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Abstract

We describe the set of all invariant measures on the spaces of
universal countable graphs and on the spaces of universal countable
triangles-free graphs. The construction uses the description of the
S∞-invariant measure on the space of infinite matrices in terms of
measurable function of two variables on some special space. In its
turn that space is nothing more than the universal continuous (Borel,
topological) homogeneous graphs — general or triangle free, — exis-
tence of which we establish.
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NSh-2460.2008.1 and RFFI grant 08-01-00379-a.
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1 Introduction

1.1 Problem and results.

Fix a countable set V and consider the set G of all graphs (non-directed,
without loops and without multiple edges) with the set V as a set of vertices.
The infinite symmetric group S

V of all permutations of V acts naturally on
the set of graphs G. Equip G with the natural weak topology, i.e. topology of
pointwise convergence (stabilization) of the edges, the action of the group S

V

is continuous with respect to weak topology on G, and to the weak topology
on the group S

V itself.
We are interested in the Borel probabilistic S

V -invariant measures on the
set of graphs G. More exactly, we consider S

V -invariant classes of graphs
- I ⊂ G (for example — universal graphs) and want to describe the set of
all probabilistic Borel S

V -invariant measures µ on this class. The stable
subgroup of a graph under this action is a group of automorphism of the
graph; and the condition of the invariance means that the measure does not
depend on possible additional structures on graph (ordering and so on).

If the class I is the class of the universal graphs in the sense Rado-Erdos-
Renji, then there are well-known examples of such measures - this is so called
random graph ([10], also see [9]): the probability that pair of vertices v1, v2

is an edge equals to p, 0 < p < 1 for all pairs of vertices and edges as random
(0-1)-variables are independent. The corresponding measure on the space of
graphs is of course S

V -invariant measures and evidently (this was remark of
Erdos and Renji in [10]) with probability one such graphs are isomorphic to
the countable universal graph. The new question arises - are those measures
exhaust the list of invariant measures on the class of universal graphs? As
we will prove, besides Bernoulli measures there are many other examples of
S

V -invariant ergodic measures on the universal graphs, and its description
reduces to the description of uncountable Borel universal graphs.

It is well-known that there exist a universal triangle free graph (see below).
But the problem about existence of invariant measure on the set of universal
triangle free graphs was still unsolved. It was even doubt if such a measure
exists. The corollary of the results of the papers [14, 15] was that the limit of
the uniform measures on the finite triangle free graphs with n vertices when n
tends to infinite is the measure on the space of infinite matrices concentrated
on the set universal bipartite graph, which are not universal triangle free
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graph.2. This means that uniform measure as approximation tool is too rough
for obtaining needed measure. But we will prove that invariant measures
on the set of universal triangle free graphs do exist (Theorem 5). The main
technical result of this paper (Theorem 4) is existence of topological universal
(or triangle free universal) graphs with the real line R, as the set of vertices,
and with shift invariant graph structure.

Because each graph with the set of vertices V can be identifies with 0−1
adjacent matrix on V ×V , our problem is the problem of the construction of
the measures on the space of 0−1- matrices or the problem of the definition of
set of random matrices. For example, in the terms of adjacent matrix Erdos-
Renji measure on the graph is a Bernoulli measure on the space of symmetric
0-1-matrices with zero diagonal. So our problem can be reformulated in
terms of the theory of the S∞-invariant measures on the space of matrices or
tensors, This theory was started with the papers of D.Aldous [1] who gave the
description of these measures (see also [11]). The second author of the paper
connected this question with the classification of measurable functions of
several arguments, and had proved that the measures are complete invariant
of the classification in the generic case [2]. This gives new proof of Aldous’s
theorem using so called ergodic method. For our examples we use the simplest
part of the theorem, but for the description of all measures we need the
classification theorem in whole generality. It is interesting that those classes
of the universal graphs give the new examples of the Kolmogorov’s effect (see
[13]): the action of the group is transitive on the set of vertices, edges etc.
but there are a uncountable many of ergodic invariant measures.

