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Abstract

The paper is concerned with the evolution free boundary problem for the Navier-Stokes
equations governing the motion of a viscous incompressible liquid that covers the surface of a
ball rotating with a constant angular velocity w. It is assumed that the liquid is subject to the
gravitational forces generated by the mass of the ball. We consider the problem of stability of
the solution corresponding to the rigid rotation of the liquid with the same angular velocity

w. It is shown that this solution is stable, if |w| < wy where wy depends on the parameters of
the problem.
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1 Introduction

We consider the free boundary problem for the Navier-Stokes equations governing the non-
stationary motion of a viscous incompressible liquid that covers the surface of a ball rotating
with the constant angular velocity w around a fixed axis (z3-axis). The liquid is contained in a
domain Q; C R™ bounded by the surface S = {|z| = d} of the ball K = {|z| < d} and by a free
surface I'; that has no points of intersection with S. It is assumed that the liquid is subject to
the gravitation force kV|z|™! from the part of the ball but the self-gravitation forces between the
liquid particles and capillary forces on I['; are not taken into account. So the problem consists of
determination of €, of the vector field of velocities v(x,t) = (v, v2,v3), and of the scalar pressure
p(z,t), v € 4, satisfying the following relations:

v, + (v-V)v — vV + Vp = kV|z| ™,
V-v=0, €y, t>0,
v(x,t) =wn,, x€S,
T(v,p)n=0, V,=v-n, zecly
v(z,0) =vo(x), =€ Q.
is

Here v,k = const > 0, T'(v,p) = —pI + vS(v) is the stress tensor, S(v) = <% + %)
i) j k=123

the doubled rate-of-strain tensor, V,, is the velocity of the evolution of I'; in the direction of the
exterior normal n, n; = e3 X z, ey is the unit vector parallel to the zs-axis. The function k/|z|
is a gravitational potential of the ball K at the point x € R®\ K. The density of the liquid is
assumed to be equal to one. The domain €, is given.

Introducing a new pressure p — k/|x| instead of p we can write the above problem in the form

v+ (- Vv—vVu+Vp=0, V-v=0, rey, t>0,
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T(v,p)n=nk/|z|, V,=v-n, az€ely, (1.1)
’U(‘/Ll?t):w’r’?n xES,
v(z,0) = vo(x), z € (.

The problem (1.1) has a solution corresponding to a rigid rotation of the liquid around the
x3-axis with the angular velocity w. The corresponding velocity and pressure are given by

V(r) =w(es x &) = w(—x9,21,0), P(z) = %\x'ﬁ + po (1.2)

where @' = (1, x9,0), po = const. These functions satisfy the Navier-Stokes equations. When
we plug them into the boundary condition T'(v, p)n = nk/|x| we obtain the equation for the free
surface G of the rotating liquid:
2
% + L%|3v’|2 =-py=a’, TE€G. (1.3)

It is natural to call the domain bounded by S and G the equilibrium figure. It is easily seen that
G is smooth and axially symmetric. The kinematic boundary condition V,, = V - n on G and the
adherence condition on S are satisfied, hence the functions (1.2) given in F represent a stationary
solution of (1.1).

We assume that the equilibrium figure F is given. Some properties of F will be considered in
Sec.2.

We analyze the problem of stability of the solution (1.2) and consider the problem for the
perturbations of the velocity and pressure

v, (z,t) =v(z,t) — V(z), p(z,t)=p(x,t)— Px)

written in the coordinate system rotating around the xs-axis with the same angular velocity w.
We introduce new variables
r = Z(wt)y

where
cosf@ —sinf 0

Z()=| sinf cosf 0 |,
0 0 1

and new unknown functions
w(y,t) = 27 (Wt (Z(wt)y,t), s(y,t) = p(Z(wt)y, 1)
and arrive at the free boundary problem
w;, + (w-V)w + 2w(es x w) — vV2w + Vs = 0,

V-w=0, yeQ, t>0,
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I __ i w_2 N2 _ 2\,
Tw,s)n' = (o0 + S ly]" = a’)n, (1.4)

Y|
Vi=w-n', yelj,
w=0, yeS’,

w(y,0) =vo(y) — V(y) =woly), vy €,

where ), = Z7Y(wt)Qy, T}, = 09, n' is the exterior normal to I';. To the solution (1.2) of (1.1)
corresponds the solution w = 0,s = 0 of (1.4).

Our objective is to prove that, under a certain restriction on w, problem (1.4) with a small
initial value of the velocity wg given in the domain )y close to G has a unique solution in an
infinite time interval £ > 0 and w, s — 0 as ¢ — oo. This means the stability of the solution (1.2).

We write the problem (1.4) as a nonlinear problem in a fixed domain. We return to original
notations Q, I';, x (instead of Q}, I'}, y) and introduce the Lagrangian coordinates £ € Qg related
to the Eulerian coordinates x € €, by

x:§+/0tu(§,7')d7'EX(§,t), (1.5)

where
u(é,t) = w(X (& 1),1).

We notice that the transformation (1.5) is invertible and its Jacobian equals one. In the Lagrangian
coordinates, relations (1.4) take the form

s+ 2w(es x u) — vViu + V,uq = 0,

Vu-u=0, £y, t>0,

T.(u )n—<i+w—2|X'|2—a2>n el (1.6)
u »q - |X‘ 9 ) 0, .
u=0, (€85,

’U/(f, 0) = wO(g)a g S QUJ

where ¢q(&,t) = s(X(&,1),t)), V, is a transformed gradient with respect to z, T, is a transformed
stress tensor, i.e.,

V.=AV, T,(u,q) = —ql +vS,, Su.(u)=(V,u)+ (V,u)",
V= <3%1, 3%27 (%) = Ve, A= (A;j)ij=123, A is a co-factor of the element a;; = J;; +f0t %é_ﬁ)ah'

of the Jacobi matrix of the transformation (1.5), and finally n = n(X). This vector is connected
with the normal ny to I'y by

") = e Do) (1.7)



Let IT and II; be projections on the tangential planes to ['; and T'y, respectively, i.e.,
If(z) = f(z) —n(f-n), zely,

o f(§) = f(&) —mno(f-m0), §€To.

Then T,(u,q)n = vILS,(u)n + n(n - T, (u, q)n), and it is easily verified that in the case n(X)
no(€) > 0 the equation T,(u, ¢)n = M(X)n is equivalent to the system

IS, (u)n =0, —q+vn-S,(u)n=M(X)

where

k w?
M(X) = X + 7|X’|2 —a’. (1.8)

Problem (1.6) can be written in the form
uy +2w(es x u) — vViu +V,q =0,

VU'U/:O, 5690,t>0,

—q+vn-Sy(uyn=M(X), €Ty,
u = 0, 5 € Sa

’U,(g, 0) = wO(g)a g S QO-
We assume that I'; is close to G and can be defined by the equation

r=2z+ N(2)p(z,t) = e,(2), (1.10)

where N is a unit normal to G, p(z,t) is a small function and z = Z is the point of G closest to .
It is clear that
p = +tdist(z,G) = R(x),

»

the sign ” —” corresponds to the case € F and the sign ” +” corresponds to the case x € R\ F.
The function R(z) is smooth in a certain neighborhood of G and

VR(z) = N (7).

2

If £ € Ty, then X (&,1) € Ty, and
X(6,1) = X(6H) + R(X)N(X) = X(&,t) + R(X)VxR(X).
The time derivative of R(X) is given by

OR(X)
ot

= VxR(X) X, = N(X)  u(&,t).



