (2.15) holds by Lemma 2.1.The fa
t that equality on the left-hand side of (2.1) implies (2.2) is established similarly.Finally, assume that 
ondition (2.2) is ful�lled. Then, by Lemma 2.1, aggregation of
olumns i and i + 1, where i; i + 1 belong to the same set Mk, does not 
hange the in�nitynorm of the inverse. In addition, ea
h of the inverse matri
es (A(1)i )−1 and (A(2)i )−1 stillsatis�es (2.2), withMk repla
ed by Mk \{i+1} andMk \{i}, respe
tively. Thus, pro
eedingby indu
tion, we 
on
lude that both inequalities in (2.1) are equalities.Theorem 2.1 is proved 
ompletely. 2Following [7℄, we say that a partitioning
〈m〉 = n

⋃i=1Mi (2:17)7



of the set 〈m〉 into disjoint nonempty subsets is �ner than a partitioning
〈m〉 = n′

⋃i=1M ′i ; (2:18)and (2.18) is 
oarser than (2.17) if n > n′ and ea
h of the sets M ′i ; i = 1; : : : ; n′, is a unionof some sets Mi; i = 1; : : : ; n.In this terminology, from the proof of Theorem 2.1 we infer the following monotoni
ityresult.Theorem 2.2. Let A ∈ Rm×m; m ≥ 1, be a PM-matrix with respe
t to a partitioning(2.17). Then A is a PM-matrix with respe
t to every �ner partitioning (2.18), and thefollowing inequalities hold:mini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≤ mini′1;:::;i′n′ ‖(A(i′1;:::;i′n′ ))−1‖∞ ≤ ‖A−1‖∞ (2:19)and
‖A−1‖∞ ≤ maxi′1;:::;i′n′ ‖(A(i′1;:::;i′n′))−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:20)Here, the minima and maxima are taken over all i′k ∈ M ′k; k = 1; : : : ; n′, and all ik ∈Mk; k = 1; : : : ; n.3 An upper bound for PH-matri
esIn view of Theorems 1.1 and 1.2, the following upper bound for the in�nity norm of theinverse of a PH-matrix is an immediate 
onsequen
e of Theorem 2.1.Theorem 3.1. If A ∈ Cm×m; m ≥ 1, is a PH-matrix with respe
t to a partitioning 〈m〉 =

⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then it is an H-matrix,and its inverse satis�es the upper bound
‖A−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞: (3:1)The following monotoni
ity property of the upper bound (3.1) readily stems from Theo-rem 2.2.Theorem 3.2. Let A ∈ Cm×m; m ≥ 1, be a PH-matrix with respe
t to a partitioning

〈m〉 = n
⋃i=1Mi; 1 ≤ n ≤ m; (3:2)of the index set into disjoint nonempty subsets. Then A is a PH-matrix with respe
t to anarbitrary partitioning

〈m〉 = n′
⋃i=1M ′i ; 1 ≤ n′ ≤ m; (3:3)that is �ner than (3.2), and

‖A−1‖∞ ≤ maxi′1;:::;i′n′ ‖(M(A)(i′1;:::;i′n′))−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞; (3:4)where the maxima are taken over all ik ∈ Mk; k = 1; : : : ; n, and all i′k ∈ M ′k; k = 1; : : : ; n′.8



4 Comparison with known resultsFirst we note that if n = m, i.e., no nontrivial blo
k partitioning is imposed on A, thenA(i1;:::;in) = A, and the upper bound of Theorem 3.1 redu
es to the Ostrowski result (1.5).If n = 1, then A is a PH-matrix if and only ifpi(A) := |aii| − m
∑j=1j 6=i |aij| > 0; i = 1; : : : ; m; (4:1)i.e., A is a stri
tly diagonally dominant matri
es, and the upper bound of Theorem 3.1redu
es to the 
lassi
al Ahlberg{Nilson{Varah bound (see [1, 13℄)

‖A−1‖∞ ≤ maxi∈〈m〉
{1=pi(A)}: (4:2)In addition, for a PM -matrix A, Theorem 2.1 supplements the upper bound (4.2) with itslower 
ounterpart