But for solution of our problem we must construct the ”measurable uni-
versal graph”. This notion, perhaps has a proper interest in the theory of
models and ”continuous combinatorics”.3. It appears step by step. Firstly
we must switch the definitions of universality from countable models to un-
countable graphs to the standard Borel space with measure, then introduce
the topological structure on the set of vertices and finally group-topological
structures on the set of vertices. The reason is that the notion of Borel
universality is not constructive, and it is difficult to check the conditions of
universality. But it is better to construct concrete topological universal graph
using group structure (we use R). This allows us to construct needed open

2We are grateful to Professor G.Cherlin for the reference on those papers
3The notion of the continuous graphs in general must be very useful in the variational

calculus and geometrical optimal control etc.
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sets and to check the conditions of universality and triangle free universality
for continuous graph. This reminds us the construction of the (complete)
universal Urysohn space as a completion of the universal rational space (see
[3, 13]), our construction in the last section looks very similar.

Professor T.Tao informed the second author that the close ideas already
appeared in the recent papers of L.Lovasz and coauthors [5, 6] where the
authors define the analog of the continuous weighted graph which is roughly
speaking measurable function of two variables on the unit interval with
Lebesgue measure; in [7] this notion was associated with Aldous’s theorem.
But our goals are different, and constructions also differ from the construction
in [5, 6]: we consider non-weight graph but with group-invariance structure.
For example we do not know if it is possible to use for our construction a
compact group G as the set of vertices with G-invariant graph structure.

Let us shortly describe the content of the paper. After reminding the
classical examples in this section, we formulate the results of the theory of
invariant measures on the matrices (section 2). In the section 3 we define
the notions of the Borel universal graphs with measure: the problem of the
description of invariant measure can be reformulated in the terms of those
graphs.

The next step is a new definition of topological universal object: we omit
a measure as a ingredient of the definition, and instead use the assumption
about the openness which guarantees that each non-degenerated measure on
the topological universal space gives the Borel universal space with measure.
So the problem reduces to construction of the topological universal graphs.
The main results are contained in the section 4 where we formulate the group
topological universality and give the concrete examples of the structure of
invariant universal graph on the real line. In fact we construct the universal
countable graph (a universal countable triangle free graph) on the set Q -of
rational numbers and invariant under the action of the group of translations
on Q and then extend the graph structure on the whole real line R. This
is similar to the construction of Urysohn of the universal metric space ([3]).
All those considerations we give simultaneously for the universal and triangle
free universal graphs. It is very plausible that it is possible to formulate the
analog for general category in framework of Fraisse theory (see [8]). Some
comments and questions we formulate in the section 5.

Shortly speaking our scheme looks like the following transitions:
universal Borel graph with measures → universal topological graph →

universal homogeneous topological graph → invariant measures on the count-
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able universal graphs.

1.2 Universal graph

The question above is especially important for the class of universal graphs
and we start with it. The universal graph Γu was defined by R.Rado (see[12]).

This graph is characterized by two properties:
(i) any finite graph γ may be embed to Γu

(ii) for any two isomorphic finite induced subgraphs γ1, γ2 of Γu any
isomorphism between them may be extended to the isomorphism of the whole
graph Γu.

Equivalent property is the following:
(iii) for any finite subgraph γ ⊂ Γu, any 2-coloring of vertices of γ in

black and white there exists a vertex v ∈ Γu, which is joined with the white
vertices of γ and is not joined with the black.

It is known that the universal graph is unique up to isomorphisms and so
the set of such subgraphs of G is one orbit of the action of the group S

V on
the space of graphs G.

The remark of Erdos and Renji [10] consists in the simple observation,
that if for any pair of vertices a, b, draw edge a − b with probability pa,b =
p ∈ (0, 1) independently on other edges, then with probability 1 the obtained
random graph is the universal graph Γu of Rado. This is why universal graph
is sometimes called (incorrectly) ”random graph”.

The measures above evidently are invariant under the group S
V of all

permutations of vertices.
Is it possible to define S

V -invariant measures on the set of universal
graphs of the different type? We answer on this question below in positive.

We can put the same question for other type of universal objects.

1.3 Universal triangle free graph.

Consider more complicated class of graphs, for example, triangles-free graph
(see [14]). In this case also it is possible to define universal graph because
the Fraisse axioms [8] fulfill.

A graph Γ ∈ G is called a universal triangles-free graph, if Γ does not
contain triangles and satisfies property (ii). Equivalent formulation is that

(iii’) graph Γ does not contain triangles and satisfies the following prop-
erty: for any finite subgraph γ ⊂ Γu and any 2-coloring of vertices of γ in
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black and white such that there are no edges between two white vertices
there exists a vertex v ∈ Γu, which is joined with the white vertices of γ and
is not joined with the black.

