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BOUNDS FOR THE INFINITY NORM OF THE INVERSE FOR CERTAINM- AND H-MATRICES

L. Yu. KolotilinaSt.Petersburg Department of the Steklov Mathematial InstituteNab. Fontanki 27,St.Petersburg, Russialiko�pdmi.ras.ruMay 2008
ABSTRACT. The paper presents new two-sided bounds for the in�nity norm of the inversefor the so-alled PM -matries, whih form a sublass of the lass of nonsingularM -matriesand ontain the lass of stritly diagonally dominant matries. These bounds are shown tobe monotone with respet to the underlying partitioning of the index set, and the equalityases are analyzed. Also an upper bound for the in�nity norm of the inverse of a PH-matrix(whose omparison matrix is a PM -matrix) is derived. The known Ostrowski, Ahlberg{Nilson{Varah, Mora�a, and Huang bounds are shown to be speial ases of the upper boundobtained. Bibliography: 14 titles.
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1 Introdution and preliminariesThe problem of bounding the in�nity norm of the inverse of a nonsingular matrix satisfyingertain assumptions was onsidered in a number of publiations (e.g., see [1, 13, 14, 2, 12,9, 10, 8, 5℄).The present paper onsiders the problem of bounding ‖A−1‖∞ for the so-alled PM - andPH-matries A, whih form sublasses of the lasses of nonsingular M - and H-matries,respetively, and are de�ned below.Let A = (aij) ∈ Cm×m; m ≥ 1, and let
〈m〉 = n

⋃i=1 Mi; 1 ≤ n ≤ m; (1:1)be a partitioning of the index set 〈m〉 = {1; : : : ; m} into disjoint nonempty subsets. DenoteAij = A[Mi;Mj℄; i; j = 1; : : : ; n; (1:2)and represent A in the following blok form:A = 







A11 A12 : : : A1nA21 A22 : : : A2n: : : : : : : : : : : :An1 An2 : : : Ann 







: (1:3)Throughout the paper, for a real t× s matrix A = (aij), we denoteri(A) = s
∑j=1 aij; i = 1; : : : ; t; (1:4)so that ri(A) stands for the ith row sum of the entries of A.If A ∈ Cm×m; m ≥ 1, then its omparison matrix M(A) = (mij) is de�ned by therelations mij = {

|aij|; i = j;
−|aij|; i 6= j:A omplex matrix A is said to be an H-matrix if M(A) is a nonsingular M -matrix.Reall that if A is an H-matrix, then (e.g., see [4, p. 131℄) it is nonsingular. Furthermore,by the Ostrowski theorem [11℄ (also see [4, p. 131℄), the inverse matries A−1 and M(A)−1are interrelated as follows.Theorem 1.1. Let A ∈ Cm×m; m ≥ 1, be an H-matrix. Then

|A−1| ≤ M(A)−1: (1:5)In (1.5) and throughout the paper, for A = (aij) ∈ Cm×n we set |A| = (|aij|), and, in thereal ase, matrix and vetor inequalities are understood omponentwise.Introdue the following de�nitions, basi for the present paper.Given a matrix A ∈ Cm×m; m ≥ 1, and a partitioning of the index set 〈m〉 = {1; : : : ; m},
〈m〉 = n

⋃i=1Mi; 1 ≤ n ≤ m; (1:6)2



into disjoint nonempty subsets, represent A in the form (1.2){(1.3) and de�ne the followingolletion of m1 × · · · ×mn aggregated matries of order n:A(i1;i2;:::;in) = 







ri1(A11) ri1(A12) : : : ri1(A1n)ri2(A21) ri2(A22) : : : ri2(A2n): : : : : : : : : : : :rin(An1) rin(An2) : : : rin(Ann) 