We include the function r(£,t) = R(X) into the problem (1.9) and separate out linear terms

with respect to w, ¢, r in the relations (1.9). Owing to (1.3),

M(a) = mia) = m(a) = [ S, (2)ds =

omie)| . [ Pmley)
o] v [a-sTEeas
where m(z) = ﬁ + %Q\x'|2. Hence
om(es,) B 3 - om(=)
5 e ;mg(zwg(z)p(z,t) = 9D ),
3 ]
i) Z mijr(esp) N; (2)Ni(2)p* (2, 1),
7,k=1

where m;(z) = 22E) 1 (2) = gzma(z) It follows that

M(X) = =b(E)r(&, ) + (b(€) — b(X))r (&, 8) + bu(u, 1) (&, 1),

where b(z) = — 23,1 m;(2)N;(2) = _omz)

ON 7’

) = [ (15 3 miule, JasNi () M)

=X
J.k=1

AIL—SE:WWJ¥+MWI)@t»@NﬁmNuxy

7,k=1

(1.11)

The expression —b(€)r(&,t) is the first variation of M that was sought for, and other two terms

represent a nonlinear (quadratic) remainder.
Thus, u, g, can be regarded as a solution of the problem

u, +2w(es x u) — vViu + Vg =1 (u, q),
V-u=lh(u), £ey, t>0,
[Ty S(u)ng = l3(u),
—q +vng - S(u)ng + b(E)r = ly(u) + I5(u, ),
r(&,1) = N(§) -u+1s(u), &€y,
u(€t) =0, €5,

’U/(g,()) = wO(g)v g € Q[)a ’I“(g,()) = R(g) = pO(g)a g S 1—‘0-

6
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In these relations
Li(u,q) = v(Viu — V?u) + Vg — Vg,

lo(u) =(V -V, u

I3(u) = (IS (u)ny — I1S, (u)n), (1.13)
l4(u) =v(ng - S(u)nyg —n - S,(u)n),
Is(u, ) = (b(€) — b(X ))7“+b1(u r)r?,
ls(u) = (N(X) = N (&) -u(& ).
By the Piola identity V - AT = < 53 ai )Z Lo = 0, where AT means the transposed matrix

A, we have
lh(u) =V -L(u), L(u)= (- A")u.

We assume that || = || = |F|. This condition is equivalent to

/ o(z,p)dz =0, (1.14)
g

where
P’ p’
©(z,p) = p— 37%(2) + giC(Z), (1.15)

‘H and K are the doubled mean curvature and the Gaussian curvature of G, respectively.
In conclusion, we linearize the problem (1.12). For this it is necessary to map the domain €
onto F by the transformation inverse to

r=y+ N"(y)p(y) = ep(y), vyeEF, (1.16)

where IN™ and p are extensions of N and p, in F, and to omit all the nonlinear terms with
respect to wu,q,r7. This provides the following linear problem for v(y,t), p(y,t), y € F, and
p(y,t), y € G:

vy + 2w(es X v — V20 + Vp =0,

)
V-v(y,t)=0, yeF, t>0,

S(w)N — N(y)(N - S(v)N(y)) =0, (1.17)
—p+vN - S(v)N +b(y)p =0,
pe=N(y) - v(yt), yeg,
v(y,t) =0, yes,

v(y,0) =vo(y), yeF,  p0)=ply), yegq.

Linearization of (1.14) gives
/p(y,t)dS 0 (1.18)
g

If (1.18) holds for t = 0, p = py, then it is satisfied for all ¢ > 0.
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2 On the equilibrium figure.

We consider the curve on the plane (y,ys) given by the equation

m(y) — a® =0, (2.1)
where L )
w

(this curve is a meridional section of the axially symmetric surface G). It intersects the yo-axis
at the points y; = 0,yy = j;a% and the y;-axis at the points y; = £t;, y» = 0, where t; > 0 is a
minimal positive root of the equation

f(t) =a’t — “’;P —k=0. (2.2)

The function f(¢) takes a negative value —k at the point ¢ = 0 and grows in the interval (0, )

where to = \/gg (we assume that w > 0). The maximal value of f(t) equals f(t;) = (2)*?< —F,

and the equation (2.1) defines a closed curve if and only if f(¢y) > 0, which is equivalent to

2\ 3/2a?

W< (§> - (2.3)

Under this condition, the equation (2.2) has a minimal positive root #; < to, which can be expressed
by Cardano’s formula but we do not give it here.
The exterior normal to the curve (2.1) is parallel to

=Vm(y) = ((k/ly* =)y, kya/lyl*).

When the point y moves along the curve (2.1) from the point ") = (0, k/a?) to y® = (¢,0), the
function k/|y|*> — w? decreases from the value a®/k* — w? > 0 to k/t3 — w? > 0. It can be shown
that k/¢3 — w? > 0. This follows from the inequality

()=o) - 5o

w? w? 2 w? w?2/3 2

1/3
which is equivalent to (2.3). It follows that the point ¢, = (%) possessing the property
k/t3 —w? = 0 is located to the right of ¢; on the y;-axis, which implies k/¢3 — w? > 0.

We summarize our results: under the assumption (2.3) equation (2.1) defines a curve 7y pos-
sessing the property Vm(y)|, # 0; moreover,

om(y)| _ k_
ON |y |y?

y-N — w2y1N1

> by > 0, (24)
v



where N is the unit exterior normal to 7. The corresponding surface G is the boundary of an
oblate spheroid F. If k/a? > d, then K C F.

It will be shown below that condition (2.4) guarantees the stability of the equilibrium figure
F.

In conclusion, we give a formula for the volume of the domain F;. The equation (2.1) can be
resolved with respect to ys:

Y2 = £1/9(y?)
where
2 k2 2
9(y1) = = U

By the symmetry of G,

t1 t2
| Fi| = 47r/ yiy/9(yi)dy, = 27r/ Vg(&)dE.
0 0

Since g(t%) = 0, we have

0| 7| /t? 1 k?
= =27 —dé <0
da? 0 9(€) (a2 — L¢)3
for a fixed w and 2
1 1 2
a‘f;‘zzﬂ/ 2k§2 € >0
Ow 0 2¢/9(8) (a® — 5E)

for a fixed a.

3 Main result

We consider the problem (1.12) in weighted anisotropic Sobolev-Slobodetskii spaces [1]. By Wi(€)
where [ > 0 and Q is a domain in R” we mean the space of functions u(z), x € 0, with the norm

lfigey = 3 1Dl = Y [ Duto)ds,
0<lj|<i o<lj<t” %
if [ =[l], i.e., if [ is an integral number, and
. , dxdy
”U”?/vg(n) = HUH;,QM(Q) + Z /Q/Q\Dju(x) - DJU(Z/)FW,
|71=[1]

if [ = [I]+A, A € (0,1). Asusual, Du denotes a partial derivative 00l where j = (41, J2, ---Jn)

81xy...00ng,

and |j| = j1 + ... + Jn. The space W;’l/Z(QT), Qr = Q2 x (0,T), can be defined as

Ly ((0, ), W) N W3*((0,T), Ly(%2))

9



and supplied with the norm

gy = [ DMt + [ 0oy (31)

There exist many other equivalent norms in WZl’W(QT); some of them will be used below. Sobolev
spaces of functions given on smooth surfaces, in particular, on G and on G x (0,7, are introduced
in a standard way, with the help of local maps and partition of unity. We also find it convenient
to introduce the spaces

Wy (Qr) = Lo((0,T), W(Q),  Wy'*(Qr) = W*((0,T), Lo(Q));

the squares of norms in these spaces coincide, respectively, with the first and the second term in
(3.1). Finally, following Y.Hataya [2], we introduce weighted spaces W2 12 (Qr), 1>1,T < o0,

as the sets of functions u € W. ”/Q(QT) such that tu € Wi~ o1 1)/2(62 ), and we define the norm in
WH2(0Q0) b
T) by

||u||2vl=l/2(Q ) = ||u||$/VQl’l/2(QT) + ||tu||12/Vé_1’(l_l)/2(QT).
In the same way the spaces W 12 (Gr) are introduced.
By the interpolation inequality, we have
L+ 80l < elltlig, (3.2

for arbitrary v € [0, 1].
We recall the theorem on mixed derivatives and the trace theorem for the spaces W;’l/ *(Qr).
If w € W'?(Qr) and Iy = 1 — 2k — |j| > 0, then D¥Diu(z,t) € Wi"'*(Qy), and