The question was how to define invariant measure which is concentrated
on the universal triangle free graphs - the trick which is good for the Erdos-
Renji random graph evidently does not work in this case.

Moreover, in the papers [14, ?] very interesting effect have been found: in
our terms it means that the weak limit of the sequence of uniform measures
on the set of all finite triangle-free graphs with n vertices when n tends to
infinity does exist, and is an S

V -invariant measure, but it is concentrated on
the 2-colored (=bipartite) graphs, so the support of the limit is not the set
of universal triangles-free graphs, as one could guess, but this last set has
zero limit measure. Roughly speaking the explanation of this effect can be
done easily: the set of bipartite graphs (=set of graphs without odd cycles)
is asymptotically of measure one for uniform measure on the finite triangle
free graphs. Thus, the limit of the uniform measures on the set of triangle
free graphs does not give the answer on our question about existence of S

V -
invariant measures on the set universal triangle-free graphs, up to now it
was not known if such measure exists. Below we give the examples. Remark
that in the Erdos-Renji case the Bernoulli measure with probability of edges
1/2 is just the weak limit when n tends to infinity of the sequence of the
uniform measures on sets of all graphs with n-vertices. But in the triangle-
free case the uniform measure occurred to be too rough and does not reflect
the difference between triangles-free and 2-colored graphs.

2 Description of the invariant measures on

the set of matrices

2.1 Standard Borel sets and standard measure spaces

Recall that standard (uncountable) Borel space X is a space with fixed sigma-
field of the subsets, which is Borel isomorphic to the interval [0, 1] equipped
with sigma-field of Borel subsets.

We will consider the measures on the standard Borel sets or standard
(Lebesgue) measure spaces. This is the measure space with probabilistic, con-
tinuous totally additive measure which is isomorphic in the sense of measure
theory (up to set of zero measure) to interval [0, 1] with Lebesgue measure.
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2.2 Description of S
N-invariant measures on the space

of matrices.

Let us prepare the description of the measures on the set of graphs. It
is convenient to realize any countable graph (element of G) as its adjacent
matrix: suppose that the set of vertices V is the set of the natural numbers
- N, and the entries of adjacent matrix corresponding to the graph γ are
defined as follows: εi,j = 1 iff (i, j) is an edge and εi,j = 0 vice versa. The
action of the group S

V = S
N is the simultaneous permutations of the rows

and columns. So we must define a Borel measure on the set of matrices
MN({0; 1}) which is invariant under that action. We quote a description of
such measures.

Our method of description of measure is based on the result from [1, 2]
about the structure of the random invariantly distributed matrices. More
exactly, we consider the measures on space of matrices MN(K), where K is
an arbitrary Borel space - in our case we have K = {0; 1}; the measures are
invariant under simultaneous permutations of rows and columns e.g under
the action of the group SN. The following fact was proved in [1],(see also
[2]):

Theorem 1. Each Borel probability measure µ on the space MN(0; 1) of
symmetric 0; 1-matrices which is S

N- invariant and ergodic with respect to
the action of this group, has the following feature:

there are the standard Borel (Lebesgue) space (Y, m) with probability mea-
sure m, and auxiliary standard Lebesgue space (Ω, ν),

and
the Borel measurable function with values {0; 1} of three variables y1, y2 ∈

Y, ω ∈ Ω; (y1, y2, ω) 7→ f(y1, y2, ω) (eg. characteristic function of measurable
set E ⊂ Y × Y ), symmetric in the first two variables 4;

such that the measure µ ≡ µ(m, ω; f) is the image of the product of
Bernoulli measure mN in the space Y N and Bernoulli measure on (ΩN×N, νN×N)
under the map

D : Y N × ΩN×N → MN(0; 1)

D({{yi}∞i=, {ωi,j}∞i,j=1; i > j, i, j = 1 . . . }) ֌ {f(yi, yj, ωi,j)}i,j,

4it is also convenient to describe the function f of three arguments as actually the
random symmetric function on Y × Y of two variables, depending on ω ∈ Ω as a random
parameter which is equipped with a measure ν.
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where {yi}∞i=1, {ωi,j}∞i,j=1 are all independent random variables, - yi i.i.d.
with the distribution m on Y and with distribution ν to a measure ν on space
(Ω, ν).