; ik ∈ Mk; k = 1; : : : ; n: (1:7)Here, mi = |Mi|; i = 1; : : : ; n.We say that A is a PM -matrix (partitioned M -matrix) with respet to the partitioning(1.6) if A is a Z-matrix (i.e., its o�-diagonal entries are nonpositive) and all the matriesA(i1;:::;in); ik ∈ Mk; k = 1; : : : ; n, de�ned in aordane with (1.7) are nonsingular M -matries. Also we say that A is a PH-matrix (with respet to the partitioning (1.6)) if
M(A) is a PM -matrix (with respet to the same partitioning).Obviously, a matrix A is a PM -matrix (PH-matrix) with respet to the �nest (pointwise)partitioning 〈m〉 = ⋃mi=1{i} if and only if A is a nonsingular M -matrix (an H-matrix). Onthe other hand, for the oarsest partitioning 〈m〉 = M1 with n = 1, A is a PH-matrix if andonly if it is stritly diagonally dominant (sdd).In [7℄, the following result was established.Theorem 1.2. If A ∈ Cm×m; m ≥ 1, is a PH-matrix with respet to a partitioning 〈m〉 =
⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then A is an H-matrix.In partiular, for a PM -matrix, whih is a Z-matrix by de�nition, Theorem 1.2 impliesthe following result.Corollary 1.1. If A ∈ Rm×m; m ≥ 1, is a PM-matrix with respet to a partitioning
〈m〉 = ⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then A is anonsingular M-matrix.Thus, PM - and PH-matries are nonsingular, and the problem of bounding their inversesnaturally arises. This problem is onsidered in the present paper, whih is organized asfollows. Setion 2 deals with PM -matries. The �rst main result (Theorem 2.1) states thatthe in�nity norm of the inverse of a PM -matrix satis�es the following two-sided bounds interms of the aggregated matries (1.7):mini1;:::;in ‖[A(i1;:::;in)℄−1‖∞ ≤ ‖A−1‖∞ ≤ maxi1;:::;in ‖[A(i1;:::;in)℄−1‖∞: (1:8)For an irreduible matrix A, the ases of equalities in (1.8) are also desribed.The seond result on PM -matries (Theorem 2.2) states that the bounds (1.8) are mono-tone with respet to the underlying partitioning of the index set, i.e., the �ner the partitioningthe tighter the bounds. This result is based on the fat that if a matrix A is a PM -matrixwith respet to a partitioning 〈m〉 = ⋃ni=1Mi, then it also is a PM -matrix with respet toevery partitioning 〈m〉 = ⋃n′i=1M ′i ; n′ ≥ n, that is �ner than the original one.Setion 3 onsiders the ase of PH-matries. Based on Theorem 1.1, for a PH-matrix Afrom Theorems 2.1 and 2.2 we infer the upper bound

‖A−1‖∞ ≤ maxi1;:::;in ‖[M(A)(i1;:::;in)℄−1‖∞; (1:9)onjetured in [6℄, and also the monotoniity of this bound with respet to the underlyingpartitioning. 3



Setion 4 ompares the bounds (1.8) and (1.9) with some known results, obtained in[1, 13, 3, 9, 10, 6, 5℄.We onlude this introdution with two relevant remarks. First, if AT is a PM -matrix(PH-matrix), then the results established obviously yield two-sided bounds (an upper bound)for ‖A−1‖1. Seond, if both A and AT are PH-matries with respet to some partitioningsof the index set, whih may be di�erent, then, in the same way as in [13℄, one immediatelyobtains an upper bound for the spetral norm of A−1, i.e., a lower bound for the smallestsingular value of the original matrix A.2 Two-sided bounds for PM-matriesThe �rst main result of this paper is the following theorem.Theorem 2.1. If A ∈ Rm×m; m ≥ 1, is a PM-matrix with respet to a partitioning 〈m〉 =
⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then it is a nonsingularM-matrix, and its inverse satis�es the two-sided boundsmini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≤ ‖A−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞; (2:1)where the minimum and maximum are taken over all ik ∈ Mk; k = 1; : : : ; n. Furthermore,if A is irreduible, then either inequality in (2.1) is an equality if and only if(A−1e)ik = k for all ik ∈ Mk; k = 1; : : : ; n; (2:2)where e = [1; : : : ; 1℄T is the unit vetor of appropriate dimension; otherwise both inequalitiesin (2.1) hold stritly.In order to prove Theorem 2.1, we follow [7℄ and introdue into onsideration the (m−1)× (m− 1) matries A(1)i and A(2)i that are de�ned as follows:A(1)i = Âi+1 