1DE DI, )l saisrogyy < ellullaor
2

(Qr) (Qr)”

Moreover, the functions from Wl l/Z(QT) have "traces” ul|,ecs0 € Wl 1/24/2= 1/4(GT), Gr = 00 x
(0,T), and u|—;, € Wi (), provided that [ > 1/2 and [ > 1, respectively, and the norms of the

traces can be estimated by C||U||Wl,l/2(QT). The converse statements are also true: every function
2

P € WZl_l/Q’lﬂ_lM(GT) can be extended into Qr so that
|’90”W5J/2(QT) < CHW"Wé*1/2’l/2*1/4(GT)'

An analogous proposition holds for the functions ¢» € Wi ().
Our main result is the following.
Theorem 3.1. Let wy € Wit (Qo) with | € (1,3/2), and let the surface Ty be given by

r=z+N(2)p(2), z€G,
with py € Wl+3/2(g). Assume also that wq satisfies the compatibility conditions

V- wo = 0, H[)S(’lvo)noh‘o = 0, ’UJ()|S =0 (33)

10



and that
leollyzss gy + 0l < @ (3.4

where ¢ is a sufficiently small positive number. Moreover, let the condition (2.4) be satisfied.
Then the problem (1.4)-(1.9)-(1.12) has a unique solution u € WiT?7(QL), Vg € WH*(Q.),
re Wi'»YGy), where Qoo = Qo x Ry, Goo = Tg x Ry such that plg,, € Wit/ a ),
r € WITHTy), Vt > 0. The surface Ty is representable in the form (1.10), where p is connected
with r(&,t) = R(X) by

p(X) =r( ). (3.5)

The solution satisfies the inequality
HUHWQH_Q’U?H(QOO) + qu"wé’l/Q(Qoo) + ”qHWé+1/2,z/2+1/4(GOO)
+||T||V~V2l+1/2,o(Goo) + Stl>1]g (-, t)||wg+1(r0)

sup (D)l < el g + Inllwtrs) ) (3.6)

A similar theorem is proved in [3] for the problem governing the evolution of an isolated mass
of a viscous incompressible self- gravitating liquid bounded only by a free surface I';. This problem
is more complicated technically, in particular, in view of the presence of the non-local terms in
the form of the Newtonian and single layer potentials. However, the scheme of the proof of the
main result is the same as in the present paper. We can say that (1.1) is a model problem for the
problem studied in [3].

The proof of Theorem 3.1 is based, in particular, on the estimates of solutions of a non-
homogeneous problem (1.17), i.e.,

v; + 2w(e; x v) — vV?v + Vp = f(z,1),

V-v(z,t) = f(x,t), ze€F, t>0,
T(v,p)N + Nb(x)p = d(x,1), (3.7)
pr — N(z)-v(z,t) =g(z,t), z€G,
v(z,t) = a(zx,t), x€S,
v(z,0) =wvo(z), z€F,  px,0)=px), zeg,

and of the evolution problem for the Stokes equations with the Dirichlet boundary condition on S
and the Neumann condition on G:

v, — vV + Vp = f(z,1),
V-v(z,t) = f(x,t), ze€F, t>0,
T(v,p)N =d(z,t), z€g, (3.8)

11



v(z,t) = a(z,t), €S8,
v(z,0) =vo(x), =e€F.

We assume for simplicity that a - n = 0, where n(z) is the normal to S exterior with respect
to F.

We prove theorems on the solvability of these problems in the Sobolev spaces of functions and
obtain the corresponding coercive estimates. Our main auxiliary result concerns the problem (3.7).

Theorem 3.2 Let | € (1,3/2), Qr = F x (0,T), & = G x (0,T) and let the data of the
problem (3.7) possess the following regularity properties: f € Wé’l/z(QT), fe WQHZ’O(QT), f =
V.-F, FeW""?(Qq), vo € WHHF), d € Wi @), g € WIPHEBAY (@) a e
W21+3/2’l/2+3/4(23p), po € WiTH(G), where Sp = S x (0,T). Assume also that a-n =0, F-n|,cs =0
and that the compatibility conditions

V-vg = f(2,0), ze€F, vigS(w)N =TIlgd(x,0), =z€Gg,

vo(z) = a(z,0), =z €S8, (3.9)

are satisfied, where llgd = d — N(N - d). Then the problem (3.7) has a unique solution v €
Wy (@), Vp e Wy (Qr), p € WTP(&7), such that ple, € Wy PG, p( 1) €
WY (G) for arbitrary t € (0,T), and

y(T) = ||v||W22+l‘l+l/2(DT) + ||Vp||W$,z/2(DT) + ||p||Wé+1/2,l/2+1/4(®T) + ||p||Wé+1/2,0(®T)

T 1/2
50D (e bz o) < (N + ([ ol + ol mg)at) 7)o (310)

where
N(T) = ||f||Wé’l/2(QT) + Hf”Wé“’O(QT) + ||F||W20’1+l/2(QT) + ||P0||W21+1(g)

—|—||’U[)||W21+l(]_—) + ||d||Wé+1/2,z/2+1/4(®T) + ||g||Wé+3/2,l/2+3/4(®T) + ||a||Wé+3/2,l/2+3/4(2T).
Moreover, if f € WZI’W(DT), d € WQZH/Z’Z/ZHM(@T), g € W21+3/2’l/2+3/4((’5;p), a €
WEsRIESA sy e WIY(Qr), F e WPTA(Qr) (this means that f € Wit(9r),
tf € Wy'(Qr)), F e W2(@Qr), tF e W "V2(Qy)), then
y(T) = H’UHV~V22+1,1+1/2(DT) + HVPHVNVé’l/z(DT) + Hp”wéﬂm,z/zﬂ/z;(@ﬂ + HPHWéﬂm,o(@T)
+sup o0 )l gy + iggtﬂﬂ(ut)”m’(g)
o7 g 2 2 2 1/2
<c(N@+ (| @+ B Ul + 1o g )dt) ), (3.11)
0 2

where B
NAT) = 1 F e cagy + 1 Ity + I Fligoass gy, + lollwsie,
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+”’UUHW21+l(]_—) + ”dH'Wé“/?J/?“/‘l(@T) + |\g|]17v21+3/z,1/2+3/4(®T) + H(J’HVVQI‘L?’“’””?’/“(ET)'

The constants in (3.10), (3.11) are independent of T

In the proof of this theorem we use a similar result for the problem (3.8).

Theorem 3.3 Let | € (1,3/2), and let the data of the problem (3.8) possess the following
reqularity properties: f € WQl’l/Q(QT), few, ™), f=V-F, Fc WZO’IH/Q(QT), vy €
W), d € WP e,y g e WP G, Assume also that the compatibility
conditions (3.9) are satisfied and that a-n =0, F -n|,cs. Then the problem (3.8) has a unique
solution v € Wy ™2 (7)), Vp e Wi*(Qr) such that ple, € Wy /** VY (&1), and

B(T) = [[ollypzrriviz g,y + 1VPlyrvz g,y + Pz g, < 8(T), (3.12)
where
S(T) = 1 lwrerzqpy + I llwieroan + 1 lpoasuz g,
Hlvollwpsiiz) + ldllyrerzizi g,y + lallyirame s,

and c s a constant independent of T
Similar theorems hold for the problems (3.7) and (3.8) in the domain €, bounded by the
surfaces S = {|z| = d} and

lo={x=2+N(2)p(z), 2z€G,} (3.13)
with a small py € WZH?’/Z(Q) (we restrict ourselves with the case a(z,t) = 0):
v; + 2w(e; x v) — vV + Vp = f(z,1),

V- v(z,t) = f(x,t), x€Qq t>0,
T(v,p)ng + nob(z)r = d(z, 1), (3.14)
re — N(z) -v(x,t) = g(z,t), x€Ty,
v(z,t) =0, z€S,
v(z,0) =vo(x), x €y, r(z,0) =ro(x), x €Ty,

v, — vV + Vp = f(x,1),
V- v(z,t) = f(x,t), x€Qy t>0,
T(v,p)ng =d(x,t), z €Ty, (3.15)
v(z,t) =0, z€S,
v(z,0) =vo(x), =€ Q.