‖A−1‖∞ ≥ mini∈〈m〉
{1=pi(A)}; (4:3)whi
h is almost trivial and was presented in [10℄. Furthermore, if A is an irredu
ible PM -matrix, then, by Theorem 2.1, the bounds (4.2) and (4.3) simultaneously hold with equalityif and only if A−1e = 
e;where 
 is a positive 
onstant; otherwise both of them hold stri
tly.Sin
e the trivial partitioning 〈m〉 =M1 is 
oarser than any partitioning (3.2) with n ≥ 2,by Theorem 3.2 we have

‖A−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞ ≤ maxi∈〈m〉
{1=pi(A)}: (4:4)Thus, Theorem 3.2 provides an improvement of the Ahlberg{Nilson{Varah upper bound(4.2), whi
h is, in addition, appli
able under milder assumptions on A (be
ause if A issdd, then all the matri
es A(i1;:::;in) are sdd as well). Furthermore, if A is a PM -matrixwith respe
t to a partitioning with n ≥ 2, then, by Theorem 2.2, we also have the lower
ounterpart of inequalities (4.4), namely,

‖A−1‖∞ ≥ mini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≥ mini∈〈m〉
{1=pi(A)}: (4:5)In the 
ase where n = 2 and 〈m〉 = M1 ∪M2, a matrix A ∈ Cm×m; m ≥ 2, representedas A = [ A11 A12A21 A22 ] ; where Aij = A[Mi;Mj℄; i; j = 1; 2;is a PH-matrix if and only if all the matri
esAij := [ pi(A11) −ri(|A12|)

−rj(|A21|) pj(A22) ] ; 1 ≤ i ≤ |M1|; 1 ≤ j ≤ |M2|;are nonsingular M -matri
es, or, equivalently,pi(A11) > 0 for all i; 1 ≤ i ≤ |M1|;9



and pi(A11)pj(A22) > ri(|A12|)rj(|A21|) for all i; j; 1 ≤ i ≤ |M1|; 1 ≤ j ≤ |M2|:Su
h matri
es were studied in a number of papers (e.g., see [9, 6℄ and the referen
es therein).In this 
ase, the upper bound of Theorem 3.1 redu
es to the bound
‖A−1‖∞ ≤ maxi;j ‖A−1ij ‖∞; (4:6)whi
h was �rst proved in [6℄. However, it should be mentioned that the bound (4.6) a
tually
oin
ides with the bound established in [9℄, whi
h is in terms of the entries of A and suggestsno extension to the 
ase n ≥ 2. Note that in [5℄ the same upper bound as in [9℄ wasproved for the narrower 
lass 
onsisting of matri
es that are PH-matri
es with respe
t tothe spe
i�
 partitioning of the index set into two subsets one of whi
h 
orresponds to thestri
tly diagonally dominant rows, whereas the other 
orresponds to the rows that are notstri
tly diagonally dominant.The lower 
ounterpart of (4.6),
‖A−1‖∞ ≥ mini;j ‖A−1ij ‖∞; (4:7)valid for a PM -matrix A by Theorem 2.1, and the analysis of the equality 
ases in (4.6) and(4.7) for a PM -matrix A are new.In 
on
lusion, we show that the upper bounds of Theorems 2.1 and 3.1 are is generalin
omparable with an old-known blo
k bound, whi
h is re
alled below.Given a blo
k-partitioned matrix (1.3), de�ne the matrix~N(A) = 







‖A−111 ‖−1∞ −‖A12‖∞ : : : −‖A1n‖∞
−‖A21‖∞ ‖A−122 ‖−1∞ : : : −‖A2n‖∞: : : : : : : : : : : :
−‖An1‖∞ −‖An2‖∞ : : : ‖A−1nn‖−1∞









: (4:8)As is known (see [3℄), if ~N(A) is a nonsingular M -matrix, then A is nonsingular, and thenonnegative matrix N(A−1) = 



‖A′11‖∞ : : : ‖A′1n‖∞: : : : : : : : :
‖A′n1‖∞ : : : ‖A′nn‖∞ 

 ; (4:9)where we denote A−1 = (A′ij)ni;j=1, satis�es the inequalityN(A−1) ≤ ~N(A)−1: (4:10)On the other hand, we trivially have
‖A−1‖∞ ≤ ‖N(A−1)‖∞: (4:11)Thus, in view of (4.10) and (4.11), for ‖A−1‖∞ we have the blo
k bound
‖A−1‖∞ ≤ ‖ ~N(A)−1‖∞: (4:12)Note that (4.12) and the Ahlberg{Nilson{Varah bound (4.2) immediately imply the bound[13℄