Ii−1 0 00 1 00 1 00 0 Im−i−1 







; A(2)i = Âi 


Ii−1 0 00 1 00 1 00 0 Im−i−1 







: (2:3)Here and below, Ik is the identity matrix of order k, and for a matrix B ∈ Ct×s, witht ≥ 2 and s ≥ 1, by B̂j we denote its (t − 1) × s submatrix obtained by deleting the jthrow, j = 1; : : : ; t. The passage from A to the pair A(1)i , A(2)i is referred to as aggregationof olumns i and i + 1 of A. Obviously, the matries A(1)i and A(2)i form the olletion ofaggregated matries assoiated with the partitioning 〈m〉 = ⋃m−1k=1 Mk, whereMk = {k}; k =1; : : : ; i − 1; Mi = {i; i + 1}; Mk = {k + 1}; k = i + 1; : : : ; m − 1, and, in terms of thematries (1.7), we haveA(1)i = A(1;:::;i;i+2;:::;m); A(2)i = A(1;:::;i−1;i+1;:::;m):Thus, by Corollary 1.1, if both A(1)i and A(2)i are nonsingular M -matries, then A also is anonsingular M -matrix.The proof of Theorem 2.1 is based on the following lemma.4



Lemma 2.1. Let A ∈ Rm×m; m ≥ 2, be a nonsingular M-matrix suh that for a ertaini; 1 ≤ i ≤ m − 1, both matries A(1)i and A(2)i de�ned in (2.3) are nonsingular M-matries.Then mink=1;2 ‖(A(k)i )−1‖∞ ≤ ‖A−1‖∞ ≤ maxk=1;2 ‖(A(k)i )−1‖∞: (2:4)Furthermore, if A is irreduible, then either inequality in (2.4) is an equality if and only if(A−1e)i = (A−1e)i+1; (2:5)otherwise both inequalities in (2.4) are strit.Proof. Permuting (if neessary) the rows and olumns of A, we may assume, without loss ofgenerality, that i = 1 and that g1 ≤ g2; (2:6)where we set g = A−1e. Using (2.3) and (2.6) and taking into aount that A is a Z-matrix,we derive the right-hand-side inequality in (2.4) in the following way:A(2)1 ĝ1 = Â1 



1 01 00 Im−2 













g2g3...gm










= Â1 













g2g2g3...gm














≤ Â1g = (̂Ag)1 = ê1: (2:7)
Sine, by assumption, A(2)1 is a nonsingular M -matrix, we have (A(2)1 )−1 ≥ 0, and (2.7)implies that ĝ1 ≤ (A(2)1 )−1e; (2:8)whene, with aount for (2.6), we obtain

‖A−1‖∞ = ‖g‖∞ = ‖ĝ1‖∞ ≤ ‖(A(2)1 )−1ê1‖∞ = ‖(A(2)1 )−1‖∞:This proves the right-hand-side inequality in (2.4).In order to prove the left-hand-side inequality in (2.4), we similarly dedueA(1)1 ĝ2 = Â2 



1 01 00 Im−2 













g1g3...gm










= Â2 













g1g1g3...gm














≥ Â2g = (̂Ag)2 = ê2; (2:9)implying that ĝ2 ≥ (A(1)1 )−1ê2: (2:10)By using (2.6) and (2.10), we obtain
‖A−1‖∞ = ‖g‖∞ ≥ ‖ĝ2‖∞ ≥ ‖(A(1)1 )−1ê2‖∞ = ‖(A(1)1 )−1‖∞:This ompletes the proof of inequalities (2.4).In order to analyze the ases of equalities in (2.4), we assume that A is irreduible andthat

‖A−1‖∞ = ‖(A(2)1 )−1‖∞: (2:11)5



Set u = [u2; : : : ; um℄T = (A(2)1 )−1e:Then we have e = A(2)1 u = Â1 



1 01 00 Im−2 













u2u3...um










= Â1 













u2u2u3...um














= (̂A~u)1; (2:12)where we denote ~u = [u2; u2; u3 : : : ; um℄T :From (2.12) it immediately follows thatA~u = 









�1...1 









= e+ (�− 1)e1; (2:13)where ei is the ith olumn of the identity matrix I. Sine A is an irreduible M -matrix, itsinverse is positive, and A−1e1 is a positive vetor. By (2.13), we have~u = A−1e+ (�− 1)A−1e1 = g + (�− 1)A−1e1:Suppose � > 1. Then ~u > g and
‖~u‖∞ > ‖g‖∞ = ‖A−1‖∞;whih ontradits (2.11), beause