Theorem 3.4 Let Qr = Qo x(0,T), Gr =T x(0,T), and let Ty be given by the equation (3.13)
with a small py € WE2(G), 1 € (1,3/2). Assume that the data of the problem (3.14) possess the
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following reqularity properties: f € Wé’lﬂ(QT), few™Qr), f=V-F, Fc WQO’IH/Z(QT)
vo € WitH(Qy), d € WETHPTY Gy, g € WEPPIPTINGL) v € W (T). Assume also that
the compatibility conditions

\VAE ’U[)(IL') = f(.’L',O), T € Q(), VH()S(’U())’I’LO = Hod(fL',O), T € P[),

vo(x) =0, z €S8,

are satisfied and that F - n|,es = 0. Then the problem (3.14) has a unique solution v €
Wy Q) Vp o€ W(Qr), 1€ WyTPNGr), such that pla, € WyTHPHVYG),
r(-,t) € Witl(Ty) for arbitrary t € (0,T), and

Y(T) = ||’v||W22+z,1+1/2(QT) + ||Vp||Wé,l/2(QT) + ||p||W21+1/2,l/2+1/4(GT) + ||T||W2l+1/2’O(GT)

T 1/2
+§EIT) 17 (s D)l gy < C<N(T) + (/0 (vl %0 + |!T|\3V_1/2(F0))dt) >7 (3.16)

2

where
NT) = 1 fllysirgpy + 1 lhytan + 1F lyorsra gy, + ool

+||d||Wé+l/2’l/2+l/4(GT) + ||g||Wé+3/2’l/2+3/4(GT) + ||T0||W21+1(F0).

Moreover, if £ € Wo*(Qr), d € WY Gy, g € WIS (G F e W (Qr),
F e Wo2'"2(Qy), then

Y(T) = HUHV~V22H’1“/2(QT) + HVpHWé,W(QT) + Hp”v~v2l+1/z,z/2+1/4(GT) + HTHV~V2I+1/2’O(GT)

+sup [[7(, 8) [y () + sup (- O)llwir)
t<T t<T

_ T 1/2
ScOWT»+(A(1+ﬂxwmam@+um;4@mgm) ). (3.17)

2
where B
NT) = 1 fllgsar gy + 1 livts10m + [ Fligonsin g + Irollsesqre

+||UO||W21“(QO) + ”d”Wé“/Q’l/Q“M(GT) + ||g||wé+3/2,1/2+3/4(GT).

The constants in (3.16), (3.17) are independent of T
Theorem 3.5 Let | € (1,3/2), and let the data of the problem (3.15), f, f, d, vy, satisfy

the assumptions of theorem 3.4. Then this problem has a unique solution v € W22+l’1+l/2(QT),
Vp € WH(Qr) such that play € WP (G | and

V(T) = ”’UHWgH’Hl/?(QT) + HVp|’W2z,z/z(QT) + HpHW2z+1/z,z/2+1/4(GT) < c¢F(T), (3.18)

where
]:(T) = ||f||W2’=l/2(QT) + ”fHWé*l’O(QT) + ||F||W20’1+’/2(QT)
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+”v0 HW;'H(QO) + H d”W2l+1/2J/2+1/4(GT)7

with the constant independent of T .
The proof of Theorems 3.4 and 3.5 consists of the reduction of the problems (3.14), (3.15) to
(3.7) and (3.8) by means of the mapping

E=y+ N"p;(y) = ep(y)

of the domain F onto €y, where N* and p are extensions of N and py into F such that N* is
sufficiently regular and pj satisfies the conditions pf|s = 0 and

15l wive iy < ellpollyyivarngy < € < 1. (3.19)

By this mapping, the problems (3.14) and (3.15) are converted into the problems (3.7), (3.8) with
small additional linear terms, and the solvability of (3.14), (3.15) follows from the contraction
mapping principle (see [3] for more detail).

A general scheme of the proof of Theorem 3.1 is the following: using (3.17), we obtain a uniform
with respect to 7' estimate of the solution given in the time interval (0, 7") with an arbitrary 7' > 0
and satisfying a certain smallness condition, which can be guaranteed by the choice of sufficiently
small initial data. For this we need to estimate the nonlinear terms in (1.12) and the weak norms of
the solution (the Ly-norm of u and the W;l/z—norm of r). Then we prove a local in time theorem
on the solvability of the problem (1.9) and extend the solution step by step to the infinite time
interval ¢ > 0. We obtain the estimate (3.6) that guarantees a power-like decay of (u,q,r) as
t — oo which means the stability of the zero solution of the problem (1.9).

Proposition 3.1. Let (u,q,r) be a solution of (1.12) with the finite norm ?(T), T > 1,
defined in (3.17), and let

Y(T)<$§ (3.21)

with a certain small § > 0. Then
1G22 + 2lliretogp + 1 ElGosz g,
+||l3||I7V25+1/2,l/2+1/4(GT) + ||l4||Wé+l/2’l/2+l/4(GT)
+||l5||Wé+l/2’l/2+l/4(GT) + ||16||17V5+3/2"/2+3/4(GT)

< C<||“||%VV22+1,1+1/2(QT) + ||Vq||2m7;,,/2(QT) + ||T||%7V2’+1/2”/2+1/4(GT)) (3-22)

with a constant ¢ independent of T > 1.

Proposition 3.2. Assume that the solution w,s of the problem (1.4) is given for t € (0,T),
is square integrable together with the derivatives that occur in (1.4), and T, is representable in the
form (1.10) with p € Wit'™4(G), € € (0,1 — 1), satisfying the inequality

sup [p(-, t)|c1(g) < 0 < 1. (3.23)
t<T
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Then there exist two positive functions, E(t) and E;(t), such that

dE(t) _
T BN =0, (3.24)

([l Ol + 100, O ,0)) < B < e (w0 + I0CDlEe) ), (3:25)
and
Bi(t) 2 s (IS )0 + oG DIE, 1))
> ea( [l Dl + 10D, 1) (3.26)

with the constants independent of T'.
When we integrate (3.24) between zero and ¢, we obtain

t
er (0Dl + oG D)) + s / (Il Py ey + oG, 112 ) b

< C2<||wo||%2(m) + ||P0||%2(9))'

By Proposition 4.6 in [3], this implies

t
s Ol sy + I ) ey + / (s P sy + I 2 o )7

< c(lwolltaian + 10]3.c))- (327)

Propositions 3.1 and 3.2 are proved in Sec. 5 and 6.

Theorem 3.2 and Propositions 3.1, 3.2 enable us to obtain the following uniform estimate of
the solution of the problem (1.12).