There are two extremal cases of the conclusion of the theorem:
1. The function f (or the set E) does not depend on y1, y2 (more exactly,

Y is one-point space), and is a function of argument ω ∈ Ω,
2. The function f (set E) does not depend on ω (more exactly Ω is

one-point space), and is function of y1, y2; - in this case all entries ei,j of the
matrix {f(ωi,j}i,j) -are independent; and the image of Bernoulli measure mN

under the map D on the space of matrices (in [13] this measure is called
matrix distribution of function (set)) is metric invariant of the set function f
(set E) under the group of simultaneous action on both arguments (e.g. on
the space Y × Y ) of the group of all measure preserving transformations of
the space (Y, m). In this case we can say more -see below.

We will see later that first case (1.) gives the distribution on the adjacent
matrices of Erdos-Renji type - ”traditional random graph”. More important
for us is the second type of invariant measures on the space of adjacent
matrices which gives the new examples. For the universal triangle free graphs
only second type of measures is available.

The first proof of Theorem 1 was given in the paper [1], the simplifica-
tion of the proof and important additional details - see in [2]. The easiest
part of proof which we will use below is the claim that the procedure in the
theorem indeed gives invariant measure. The second part is more delicate
and uses some measure-theoretic constructions. The additional result of [2]
claims that for generic (more exactly -for so called ”pure) functions f of two
variables y1, y2 the measure µ(f, m) on the space of matrices which called
in [2] -distribution of the function f - is complete invariant of the functions
f with respect to the simultaneous action of the group of measure preserv-
ing transformations of the space (Y, m), T : Y → Y, Tm = m; in other
words measure µ is complete invariant under transformations of the func-
tions: f(·, ·) 7→ f(T (·), T (·)).
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3 Universal Borel and Universal Topological

Graphs

For our goals we need to define several notions of continuous universal objects.
Here we consider the case of graphs only; no doubts that the definitions can
be extended to more general situation in the framework of the model theory
([8]).

3.1 Universal Borel Graph

Definition 1. The structure of the graph (undirected, without loops) with
the set of vertices X is a pair (X, E) where E ⊂ X × X is a symmetric set
with empty intersection with the diagonal diag(X × X).

It is easy to describe additional assumptions on the graph (like triangles-
free, etc.). If set X is a standard Borel space and E is a Borel symmetric
subset of X × X with empty intersection with diagonal, then we say that
(X, E) is Borel graph.

The definition of the universal Borel graph is more delicate - we need to
use a measure on the space X.

Definition 2. Universal Borel graph with measure (correspondingly — uni-
versal triangles-free graph with measure etc.) is triple (X, E, m) where X is
a standard Borel space, (X, m) is standard (Lebesgue) space with continuous
probability measure, and pair (X, E) is a Borel graph, such that the following
condition hold

for almost all with respect to Bernoulli measure m∞ in the space X∞

sequences {xk}∞k=1 ∈ X∞ the induced countable graph with vertices xk is
universal countable graph (correspondingly universal countable triangles-free
graph).

Suppose that we already have such a universal Borel graph (universal
triangles-free Borel graph) with measure in the sense of this definition; let
E ⊂ X × X be the corresponding set of edges.

Theorem 2. Suppose that a triple (X, E, m) is universal Borel graph with
measure m (correspondingly universal triangles-free Borel graph with mea-
sure m) and f is characteristic function of the set E; then the measure
µ = µ(m, E), given under the scheme of Theorem 1 (with one-point space
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Ω = {·}) is the S
N-invariant measure on the set of matrices MN(0, 1) which

is concentrated on the adjacent matrices of the universal countable graphs
(correspondingly — on the triangles-free universal countable graphs).

This theorem is a direct corollary of the easiest part of the theorem 1.

Remark 1. From the second part of Theorem 1 we can conclude that each
S

N invariant ergodic measure on the set of adjacent matrices which is con-
centrated on the adjacent matrices of universal triangles-free graphs can be
obtained from the universal triangles-free Borel graph with measure m as in
Theorem 2.

Indeed, in the scheme of the Theorem 1, which gives all possible S
N

invariant ergodic measures, the space Ω must be one-point space, because in
opposite case triangles-free condition does not hold.

Thus, we reduce the construction of the needed examples of the measures
on the set of universal graphs to the concrete examples of the universal Borel
graph (universal triangle free Borel graph) with measure.