‖~u‖∞ = ‖u‖∞ = ‖(A(2)1 )−1‖∞:In a similar fashion, we asertain that the ase � < 1 is impossible as well. Thus, if equality(2.11) holds true, then � = 1, i.e., ~u = A−1e = g, whih implies that g1 = g2.Conversely, if g1 = g2, then ĝ1 = ĝ2, and both (2.7) and (2.9) are strings of equalities,implying that (A(2)1 )−1e = (A(1)1 )−1e, whene both inequalities in (2.4) are equalities.The ase ‖A−1‖∞ = ‖(A(1)1 )−1‖∞ is treated similarly.From the proof of Lemma 2.1, we readily infer the following useful result.Corollary 2.1. If, under the assumptions of Lemma 2.1, the matrix A is irreduible, thenthe inequality
‖(A(2)i )−1‖∞ > ‖(A(1)i )−1‖∞is equivalent to the inequality gi < gi+1; where g = A−1e:Note also that in the seond part of Lemma 2.1, the assumption that A is irreduible anbe weakened as follows. 6



Corollary 2.2. Let A be a nonsingular M-matrix and let A(2)i be a nonsingular M-matrix.If A−1ei is a positive vetor, then
‖A−1‖∞ = ‖(A(2)i )−1‖∞if and only if gi = gi+1.Proof of Theorem 2.1. From de�nitions (1.7) and (2.3) it readily follows that for an arbitrarypartitioning 〈m〉 = ⋃ni=1Mi, with 1 ≤ n < m, eah of the aggregated matries A(i1;:::;in) fromthe olletion (1.7) an be obtained from A as a result of suessively aggregating pairs ofonseutive olumns. Thus, for every �xed partitioning 〈m〉 = ⋃ni=1Mi, we obtain a sequene(whih is in general not uniquely determined) of partitionings of the index set, starting withthe entrywise partitioning 〈m〉 = ⋃mi=1{i} and terminating with the given one. Note thatthe order of the assoiated aggregated matries suessively dereases from m to n, and, byCorollary 1.1, all the intermediate aggregated matries are nonsingular M -matries. Thus,the bounds (2.1) stem from Lemma 2.1.In order to prove the seond assertion of Theorem 2.1, let A be irreduible. First assumethat

‖A−1‖∞ = maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:14)We will show that (2.14) implies (2.2). To this end, it is obviously suÆient to demonstratethat if |Mk| ≥ 2, where 1 ≤ k ≤ n, then for all i; j ∈ Mk; i 6= j, we have (A−1e)i = (A−1e)j.Without loss of generality, we may assume thatMk = {jk; : : : ; jk + |Mk| − 1}:In this ase, it is suÆient to show that from (2.14) it follows that for all i; jk ≤ i <jk + |Mk| − 1, (A−1e)i = (A−1e)i+1: (2:15)Indeed, by Lemma 2.1 and (2.1), we have
‖A−1‖∞ ≤ maxl=1;2 ‖(A(l)i )−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:16)From (2.16) and (2.14) we immediately obtain that

‖A−1‖∞ = maxl=1;2 ‖(A(l)i )−1‖∞;and, onsequently, (2.15) holds by Lemma 2.1.The fat that equality on the left-hand side of (2.1) implies (2.2) is established similarly.Finally, assume that ondition (2.2) is ful�lled. Then, by Lemma 2.1, aggregation ofolumns i and i + 1, where i; i + 1 belong to the same set Mk, does not hange the in�nitynorm of the inverse. In addition, eah of the inverse matries (A(1)i )−1 and (A(2)i )−1 stillsatis�es (2.2), withMk replaed by Mk \{i+1} andMk \{i}, respetively. Thus, proeedingby indution, we onlude that both inequalities in (2.1) are equalities.Theorem 2.1 is proved ompletely. 2Following [7℄, we say that a partitioning
〈m〉 = n

⋃i=1Mi (2:17)7



of the set 〈m〉 into disjoint nonempty subsets is �ner than a partitioning
〈m〉 = n′