Theorem 3.6. Assume that the solution of (1.12) is given for t € (0,T) and satisfies (3.21).
Then B

Y (T) < ¢Ny, (3.28)
where
No = [lwollyi+(qp) + [loollwi(g)-

Proof. Making use of (3.16), (3.21), (3.27), we obtain
Y(T) < e(Y(T) 4 Ny) < ¢(6Y(T) + Np).
Now, we multiply (3.24) by ¢* which leads to

2
FE
dtd—t(t) + 2B (t) = 2tE (1),
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and, as a consequence, to

t%myh[ﬁwwmﬁ:QAZEungzJAZHmthAUﬂﬂm

By (3.17), (3.27), we have

Y(T) < ¢(6Y(T) + No) + e/ Y (T)\/Y

which implies B B
Y(T) < e, VoY (T) + oy,

and if )
\/g S 5017
then N
Y(T) S QCQNU,
q.e.d.

Now, we turn to the question of solvability of the problem (1.12). We follow the arguments in
[3] and consider the problem (1.9). By (1.3), we can represent M(X) as

M(X) = m(X) —m(§) = m(X) — m(¢) + m(§) — m(€).

We express the difference m(X) —m(€) = m(€ + [, w(, 7)dr) — m(€) in the form
" om(X, Om(X, ! 0*m(X,
7mm—m@zl-@%J@:l%r%ﬂ+ﬂu—@—%5%&

where X, = £ + sfo w(&, 7)dr, and we set

3

0 Xs t t
() = 220 )SZOZ;mj(o [ wte.ryir = m)- [ ute
! Pm (X
zmozﬂu—@ gQMs
- d m\S» d )
/ (1-s kalmk] /Uk(ﬁﬂ') 7'/0 U (&, T)dT
where m;(§) = agl—g(f), my;(€) = ‘352’:9(5) finally, we put



It follows that the problem (1.9) can be written in the form
u, +2w(es x u) —vViu + Vg =1l (u, q),
’U,—ZQ(U) §€Q0, t>0,
H()S(’U,)’I’LO = l3(’U,), (329)
—q+vng - S(u)ng — li(u) = ly(u) + lo(u) + Mi(py), €& €T,
u(§,t) =0, €€,
’Ux(f, 0) = wU(g)a 5 € QO)

We should also consider the problem of extending the solution of (1.12) given in the time
interval [0, 7] into a larger interval [0,7 + 1]. It reduces to the construction of the solution of the
problem (1.9) with the initial condition w(&,T) = w(&,T — 0) in the interval ¢ € (T, T + 1); here,
as usual, u(§, T —0) = lim, o u(&, T —7) with 7 > 0. As in [3], we introduce the functions u, and
¢o that coincide with u and ¢ for ¢ < T and are defined by

wol€,1) = —3u(€, 27 — £) + dul(g, 3T/2 — £/2),
0(&,1) = —=3q(&, 2T — 1) + 4q(&,3T/2 - 1/2), (3.30)
for t > T (this extension guarantees preservation of class) and we set
V=uU—up, P=4q— o,

so that v(£,t) = 0, p({ t) =0 for t < T. We represent the difference M (X [ug + v]) — M (X [uo)),
where X |w]| =&+ fo 7)dr, in the form

M(X[ug + v]) — M(X[ug]) = m(X[ug + v]) — m(X[uo))

= /0 %m(X[ug + sv])ds = l3(v) + £4(v),

where

(3(v) = Vin(Xug)) - /T w(E,7)dr

o) = [ 09 3 m(Xlao+ swlis [ e [ e o

T

It is easily seen that the problem mentioned above is equivalent to
v+ 2w(es X v) — vV + Vp =l (ug + v, g0 +p) — b (uo, @) + F(&,1),
Vv =ly(ug +v) — la(uo) + f(§, 1), £ € Qo,
H()S(’U)ng = l3(U0 + ’U) — l3(U0) + d(g, t), (331)
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—p+vng - S(v)ng —l3(v) = ly(w +v) — ly(ug) + la(v) +d(E, 1), £ €Ty,
v(t) =0, £€S8,
U(SJT) = 07 g S QUJ

where
F=1U(uo,q) — lgo)(ug, Q) + uj,

F(E,) = lo(uo) — I (ug) = V - F(&, 1),
F(&,t) = L(ug) — L (uy), (3.32)
d(&,) = Iy(uo) — 1§ (uo),

d(€,1) = (Is(uo) — 11 (ug)) + m(X [ug]) — m® (X[uy)),
l(U)

. and m(® are extensions of I; and m, t < T, constructed according to the rule (3.30),

wf = (u)? — wgy = —6uy (€, 27 — 1) + 6w, (€,3T/2 —t/2), te (T,T+1),

wi=0, t<T (3.33)

Theorem 3.7. There exists € > 0 such that if wy and py satisfy (3.4), then the problem (3.29)
has a unique solution u € W, ""*(Qy), Vg € WE(Q,), and

HUHW22“’1“/2(Q1) + ”vq”WéJ“(Ql) + Hq”WéJrl’(“rl)/?(Gl)

< (lwollygss ) + I0llyisrrag, ) (3.34)

Theorem 3.8. Assume that the solution of the problem (1.12) is given for t € (0,T). There

exists § > 0 such that if (3.21) holds, then the problem (3.31) is uniquely solvable in the interval
(I, T+1) and

H’U ”Wng’IH/z(QT,TH) + ”vP”Wy/z(QTaTH

) + HPHWé+1/2,l/2+1/4(GT,T+1)

+T<Hv||W21+l‘1/2+l/2(QT,T+1) + ||vp||W2l—1,l/2—1/2(QT,T+l) + ||p||W2l_1/2,l/2_1/4(GT,T+1)>

= C(”“”W“’”’”(Qﬂ + |’Vq”v75’”2<QT>>’ (3.35)

where QT,T—H = Qo X (T,T + 1), GT,T—i—l = Pg X (T,T + 1)

Theorem 3.1 is a consequence of Theorems 3.6-3.8. We reproduce here the proof of this state-
ment outlined in [3 ]. By Theorem 3.7, the solution wu, ¢ of (1.9) exists for ¢ € [0, 1] and satisfies
(3.34); moreover, it satisfies (1.12) together with the function

(e = ROV = R+ [ N(X) - e, r)dr
19



By Proposition 4.5 in [3],

t
||7"(‘at)||w21+1(ro) < C<||P0||W2”1(F0) +/ ||U(',T)||W;+1(r0)dT>
0

< e lwollugeran + ool ), ¢ 1.

Hence 37(1) < ¢ Ny with a certain ¢; independent of T. If cje < ¢, then, by Theorem 3.6,
inequality (3.28) with 7" = 1 is satisfied, so we can assume that ¢, coincides with the constant
n (3.28). Suppose that the solution of (1.12) is defined for ¢ € (0,T) and satisfies (3.28). Then
Y(T) < 6, and, by Theorem 3.8, the problem (3.31) has a solution v € Wt 1+l/2(QT7T+1),

VpEW”/ (Qrr41). For t =T we have v = 0, v, +Vp=0, 2 ‘9”5

v, = 0. As a consequence, u = ug +v € Wi l/2+1(QT+1) Vq=Vqy+ VpeW. ”/Q(QTH)
virtue of (3.35),

= 0, plg = 0, hence, p = 0,

Hu”Wf“’IH”(QTﬂ) + qu|’V~Vé’l/2(QT+1) + Hq”Wé+1/2,z/z+1/4(GTﬂ)
< ”’U/()HW22+1,1+1/2(QT+1) + ”qu”wl 2 Q) + ”qo|‘Wé+1/2,l/2+1/4(GT+1)

+c(|\v|\W22+,,H,/2(QT,M) + (195l 1072 n HpuWéﬂ/?,,/gﬂﬂ(GT,m)

Qr,1+1)
+CT(HvHW%H,l/zHN(QT’T“) + HVPHW;U/%IM(QT,TH) + ”pHWé71/2’1/271/4(GT,T+1))
< C<||U||17V22+1,1+1/2(QT) + ||Vq||f/f/é,l/2 —|— ||q||~z+1/2 1/2+1/4( )) < CY(T)

Together with the function r(§,t) = r(&,T) + fT N(X)-u(&,7)dr = R(X), u and ¢ satisfy (1.12).
It is easily seen that

o (D lgorrg) + THC Dy ) < IrC Dllwgoey

T+1

FTNr (- T) ey + € /

[ (sl + Tl ) gy ) 7

< Y (T).