3.2 Universal Topological Graph.

Unfortunately it is not easy to check the conditions of the definition of univer-
sal Borel graphs with measure. For this reason we will give more restrictive
definition of topological universality with the conditions which are easier to
check.

Define the universal topological graph. For simplicity we assume that X
is Polish space (=metric separable complete space), but this is not necessary.

For Y ⊂ X denote its complement Y ′ = X \ Y and the closure Ȳ .

Definition 3. Let X be a Polish space and E ⊂ X×X be a Borel symmetric
set with empty intersection with diagonal; denote for x ∈ X the section:
Ex = {y ∈ X : (x, y) ∈ X}. The pair (X, E) will be called topological
universal graph (correspondingly, topological universal triangles-free graph)
if the set E has the following property:

(U) For any two disjoint finite sets {a1, . . . an} ∈ X and {b1 . . . bm} ∈ X,
the intersection

⋂

i,j

(Eai
∩ E ′

bj
)
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is nonempty subset in X and has non-empty interior;
correspondingly, for triangle free case instead of the condition 2 we have

the condition:
(UTF) For any two points a, b ∈ X such, that (a, b) ∈ Ē and any c ∈ X,

either (a, c) /∈ Ē or (b, c) /∈ Ē) (absence of triangles), and for any two
disjoint finite sets {a1, . . . an} ∈ X and {b1, . . . bm} ∈ X such that aj /∈ E(ai)
for 1 ≤ i ≤ j ≤ n, the intersection

⋂

i,j

(Eai
∩ E ′

bj
)

has non-empty interior in X).

As it is seen from the definition, in triangles-free case it is convenient to
take closed set of edges.

Recall that Borel measure on the Polish space is called non-degenerated
if it is positive on all nonempty open sets,

Theorem 3. Let (X, E) be topological universal graph (corr. topological
universal triangle free graph); then for each non-degenerated Borel probability
measure m the triple (X, E, m) is Borel universal graph (corr. Borel universal
triangle free graph) in the sense of the definition of the previous section.

Proof. Let m be non-degenerated measure on X. Then, almost all sequences
{xk} with respect to Bernoulli measure m∞ are everywhere dense on X. We
have to check that the property (iii) (correspondingly (iii’)) of the section
1.2 and 1.3 is valid for almost all (with respect to Bernoulli measure m∞)
sequences {xk}. For each n vertices of randomly chosen vertices in X this
condition holds because of openness of E and density of the sequence of the
set E. Then it suffices to note that the intersection (over n) of a countable
number of events each holding with probability 1 also holds with probability
1.

The proof for the case of triangle free graphs is the same.

Comparing Theorems 2 and 3 we obtain

Corollary 1. Each non-degenerated measure on the topological universal
(correspondingly triangle free) graph generates the S

N- invariant measure on
the universal (correspondingly — universal triangle free) graphs.

Now we must prove the existence of topological universal (correspondingly
— universal triangle free) graphs.
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4 Construction of the continuous homogeneous

graphs.

We will describe the construction of a universal continuous graph.
In our examples the space X of the vertices of the graph subtracted more

serious restrictions, — we will equip this space with a group structure — X
will be the real line R. In general if G is a group, we will say that graph with
G as set of vertices has (left) G-invariant graph-structure if the set of the
edges E ⊂ G × G will have a form E = {(g, h) : g−1h ∈ A}, where A ⊂ G
and for the topological group A is Borel set. In the same way we can consider
more generally X the homogeneous G-space of the group as the set of the
vertices. We will not define the notion of universality for topological group
case in whole generality and consider the case G = R. Group invariant graph
structure as well as group invariant model of universal Urysohn space had
been considered in the papers ([17, 16, 18]) — homogeneous Cayley objects
in terminology [17]). Here we will give new examples.

We will consider the additive group X = R, and define a subset E ⊂
R2; E = {(x, y) : |x − y| ∈ Z} where set Z ⊂ (0, +∞) is constructed by
induction.

We begin with the construction of shift-invariant countable universal
graph (corresp. universal triangle free graph) on the group of rational num-
bers and later will extend the definition on the set of all real numbers.

It is easy to formulate the conditions of the universality in terms of the
set Z ⊂ R+:

For universal graph:
U . For each pair of disjoint finite sets of the real numbers {a1, . . . , an}, {b1 . . . bm}

there exists a real number c such, that |c− ai| ∈ Z, i = 1, 2, . . . , n; |c− bj | /∈
Z, j = 1, 2, . . . , m. Moreover, the set of such c has non-empty interior.