⋃i=1M ′i ; (2:18)and (2.18) is oarser than (2.17) if n > n′ and eah of the sets M ′i ; i = 1; : : : ; n′, is a unionof some sets Mi; i = 1; : : : ; n.In this terminology, from the proof of Theorem 2.1 we infer the following monotoniityresult.Theorem 2.2. Let A ∈ Rm×m; m ≥ 1, be a PM-matrix with respet to a partitioning(2.17). Then A is a PM-matrix with respet to every �ner partitioning (2.18), and thefollowing inequalities hold:mini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≤ mini′1;:::;i′n′ ‖(A(i′1;:::;i′n′ ))−1‖∞ ≤ ‖A−1‖∞ (2:19)and
‖A−1‖∞ ≤ maxi′1;:::;i′n′ ‖(A(i′1;:::;i′n′))−1‖∞ ≤ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (2:20)Here, the minima and maxima are taken over all i′k ∈ M ′k; k = 1; : : : ; n′, and all ik ∈Mk; k = 1; : : : ; n.3 An upper bound for PH-matriesIn view of Theorems 1.1 and 1.2, the following upper bound for the in�nity norm of theinverse of a PH-matrix is an immediate onsequene of Theorem 2.1.Theorem 3.1. If A ∈ Cm×m; m ≥ 1, is a PH-matrix with respet to a partitioning 〈m〉 =

⋃ni=1Mi; 1 ≤ n ≤ m, of the index set into disjoint nonempty subsets, then it is an H-matrix,and its inverse satis�es the upper bound
‖A−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞: (3:1)The following monotoniity property of the upper bound (3.1) readily stems from Theo-rem 2.2.Theorem 3.2. Let A ∈ Cm×m; m ≥ 1, be a PH-matrix with respet to a partitioning

〈m〉 = n
⋃i=1Mi; 1 ≤ n ≤ m; (3:2)of the index set into disjoint nonempty subsets. Then A is a PH-matrix with respet to anarbitrary partitioning

〈m〉 = n′
⋃i=1M ′i ; 1 ≤ n′ ≤ m; (3:3)that is �ner than (3.2), and

‖A−1‖∞ ≤ maxi′1;:::;i′n′ ‖(M(A)(i′1;:::;i′n′))−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞; (3:4)where the maxima are taken over all ik ∈ Mk; k = 1; : : : ; n, and all i′k ∈ M ′k; k = 1; : : : ; n′.8



4 Comparison with known resultsFirst we note that if n = m, i.e., no nontrivial blok partitioning is imposed on A, thenA(i1;:::;in) = A, and the upper bound of Theorem 3.1 redues to the Ostrowski result (1.5).If n = 1, then A is a PH-matrix if and only ifpi(A) := |aii| − m
∑j=1j 6=i |aij| > 0; i = 1; : : : ; m; (4:1)i.e., A is a stritly diagonally dominant matries, and the upper bound of Theorem 3.1redues to the lassial Ahlberg{Nilson{Varah bound (see [1, 13℄)

‖A−1‖∞ ≤ maxi∈〈m〉
{1=pi(A)}: (4:2)In addition, for a PM -matrix A, Theorem 2.1 supplements the upper bound (4.2) with itslower ounterpart

‖A−1‖∞ ≥ mini∈〈m〉
{1=pi(A)}; (4:3)whih is almost trivial and was presented in [10℄. Furthermore, if A is an irreduible PM -matrix, then, by Theorem 2.1, the bounds (4.2) and (4.3) simultaneously hold with equalityif and only if A−1e = e;where  is a positive onstant; otherwise both of them hold stritly.Sine the trivial partitioning 〈m〉 =M1 is oarser than any partitioning (3.2) with n ≥ 2,by Theorem 3.2 we have

‖A−1‖∞ ≤ maxi1;:::;in ‖(M(A)(i1;:::;in))−1‖∞ ≤ maxi∈〈m〉
{1=pi(A)}: (4:4)Thus, Theorem 3.2 provides an improvement of the Ahlberg{Nilson{Varah upper bound(4.2), whih is, in addition, appliable under milder assumptions on A (beause if A issdd, then all the matries A(i1;:::;in) are sdd as well). Furthermore, if A is a PM -matrixwith respet to a partitioning with n ≥ 2, then, by Theorem 2.2, we also have the lowerounterpart of inequalities (4.4), namely,

‖A−1‖∞ ≥ mini1;:::;in ‖(A(i1;:::;in))−1‖∞ ≥ mini∈〈m〉
{1=pi(A)}: (4:5)In the ase where n = 2 and 〈m〉 = M1 ∪M2, a matrix A ∈ Cm×m; m ≥ 2, representedas A = [ A11 A12A21 A22 ] ; where Aij = A[Mi;Mj℄; i; j = 1; 2;is a PH-matrix if and only if all the matriesAij := [ pi(A11) −ri(|A12|)