It follows that we have constructed the extension of w,q,r into the time interval (0,7 4 1) such
that Y(T + 1) < ¢,V (T) with a certain ¢, independent of T. Hence Y (T 4 1) < ¢1¢sNp, and if
we impose on € one more last restriction cjcoe < 8, then, by Theorem 3.6, ?(T +1) < ¢1Ny. So
we can repeat the extension step by step into the infinite time interval ¢ > 0 and obtain estimate
(3.6). This completes the proof of Theorem 3.1.
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4 Proof of Theorems 3.2 and 3.3

The problems (3.7) and (3.8) in the domain bounded only by the surface G are treated in the paper
[4] for other (greater) values of [. The proofs are somewhat incomplete, and we repeat here the
main ideas of the proofs.

Proof of theorem 3.3. We follow the arguments in [4] and reduce the problem (3.8) to a
similar problem with f = 0, vo = 0 and with f and d that can be extended by zero into F x (—o0, 0)
and G x (—o0,0) with preservation of class. We introduce v; = V® where ® is a solution of the

Dirichlet-Neumann problem
V2®(z,t) = f(z,t), z€F,

0P(z,1)
on

®(z,t) =0, zegq, =0, ze€s. (4.1)

By a well-known coercive estimate for this problem,
||vl||W22+l’0(QT) < C||f||Wé+1’O(QT)'

Moreover, since ®; is a solution of

0P
V2q)tZV'Ft, {L‘E,F, Q)t :0, il

=0
reG on €S ’
and F - n|ycs = 0, we have
||vq)t||L2(QT) = HUUHLQ(QT) < CHFtHLQ(QT)'
Applying this estimate also to finite differences of ®; with respect to time, we obtain

Hvlt”wg’m(QT) < CHFtHWf’W(DT)’

hence
o1l zstosirz gy < c(|| Flygrvioggy) + ||Ft||Wg,,/2(QT)). (4.2)

The difference w; = v — v; is a solution of the problem
wy —vVw, +Vp = f(z,t), V-w, =0, zcF,

T(wlap)N - dl(xat)a VIS ga wl(xat) = a’l(xat)a VS Sa
wi(z,0) = wio(x), reF

where a1 = a — vy,
fl = f — Uy + l/v2’01, d1 =d— VS(’Ul)N, Wi = ’U[)(l‘) — ’Ul(.'L', 0) (43)
are vector fields satisfying the inequalities
1 vy < (1 yprmayy + 101 lyzeniseg,, ).
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sy esrrm0r20 8y < c(||d||W5+1/2,,/2+1/4(®T) So O[S DT)).
||’w10||W21+1(}-) < ||'UO||W5+1(}-) + C”vl||W22+l‘l+l/2(QT)’
||a1||W$+3/2,l/2+3/4(2T) < ||a||Wé+3/2,l/2+3/4(2T) + CH’Ul”W22+l,1+l/2(QT).

Clearly, a; - n = 0. Next, we decompose f; into an orthogonal sum of a solenoidal and potential
vector fields:

fi=f1+Ve, (4.4)
where ¢y is a solution to the problem

91 — f,-n.

VQ(PIZV'.fla xefa (101|:B6g:07 P -
n lzes

We have
||V(101||W2l’l/2(QT) + ||f/1||Wé’l/2(QT) < CH.fl”WéJ/?(QT)- (4'5)

The functions w; and ¢; = p — ¢ satisfy the relations
wy — vViw, + Vg = fi(z,t), V-w =0, z€F,

T(wl,ql)N = dl(x,t), T e g, w; = ay, T e S,
wi(z,0) = wy(r), =€ F.

The next step is the construction of v, and p, satisfying appropriate initial and boundary
conditions. We notice that w; - n|s = 0 and ¢; can be regarded as a solution of the problem

V2q1(x,t) =0, zelkF,

O

o vV wi(z,t) -n(z), z€S.

¢ (z,t) =vN - S(w;)N —d;- N, z€g,
In the limit as £ — 0 we obtain
V3¢ (2,0) =0, =€F,
¢1(z,0) =vN - S(wyp(z))N — di(z,0)- N, z€G, (4.6)
0
% = vV’wi(z) -n(z), z€S.
Since the function
vIN - S(wi(z))N — dy(z,0) - N = po(x)
belongs to W§‘1/2(g), we can construct its extension pj € W2l+1/2’l/2+1/4(®oo) such that py(x,0) =
po(z) and
|]p§|lwé+1/z,z/2+1/4(®oo) < CHp()HWéq/z(g)

< C(”wIOHWé'H(]:) + Hd1HW5+1/2,1/2+1/4(®T)>. (4.7)

22



We may assume that pj(x,t) = 0 for ¢ > 1 (this can be achieved by multiplication of the extended
function by an appropriate cut-off function of ¢). We also construct a divergence free vector field

w* € W2l+2’l/2+1(5f200) such that w*(z,0) = wi(x) and
Hw*|’W5+2sl/2+1(Qoo) < C”w10HW2l+1(}-).

First we extend wo from F in R?® with the preservation of class and solenoidality (see [5]), and
then we set
W) = ¢(0) [ T - ywilwdy (4.9
R
where ((t) is a smooth monotone function equal to one for small ¢ and to zero for ¢ > 1, and

1 |z
e~ (- )
(z,%) (47t)3/2 exp 4t
is a fundamental solution of the heat equation. Well-known estimates of the heat potential imply
o yssarons gy < ellwnnllypsrgs) < cllwillwi - (4.9)
Now, we define po(z,t) as a solution of the problem

VZpg(x,t) =0, z€F,

0 t
pa(z,t) = py(x,t), z€G, % =vViw*(z,t)-n, €8
n
We have
||Vp2||Wé,o(Qoo) S C<||p3||w2[+1/2,0(600) + ||V2w* . "||W2"1/2*°(200))’ (410)

||VP2||L2(7:) < C<||p3||w21/2(g) + ”V2w* ) n||W2_1/2(S)>

< (I lhypragy + I1V*w |acr)

(for V2w* is a solenoidal vector field), and, as a consequence of the last estimate,
IVpsllyyourz g, < c<||pg||Wé+1/2,l/2+l/4(%) v ||v2w*||Wg,,/2(Q)). (4.11)
Inequalities (4.10), (4.11) imply
1VP2llyysorz gy < e(Ipollgi-vragy + V20" yraragey )

< C(H’wlo”W?lH(}—) + ”d1”Wé+1/2,1/2+1/4(®T)>. (4.12)

The function VZw* - n € Ly(0,T, W;l/Z(g)) N WZZ/Z(O,T, W;l/Z(g)) has a limit as ¢ — 0 that is
equal to V2w - n, hence py(z,0) is a solution of (4.6).
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Let
’lUH(IL') = fll(.'L',O) - Vpg(l‘, 0) + VV2UJ10(.'L') € WZl_l(f)

We construct a solenoidal vector field vy € W22+l’1+l/2(5300) such that
’UQ(.’L', 0) = wm(x), ’UQt(l', 0) = ’lUH(IL') (413)
and
0ol yzstasirzg, < c(||w10||wéﬂ(f) + ||wn||Wé,1(f)). (4.14)

To this end, we extend wy and w;; from F to R® with the preservation of their classes and
solenoidality [5] and define a solenoidal h € Wé’l/Q(Qoo) such that h(z,t) =0 for t > 1, h(z,0) =
wy (z) — VZwip(z) and
llysosga < cllon = V2wl
This can be done by the formula similar to (4.8):
(e 0) = C0) [ T =) (wn ) = Vwiolw))d

R?)