For universal triangle free graph:
UTF .
a) ”Triangle free” condition transforms into the following sum-free con-

dition: there are no solutions of the equation a + b = c, where a, b, c ∈ Z̄.
b) for each pair of disjoint finite sets of the real numbers {a1, . . . , an}, {b1, . . . , bm}

such that |ai − ak| /∈ Z̄, 1 ≤ i < k ≤ n, there exists real number c such
that |c − ai| ∈ Z, i = 1, 2, . . . , n; |c − bj | /∈ Z, j = 1, 2, . . . , m. Moreover, the
set of such c has non-empty interior.

We want to prove the following result.
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Theorem 4. There is a universal topological graph (correspondingly, univer-
sal topological triangle free graph) with additive group R as the set of vertices
and with graph structure which is invariant under the additive action of the
group R on itself.

Proof. We define firstly the Q-invariant universal (correspondingly - universal
triangle free) graph-structure on the group Q, it will be a special new model
of countable universal (correspondingly - triangle free universal) graph, and
then will check that it is possible to extend that structure on the group R and
this will give a the topological R-invariant universal (triangle free universal)
uncountable graph. The construction is a little bit different for two cases.

1)The case of Universal graph. Consider the set

P (Q) = {(a1 < · · · < an); ai ∈ Q, i = 1, . . . n, n = 1, 2 . . .}

of all finite sets of rational numbers which we will be called pre-patterns,
and the set of pairs of the pre-patterns which we will be called a pattern —
P 2(Q). Let γ ∈ P 2(Q) where

γ = (α, β), α, β ∈ P (Q), α = (a1 < · · · < an), β = (b1 < · · · < bm),

where ai, bj ∈ Q. We will call α (corr. β) an a-part (corr. b-part) of the
pattern γ. For our goals it is enough to consider only the subset of γ ∈ P 2(Q)
which consists with the patterns containing zero and all other points of which
are positive:

P = P 2
0 (Q) = {α = (0 ≤ a1 < a2 · · · < an), β = (0 ≤ b1 < · · · < bm),

here ai 6= bj , ai, bj ∈ Q+,and either a1 = 0, or b1 = 0.
We want to define a graph with shift-invariant structure, and consequently

it is enough to describe only the set of edges between the point (vertex) 0
and positive rational numbers, or to define the set Z will be just the set of
rational numbers r for which {0, r} is the edge of the graph.

Introduce two characteristics of the patterns γ ∈ P: ǫ(γ) = 1
2
min{1, |ai−

ak|, |ai − bj |, |bj − bs|} (minimum over all different coordinates), and M(γ) =
maxi,j{ai, bj}.

This set will be constructed inductively as countable union of the sets
Z =

⋃
n Zn. Choose γ1 = (α = (a1 = 0), β = ∅) and put T1 = 0, T2 = 1, Z1 =

(1/3, 2/3)
⋂

Q, So Z1 ⊂ (T1, T2).
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Suppose we already have constructed the sets Z1, . . . Zn−1, Zi ⊂ (Ti, Ti+1), Ti <
Ti+1, i = 1, 2, . . . , n − 1 of the patterns γ1, . . . γn−1 which satisfies the con-
dition 2̄ for the patterns γ1, . . . γn−1 and each Zi (i = 1, 2, . . . , n − 1)is a
union of the rational intervals. We assume also that Tk − ak

i > Tk−1 where
γk = {(ak

1, . . . , a
k
l ), (b

k
1, . . . b

k
s)}.

Now we will define an integer number Tn+1 and construct the sets Zn :
Zn ⊂ (Tn, Tn+1), Tn < Tn+1,

Consider γn = {(a1, . . . al), (b1, . . . bs) the n-th pattern of P, and choose
Tn+1 = Tn + M(γn) and

Zn =

l⋃

i=1

Vε(γn)(Tn+1 − ai),

here Vδ(y) is δ-neighborhood of the point y. This means that Tn+1 − ai ∈
Zn, i = 1, . . . l and because of choice ε, we have: Tn+1 − bj /∈ Zn, and also
Tn+1 − bj /∈ ⋃n

i=1 Zi, because interval (Tn, Tn+1) does not intersect with
Zi, i < n. This completes the process of the construction of the set Zn

and consequently the set Z =
⋃

n Zn.
Note that the pair {ai, Tn+1} ∈ E, e.g. the pairs of numbers {ai, Tn+1}

are the edges of our graph for all i, i = 1 . . . l and all the a-parts of the
pattern γn, n = 1 . . . , in the same time because of the same reason the pairs
{(bj , Tn+1} - is not edges for all b-part of the patterns γn, and property 2̄
is valid for all patterns. Now the arbitrary pair of the rational numbers
(r1, r2) ∈ E — is the edge of the graph iff |r1 − r2| ∈ Z; thus the graph
structure is defined on the rational numbers and we have constructed the
universal graph whose vertices are rational numbers Q and set of edges is
invariant under the shift.