‖A−1‖∞ ≤
1min1≤i≤n{‖A−1ii ‖−1∞ −

∑j 6=i ‖Aij‖∞}
; (4:13)10



generalizing the bound (4.2) to the blo
k 
ase.Relation (4.12) is an upper bound for ‖A−1‖∞ in terms of the in�nity norm of the inverseto the n × n matrix ~N(A), whi
h is assumed to be a nonsingular M -matrix. Thus, it isnatural to attempt to 
ompare (4.12) with the upper bounds provided by Theorems 2.1 and3.1, whi
h are stated in terms of the aggregated n × n matri
es. To this end, we 
onsidertwo examples.First let n = 1 and let A be an m × m; m ≥ 2, nonsingular M -matrix. In this 
ase,~N(A) = ‖A−1‖−1∞ , so that (4.12) obviously holds with equality. On the other hand, if, inaddition, A is sdd, then Theorem 2.1 yieldsmini∈〈m〉
{1=pi(A)} ≤ ‖A−1‖∞ ≤ maxi∈〈m〉

{1=pi(A)};and if A is irredu
ible and p(A) = (pi(A)) is not a 
onstant ve
tor, then both inequalities arestri
t. Thus, in the 
ase 
onsidered, the bound (4.12) is appli
able under weaker assumptionsand is, in general, better than the upper bound of Theorem 2.1.However, if we assume that n > 1, A is a PM -matrix, andAiie = 
ie; 
i > 0; i = 1; : : : ; n; (4:14)then, obviously,
‖A−1ii ‖∞ = ‖A−1ii e‖∞ = 1=
i; i = 1; : : : ; n;when
e the diagonal entries of the matrix ~N(A), de�ned in (4.8), 
oin
ide with the respe
tivediagonal entries of ea
h of the matri
es A(i1;:::;in). Sin
e, in addition, we haverik(Akj) = −rik(|Akj|) ≥ −‖Akj‖∞; ik ∈ Mk; k 6= j;we 
on
lude that A(i1;:::;in) ≥ ~N(A) for all ik ∈ Mk; k = 1; : : : ; n: (4:15)Thus, it may happen that A is a PM -matrix, but the matrix ~N(A) is not a nonsingularM -matrix. Furthermore, under the assumption that ~N(A) is a nonsingular M -matrix, from(4.15) it follows (e.g., see [4, p. 131℄) that~N(A)−1 ≥ (A(i1;:::;in))−1 for all ik ∈ Mk; k = 1; : : : ; n; (4:16)and, 
onsequently,

‖ ~N(A)−1‖∞ ≥ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (4:17)Thus, in this 
ase, the bound (4.12) is not ne
essarily appli
able and is no better than theupper bound of Theorem 2.1. Furthermore, as is not diÆ
ult to realize, inequality (4.17)may hold stri
tly. For instan
e, it is stri
t for the matrixA = 







3 0 −2 −10 3 −1 −�0 0 1 00 0 0 1 







; � > 1;whi
h is a PM -matrix with respe
t to the partitioning {1; 2; 3; 4} = {1; 2} ∪ {3} ∪ {4}.Indeed, for this partitioning we have~N(A) = 



3 −2 −�0 1 00 0 1 

 ; A(1;3;4) = 



3 −2 −10 1 00 0 1 

 ; A(2;3;4) = 



3 −1 −�0 1 00 0 1 

 ;11



when
e ~N(A)−1 = 



1=3 2=3 �=30 1 00 0 1 

 ;(A(1;3;4))−1 = 



1=3 2=3 1=30 1 00 0 1 

 ; (A(2;3;4))−1 = 



1=3 1=3 �=30 1 00 0 1 

 ;and
‖ ~N(A)−1‖∞ = 1+�=3 > max{1+1=3; 2=3+�=3} = max{

‖(A(1;3;4))−1‖∞; ‖(A(2;3;4))−1‖∞} :The above examples demonstrate that the bound (4.12) is in general in
omparable withwith the upper bounds of Theorems 2.1 and 3.1.Referen
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