−rj(|A21|) pj(A22) ] ; 1 ≤ i ≤ |M1|; 1 ≤ j ≤ |M2|;are nonsingular M -matries, or, equivalently,pi(A11) > 0 for all i; 1 ≤ i ≤ |M1|;9



and pi(A11)pj(A22) > ri(|A12|)rj(|A21|) for all i; j; 1 ≤ i ≤ |M1|; 1 ≤ j ≤ |M2|:Suh matries were studied in a number of papers (e.g., see [9, 6℄ and the referenes therein).In this ase, the upper bound of Theorem 3.1 redues to the bound
‖A−1‖∞ ≤ maxi;j ‖A−1ij ‖∞; (4:6)whih was �rst proved in [6℄. However, it should be mentioned that the bound (4.6) atuallyoinides with the bound established in [9℄, whih is in terms of the entries of A and suggestsno extension to the ase n ≥ 2. Note that in [5℄ the same upper bound as in [9℄ wasproved for the narrower lass onsisting of matries that are PH-matries with respet tothe spei� partitioning of the index set into two subsets one of whih orresponds to thestritly diagonally dominant rows, whereas the other orresponds to the rows that are notstritly diagonally dominant.The lower ounterpart of (4.6),
‖A−1‖∞ ≥ mini;j ‖A−1ij ‖∞; (4:7)valid for a PM -matrix A by Theorem 2.1, and the analysis of the equality ases in (4.6) and(4.7) for a PM -matrix A are new.In onlusion, we show that the upper bounds of Theorems 2.1 and 3.1 are is generalinomparable with an old-known blok bound, whih is realled below.Given a blok-partitioned matrix (1.3), de�ne the matrix~N(A) = 







‖A−111 ‖−1∞ −‖A12‖∞ : : : −‖A1n‖∞
−‖A21‖∞ ‖A−122 ‖−1∞ : : : −‖A2n‖∞: : : : : : : : : : : :
−‖An1‖∞ −‖An2‖∞ : : : ‖A−1nn‖−1∞









: (4:8)As is known (see [3℄), if ~N(A) is a nonsingular M -matrix, then A is nonsingular, and thenonnegative matrix N(A−1) = 



‖A′11‖∞ : : : ‖A′1n‖∞: : : : : : : : :
‖A′n1‖∞ : : : ‖A′nn‖∞ 

 ; (4:9)where we denote A−1 = (A′ij)ni;j=1, satis�es the inequalityN(A−1) ≤ ~N(A)−1: (4:10)On the other hand, we trivially have
‖A−1‖∞ ≤ ‖N(A−1)‖∞: (4:11)Thus, in view of (4.10) and (4.11), for ‖A−1‖∞ we have the blok bound
‖A−1‖∞ ≤ ‖ ~N(A)−1‖∞: (4:12)Note that (4.12) and the Ahlberg{Nilson{Varah bound (4.2) immediately imply the bound[13℄

‖A−1‖∞ ≤
1min1≤i≤n{‖A−1ii ‖−1∞ −

∑j 6=i ‖Aij‖∞}
; (4:13)10



generalizing the bound (4.2) to the blok ase.Relation (4.12) is an upper bound for ‖A−1‖∞ in terms of the in�nity norm of the inverseto the n × n matrix ~N(A), whih is assumed to be a nonsingular M -matrix. Thus, it isnatural to attempt to ompare (4.12) with the upper bounds provided by Theorems 2.1 and3.1, whih are stated in terms of the aggregated n × n matries. To this end, we onsidertwo examples.First let n = 1 and let A be an m × m; m ≥ 2, nonsingular M -matrix. In this ase,~N(A) = ‖A−1‖−1∞ , so that (4.12) obviously holds with equality. On the other hand, if, inaddition, A is sdd, then Theorem 2.1 yieldsmini∈〈m〉
{1=pi(A)} ≤ ‖A−1‖∞ ≤ maxi∈〈m〉