Now we show that the definition of the set Z allow to extend the graph
structure on the set of real numbers: the set of vertices is R, and the edges
are defined as follow: consider the open set Z ′ which is interior of the closure
of set ZQ and define E ′ = {(λ1, λ2), λ1, λ2 ∈ R : |λ1 − λ2| ∈ Z ′}.

Let us check that the graph (R, E ′) is universal topological graph with
graph R-invariant graph structure (e.g. with the set of edges which are
invariant under the shift). The set E ′ is open by definition and we need to
check property 2. Let us consider the two arbitrary finite patterns of different
real numbers Λ = {(λ1, . . . λn), (µ1, . . . µm)}.Find rational approximation of

these numbers γ = {(a1, . . . an), (b1 . . . bm)} with accuracy to ε(γ)
2

, because of
construction of the set Z and because validity of the property 2̄ for pattern γ
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and corresponding number T , we obtain that property 2 is valid for pattern
Λ. Thus, topological R-invariant graph is constructed.

Note that the set Z - set of the vertices which joined with the vertex 0, -
as well as other points x, is the unbounded open set of R which is separated
from 0 (x).

2) Proof for triangle free case.
We start with the following remark. Transition to the real case from

rational was very simple in the previous proof, because our construction was
in a sense continuous. The same method can be applied in triangle free
case and it gives the construction of the universal Q-invariant triangle free
countable graph. But in opposite to the condition 2̄ the condition 2̄′ is not
continuous, and we can not in the same way to extend structure to the R: we
can loose universality because the set Z could be too small. For this reason
we must change the construction. Namely we can not consider the arbitrary
ordering of the set of rational patterns, numeration must be agreed with sizes
of patterns. But there is even more simple way to construct the set Z.

We start with enumerating not all finite sets of rational numbers, (pat-
terns in the previous sense) as before but we numerate all finite sets of ra-
tional intervals. Say, that two intervals (a, b) and (c, d) are strictly disjoint,
if b < c or d < a. Define a pre-pattern as a finite union of strictly disjoint
intervals with positive rational endpoints. Now define a pattern as an or-
dered pair of two pre-patterns, (call them a-part and b-part of the pattern)
such that all intervals of both pre-patterns are strictly disjoint. So, the term
”pattern” has another sense than before.

Enumerate all patterns: γ1, γ2, . . . . We construct our set Z as a union
∩iZi, which are defined inductively. Start with Z1 = (2/5, 3/5). Suppose the
sets Z1, Z2, . . . , Zn−1 are already constructed, and the union ∩i=16n − 1Zi is
sum-free set. The n-th step consist in the definition of the set Zn. Consider
the pattern γn and all differences of (distinct) elements of a-part - αn of
pattern γn. If some of difference belongs to ∪n−1

i=1 Zi, then we put Zn = ∅ and
missed pattern γnand consider the next pattern. In opposite case, we define
set Zn = Tn −αn, where Tn is some integer such that Tn > 5 sup(γn ∪n−1

i=1 Zi).
Note that because of our choice of Zn the set ∪n

i=1Zi is still sum-free. Thus
the set Z = ∪∞

i=1Zi is constructed and sum-free.
Check that it satisfies (2̄′). Fix two disjoint finite sets A = {a1, . . . ak} ⊂

R and B = {b1, . . . bm} ⊂ R such that |ai − aj| /∈ Z̄ for 1 ≤ i ≤ j ≤ k.
There exists a (rational) pattern γ, such that a-part α of it as a system of
open intervals contains set A, and the b-part β of is contains a set B, and
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such that (̄α − α) ∩ Z̄ = ∅. Then according to our construction we have
Zn = Tn −α and T −β ∩ Z̄ = ∅, where n is the number of the pattern γ. So,
all numbers c from some sufficiently small neighborhood of T satisfy to the
condition (2̄′).