Now we set

vo(z,t) = ((t) / [z —y, )wio(y)dy + ((t) /Ot dr /Rs I'(z—y,t —7)h(y,7)dy.

R3

This vector field satisfies (4.13). Inequality (4.14) follows from the estimates of the heat potentials.
The functions wy = w; — vy and ¢, = q; — po satisfy the equations

Wy — vV Wy + Vo = Fi(1,1) — vy +vV0y — Vpy = £,

V-wy,=0, z€elF,
T(ws,q)N =d; — T(vg,p2) N = ds(z,t), x€G,
wy = a; — vy = as(x,t), w €S,
wsy(z,0) =0, xeF.
It is clear that

1 F by < e(1F i gan + I0alyaeis g + VP2 llyiim,) )
||d2||Wé+1/2,1/2+1/4(®T) < C<||d1||Wé+1/2’l/2+1/4(e5T) + ||’02||W22+1,1+1/2(QT)
+lIp2 ||W2’+1/2”/2+1/4(@T)) )

||a2||W2[+3/2,l/2+3/4(2T) < ||a1||W2[+3/2,1/2+3/4(2T) + CHU?HWQQ'H‘IH/Q(QT)‘
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By the definition of vy, the vector field f, vanishes for ¢ = 0 and its zero extension into F x (—o0, 0)
is an extension with the preservation of class. Moreover, in view of the compatibility condition and

of the definition of py, we have ds(z,0) = 0, hence d5 can be also extended by zero into G x (—o0, 0)

with the preservation of class W2l+1/2’l/2+1/4. The same is true for as. Let

vs(z,t) = V¥(z,1),
where W(x,t) is a solution to the problem

V2 (x,t) =0, x€F,

ov
U(z,t) =0, z€g, o, =02 = —vo(z,t)-m, x€S.
n
We have
”,U?’”W;'H‘O(QT) < C”’UQ . ’I’I,HW21+3/2,0(ET), (4,16)

and from the energy relation

/ |V, |2dr = /Ugt -nW,dS
F g

lvstllo ) < cllvar - nllyoreg) < cllvall, ),

we conclude that

since V-vy = 0. Applying this inequality to the finite differences of ¥ with respect to ¢ and taking
account of (4.16) we obtain

L T I IS, (1.17
We also have vz(x,0) = 0 and vz(z,0) = 0, for, by the compatibility conditions,
v2(2,0) - n=wyp(zr) - n=0, zeb5;
moreover,

8;02(:5,0))) _».

vor(2,0)|s - M = wii(x) - n = <VV2'w10 ‘n — o

The functions w3 = wy — v3 and ¢, satisfy
ws; — vV2ws + Vu = fo(n,t) — v +vV203 = £,

V- Wws3 = 0, T e f,
T(ws3,2) N =dy —vS(v3) N = ds(z,t), = €G,
w3 =ay —v3=as, IES,

’lU3(l‘, 0) =0.
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Our last step in this chain of transformations is the decomposition of f;, as in (4.4):

fs= fé + Vs,
where (3 is a solution of
Vi%s =V -f3, ©€F, @sleeg=0, 9¢s =f3-n.
on lzes
The following inequality analogous to (4.5) holds:
19 all o2y + 1 Flsirecns) < ellFsllyairein (118)

The functions w3 and q3 = ¢ — 3 satisfy the relations
wy — vViws + Vs = fi(v,t), V-ws3=0, z€F,

T(’l.l)g,q?,)N = dg(fL',t), T € g, w3 =as, IE S, (419)
ws(zr,0) =0, =zeF.

The vector fields f3, ds, a3 vanish for ¢ = 0 and admit the zero extension in the domain ¢ < 0
with the preservation of class. In addition, a3 - n = 0.

The estimate (3.12) for the solution of problem (4.19) can be obtained by using Schauder’s
localization method that reduces the proof of (3.12) to the proof of similar estimates for the model
problems in the half-space R?, for whose solution explicit formulas are available (see [6-8]). The
proof can be carried out following the arguments in [7], Theorems 3.2, 3.3, 4.1 (with 0 = 0, v = 0),
which can be somewhat simplified. The details are omitted. The final result of the application of
the Schauder procedure is the estimate of the type (4.32) in [7], i.e.,

Hw?’”Wﬁ“’”W(DT) + ”vq?’”Wé’l/z(DT) + HCJ3HW4+1/2,1/2+1/4(6T)

< C<||fé||wé=l/2(QT) + ||d3||W$+1/2"/2+1/4(®T) + ||a3||W$+3/2’l/2+3/4(2T)

Hllwslloar) + llasll oz g, + ||Q3||Lz(QT))- (4.20)

To estimate the norms of g3 in (4.20), we consider g3 as a solution of the problem
Vigs(z,t) =0, z€F,

g3

cc =VN - S N —-d;- N, —
43leeg = v (w3) 3 an

= vViw; - n,
zeS

and we define 1 (z,t) by
V2 (z,t) = g3(z,t), z € F,

Ip(z,t)
on

=0.

€S

¢|xeg = 07
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It satisfies the well-known coercive estimate

[ llwzer < cllgsllLo @)

From this estimate and from the Green formula

o 8q3
2 —_ J—

/81/’(VN S(ws)N — ds - )dS—V/N-(rot'w3 X Vi)dS
on S

it follows that
lasllza < c(IVwsllrous) + lldslliag) )

Applying this inequality to the finite differences of g3 with respect to ¢, we obtain
lasllyorz gy < (1Tl or sy + Idsllgorrs ey ) (4.21)

The norms of w3 on the right-hand side can be estimated by the interpolation inequality with a
small € > 0

90l < el et + @03 g (4.22)

and from (4.20)-(4.22) we conclude that

||w3||W22+l’l+l/2(QT) + ||VQ3||W2’J/2(QT) + ||Q3||Wé+1/2,1/2+1/4(®T)

< c(n Fillygiar2 gy + sl evvzisessag ) + sl raimiasng | + ngHLQ(QT)). (4.23)

Finally, we estimate ||ws| 1,(a,) by the energy inequality. We multiply the first equation in (4.19)
by ws and integrate over F. This leads to

1d
2 dt

:/fg-'w3dx+/d3-w3dS+/T(w3,q3)n-a3dS.
F g S

Making use of the Korn inequality

14
—lwsllz ez + S 19(ws) 12,

|wsllwyz) < ellS(ws)]l L)

we obtain

1d
2dt

where 8 = const > 0. This implies

llwsll3,c + Bllwsl, ey < (1 £l + s @) ) + 17 (w3, g5)mll1.s) lasllzags),

d
e wsllf < 20 (ILF5 13,0 + sl 0)) + 2627 1T (w3, @)l ags)las o)
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t

t
lws]|7, ) < 20/ 6_2/3“_7)<||f§||%2(f>+||d3||%2(g>)d7+2/ e~ DT (w3, g3)n | 1,(s)l|@s | a5y,
0

0

t t
| sl < [ (18300 + 1l o) + 1T s, bl sl i
0 0

Together with (4.23), the last inequality yields estimate (3.12) for the solution of the problem
(4.19):
||w3||W22+l‘l+l/2(QT) + ||VCJ3||W2!,1/2(QT) + ||Q3||Wé+1/2,1/2+1/4(®T)

< c(|| Fillygrer gy + sl + ||a3||Wé+3/2,l/2+3/4(2T)), (4.24)

and (4.24), (4.2), (4.14), (4.16) imply (3.12).

We omit the proof of the solvability of problem (4.19) in the Sobolev spaces that can be carried
out in the same way as in [4], Theorem 1.