{1=pi(A)};and if A is irreduible and p(A) = (pi(A)) is not a onstant vetor, then both inequalities arestrit. Thus, in the ase onsidered, the bound (4.12) is appliable under weaker assumptionsand is, in general, better than the upper bound of Theorem 2.1.However, if we assume that n > 1, A is a PM -matrix, andAiie = ie; i > 0; i = 1; : : : ; n; (4:14)then, obviously,
‖A−1ii ‖∞ = ‖A−1ii e‖∞ = 1=i; i = 1; : : : ; n;whene the diagonal entries of the matrix ~N(A), de�ned in (4.8), oinide with the respetivediagonal entries of eah of the matries A(i1;:::;in). Sine, in addition, we haverik(Akj) = −rik(|Akj|) ≥ −‖Akj‖∞; ik ∈ Mk; k 6= j;we onlude that A(i1;:::;in) ≥ ~N(A) for all ik ∈ Mk; k = 1; : : : ; n: (4:15)Thus, it may happen that A is a PM -matrix, but the matrix ~N(A) is not a nonsingularM -matrix. Furthermore, under the assumption that ~N(A) is a nonsingular M -matrix, from(4.15) it follows (e.g., see [4, p. 131℄) that~N(A)−1 ≥ (A(i1;:::;in))−1 for all ik ∈ Mk; k = 1; : : : ; n; (4:16)and, onsequently,

‖ ~N(A)−1‖∞ ≥ maxi1;:::;in ‖(A(i1;:::;in))−1‖∞: (4:17)Thus, in this ase, the bound (4.12) is not neessarily appliable and is no better than theupper bound of Theorem 2.1. Furthermore, as is not diÆult to realize, inequality (4.17)may hold stritly. For instane, it is strit for the matrixA = 







3 0 −2 −10 3 −1 −�0 0 1 00 0 0 1 







; � > 1;whih is a PM -matrix with respet to the partitioning {1; 2; 3; 4} = {1; 2} ∪ {3} ∪ {4}.Indeed, for this partitioning we have~N(A) = 



3 −2 −�0 1 00 0 1 

 ; A(1;3;4) = 



3 −2 −10 1 00 0 1 

 ; A(2;3;4) = 



3 −1 −�0 1 00 0 1 

 ;11



whene ~N(A)−1 = 



1=3 2=3 �=30 1 00 0 1 

 ;(A(1;3;4))−1 = 



1=3 2=3 1=30 1 00 0 1 

 ; (A(2;3;4))−1 = 



1=3 1=3 �=30 1 00 0 1 

 ;and
‖ ~N(A)−1‖∞ = 1+�=3 > max{1+1=3; 2=3+�=3} = max{

‖(A(1;3;4))−1‖∞; ‖(A(2;3;4))−1‖∞} :The above examples demonstrate that the bound (4.12) is in general inomparable withwith the upper bounds of Theorems 2.1 and 3.1.Referenes[1℄ J. H. Ahlberg and E. N. Nilson, Convergene properties of the spline �t, J. SIAM, 11,95{104 (1963).[2℄ O. Axelsson and and L. Yu. Kolotilina, Monotoniity and disretization error estimates,SIAM J. Numer. Anal., 27, 1591{1611 (1999).[3℄ M. Fiedler and V. Pt�ak, Generalized norms of matries and the loation of the spetrum,Czeh. Math. J., 12, 558{571 (1962).[4℄ R. A. Horn and C. R. Johnson, Topis in Matrix Analysis. Cambridge University Press,1991.[5℄ Ting-Zhu Huang, Estimation of ‖A−1‖∞ and the smallest singular value, Comput.Math. Appl., 55, 1075{1080 (2008).[6℄ L. Yu. Kolotilina, Bounds for the determinants and inverses of ertain H-matries, Zap.Nauhn. Semin. POMI, 346, 81{102 (2007).[7℄ L. Yu. Kolotilina, Improving Chistyakov's bounds for the Perron root of a nonnegativematrix, Zap. Nauhn. Semin. POMI, 346, 103{118 (2007).[8℄ Wen Li, The in�nity norm for the inverse of nonsingular diagonal dominant matries,Appl. Math. Letters, 21, 258{263 (2008).[9℄ N. Mora�a, Upper bounds for the in�nity norm of the inverse of SDD and S-SDDmatries, J. Comput. Appl. Math., 206, 666{678 (2007).[10℄ N. Mora�a, Bounds for norms of the matrix inverse and the smallest singular value,submitted to Linear Algebra Appl..[11℄ A. M. Ostrowski, �Uber die Determinanten mit �uberwiegender Hauptdiagonale, Com-ment. Math. Helv., 10, 69{96 (1937). 12
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