The next theorem sums up our construction:

Theorem 5. . The pair (R, E) with E = {(x, y) ∈ R2 : |x − y| ∈ Z} where
Z ⊂ R is constructed above (e.g. satisfies the conditions above 1,2G (2’G)) is
universal topological (universal topological triangle free) graph. For each non-
degenerated Borel probability measure m on R the triple (R, E, m) (corresp
(R, E ′, m)) is Borel universal (corresp.universal triangle free) graph. Each
such measure m generated the S

N-invariant measure on the set of matri-
ces MN(0, 1) which is concentrated on the adjacent matrices of the universal
countable graphs (correspondingly - — on the triangles-free universal count-
able graph)

Proof. . Follows from the Theorems 1,2,3.

EXAMPLE. Now we are giving the precise example of the S
N-invariant

measure on the space of adjacent matrices. Let

dm(t) =
1√
2π

exp{−t2

2
}dt

is the standard gaussian measure on R and ξ1, . . . ξn, . . . is the sequence of the
independent random variables each of which is distributed with that gaussian
measure. Let E ≡ {(t, s) : |t − s| ∈ Z} ⊂ R2 (corresp E ′ ≡ {(t, s) : |t − s| ∈
Z ′}) where the sets Z, Z ′ were defined in the theorem 4. Then the random
0; 1-matrices:

{χZ(ξi − ξj)}∞i,j=1

({χZ′(ξi − ξj)}∞i,j=1),

are with probability 1 adjacent matrices of the universal (universal triangle
free) graphs. In other words, the distribution of those random matrices is
the S

N-invariant measure with concentrated on the universal (triangle free)
graphs.

It follows from the theorems, that instead of gaussian measure we can
take any non-degenerated measures and the choice of the set E(E ′) is not
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unique. But each random matrix with the quoted property can be obtain
in this way with some non-degenerates measures m and with a set E (E ′)
which satisfied to the conditions of the theorems above.

5 Some comments.

1. The properties of invariant measures. The choice of the measures
in the examples is very wide and we can put additional assumption on the
measures. For example we can assume that the measure m(E × E) = λ,
where λ ∈ (0, 1) is given number (say, 1/2). It is not clear how to describe
the concrete property of the invariant measures which was constructed. Of
course it is interesting to give more information about the distributions of
the entries of matrices in our examples.

2. Distribution of the entries. The finite dimensional distribution of
the measure µ is very important characteristic of measures. These are the
measures on the n×n adjacent {0, 1}-matrices; it is evidently invariant under
the finite symmetric group, and consequently concentrated on the bunches
of orbits of these groups; the structure and asymptotic size of these orbits
is interesting characteristic of the measure µ. In particular for the case of
triangle-free graph, our measures give more significant weight (in opposite to
uniform measure, see [14]) to the triangle free but not 2-colored finite graphs.

3.Homogeneity Perhaps, it is not easy to express in terms of finite
dimensional distributions of matrices the fact, that the graph structure on
R is shift invariant and the measure m is quasi-invariant under the shift. In
our construction the homogeneous is very convenient, but not so important.

4.Uniqueness Discussing the definitions of universality above the fol-
lowing question naturally arises: under the what conditions (which must be
invariantly formulated) the set E (and universal Borel graph) is unique up
to Borel isomorphisms of the space X? Equivalently, when Borel version of
”back and forth” method works? The same question can be put in the cate-
gories differ from category of Borel spaces; the example of positive answer on
this question in the similar situation is the category of Polish metric spaces
- uniqueness of Urysohn space.

5.Compactness It is interesting if it is possible to construct universal
topological shift-invariant graph on some compact group (say, on a circle).

6.Link with Urysohn space The special interest in this sense represents
the Urysohn space. We will consider it from this point of view elsewhere.
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Here we mention only that Urysohn space U plays the role of ”Borel univer-
sal object” (or topological universal object) for rational or integer universal
metric space; and any Borel probability measure m on this space defines
the S

N-invariant measure µ on the space R distance real matrices which are
universal with probability one (that means that completion of the N with
respect to that random metric, is isometric to Urysohn space, see [13]). The
similarity of the theory of Urysohn space and example of the section 4 above
can be illustrated by the result of [16] where Urysohn space was realized as
a completion of the real line with respect to universal shift-invariant metric.
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