In fact, Theorem 3.3 holds for arbitrary [ € [0,3/2); in the case [ > 3/2 additional compatibility
conditions are required. In the proof of (3.11) we use the estimate (3.12) with [ € (0,1/2). In this
case, the compatibility condition vI1yS(vo)IN = Ilgd(z,0) makes no sense and is not required;
moreover, the zero extension in the domain ¢ < 0 with the preservation of class is possible for
arbitrary f € WZI’W(DT), dc WQZH/Z’Z/ZHM(@T), since [/2+1/4 < 1/2. This enables us to repeat
the above arguments without constructing p, and with vy = w*. So we arrive at (4.19) with
w3 =v — v —w", @3 =p— p; — 3. [t is easily seen that as vanishes for t = 0, so at the end we
obtain (3.12) with I € (0,1/2).

We note in conclusion that inserting a weak linear term 2w (e x v) into the first equation (4.19)
does not change the result: Theorem 3.3 remains valid.

Proof of theorem 3.2 The solvability of the problem (3.7) can be deduced from Theorem 3.3,
because the function p can be excluded with the help of the formula p(z,t) = po(x —l—fo -N+g)dr.
So we only need to obtain the estimates (3.10), (3.11). Without loss of generality we can assume
w = 0. As above, we introduce the function v; = V® where & is a solution of (4.1), and we reduce
the problem (3.7) to a similar problem with zero divergence:

wy —vVw, +Vp = fi(z,t), V-w, =0, zcF,
T(wyi,p)N + Nb(z)p = di(z,t), p— N(z) - wy =g (z,t), x€G,
wi(z,t) =a—v; =ay(z,t), x€S, (4.25)
‘lUl(.fU,O) = wlU(x)a S f’ p(x,()) = PO(*T)’ S ga

where wy; = v —wvy, g1 = g+ N vy, and fy, d;, wp are defined in (4.3). The function v; satisfies
(4.2).

We obtain (3.10) following arguments in [4], Sec.3. We consider a model problem in the half-
space R = {z3 > 0} :

v, — vV +Vp = fx,t), V-v=f(z,1) xeRi,
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T’i?;(’vap) + 5135p = _dz(xat)a 5 = const > 07 L= 17 2737
Pt + U3 :g(l‘,t), p(x,()) :pﬂ(l‘)a z ERQ, (426)
v(x,0) = vo(x), X G]Ri,

and we use Lemma 1 in [4]:

Proposition 4.1 Let Ry = R3 x (0,T), R, = R? x (0,T) and let v € Wy """ (Ry),
Vp € WQZ’Z/Z(RT), pE W21+1/2’l/2+1/4(Rif) be a solution of the model problem (4.26) having for all
t < T a compact support contained in Cy = By x (0, ), where By is a disc |z’| < A in R?* and
A € (0,1) is a small positive number. The solution satisfies the inequality

sup <<<U(’at)>>l2+1,Ri +lln(, )le“ (R? )

t<T

- (T + 0 DI g )
< e(((Diirz + ol er))
v (P + (D s + 1O g
g 1072 )

ve( [ reomza) ([ b o) (427

where
1/2

(e = ([ Tl )

is the Wi-norm of u with respect to the tangential variables x1,zy and c is a constant independent
of T.
Then, as described in [4], we estimate the norm

RAD) = 10Dy + [ I e

of the solution of (4.25) using the localization method. Let 2y € G and let x(z) be a smooth cut-off
function equal to one for |z — 24| < A/2 and to zero for |z — x| > X where X is a small positive
parameter. The functions

U =wix, 4=px, T=pX

satisfy
ut—l/VZ'u—i-Vq:lewa'l, V-u=f,

T(u,q)N + Nbr =dix +dj, r=u-N+agy, (4.28)
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r(z,0) = po(z)x = ro(z), u(x,0)=wi(x)x = uo

in a neighborhood of xy with
fi=—v(V(wix) = xV’wi) +pVx, fi=wi Vx, dy=v(S(xwi)—xS(w))N.

We pass to the local Cartesian coordinates {y, y2,y3} with the origin at zy and with the y; and
yo-axes located on the tangential plane to G at g, and we write (4.28) in the form (4.26) setting
= b(xp) and leaving only principal linear terms on the left-hand side of all the equations. We use
Proposition 4.1. Then we cover G by a finite number of the subsets G, = {x € G : |z — xy| < A},
write estimates (4.27) obtained in the neighborhoods of all z; and add them. We fix A sufficiently
small and arrive at the inequality analogous to (3.21) in [4], namely,

RA(T) < e FET) + AWHT) + XRT) + [l scamsiry, + 1010y + 10100 )

where

FiT) = H'fl”IQ/Vé’lM(QT) + ||d1||3vg+1/2’1/2+1/4(%) + ||91||$,V2l+3/2,l/2+3/4( + ||'w10||W,+1 + ||p0||[2/Vé+1(g)7

VIQ(T) = ”leIQ/V;H’IH/Q(QT) + HVPHIQ/V;U?(QT) + |’p”12/vé+1/2,1/2+1/4(67‘)-

Next, we consider wy, p as the solution of the problem (3.8) with f = f,, f =0, d =d; — Nbp,
a = ay, vy = wiy and apply the inequality (3.12). This leads to

VAT) < e(151 12 10720y + 10012 s a3y, + N010] 1) + RET) + 1ol it )

hence,

VRT) + RAT) < e FHT) 4 lnl sy + Il + 100 gy + Nollginvscey )

if A is sufficiently small.
Now, we estimate the norms of the solution on the right-hand side. We use the interpolation
inequality
2
||p||Wto ) < €1||VP||Wto ap TPl ar

with arbitrarily small ¢, > 0. To estimate the Lo-norm of p, we regard p as a sum p = p; + po,
where the p; are solutions to the problems

0
V2p1:V'f1, foa pl‘gzoa % :fl'na
nis
V2p2:0, IGF,
0
p2lg =vN - S(wy)N +bp—d; - N, %)S:VVZwl-n.
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Since [[Vpil| o) < [[F1llLa(r), we have
[P1l[Lam) < cllVPillLar) < ellfillza)-
The function p, can be estimated precisely in the same way as ¢z in the preceding theorem:
P2l Lo < C<||d1||L2(g) + llollz29) + ||Vw1||L2(gu5)>-

Similar inequalities hold for the finite differences of p; with respect to ¢, hence
1Plhysrn gy < (11 lhpor2any

il ooy + 10l @y + 1701 g2 s )

We estimate the W20’l/2—norm of p, using the equation p, = w, - N + ¢;:
1Plhgsirzery < e(IPliaen) + Iotlnaen)

< c(lpllraien) + w1l + gt aen ).

and the Wé’o—norm, using the interpolation inequality

T 1/2
||p||Wé’0(®T) < €2||p||w2’+1/2’°(qu) + 0(62)</0 ||p||124,;1/2(g)) .

Finally, we have
valﬂwgw(@w%) + ”wlnwé+1,1/2+1/2(QT) < 63Hw1HW5+2J/2+1(QT) + c(es)|wi [ Lo(an)-

Choosing ¢; sufficiently small, we easily obtain (3.10) for the solution of problem (4.25) which
implies (3.10) for v, p, p.

The above proof of the inequality (3.10) is valid also for [ € [0,1/2).

In order to prove (3.11), we should obtain additionally estimates of the norms of twv, tp, tp.
They can be deduced from (3.10). Let us consider the problem (4.25) and estimate tw;, tp, tp.
Indeed, these functions can be regarded as a solution of the problem

(tw)y; + 2w(es X tw,) — vVitw, + Vip = tf(v,t) + wy,

V-twi(z,t) =0, xz€F, t>0,
T(twy,tp) N + Nb(z)tp = td(x,t),
(tp): — N (z) - twy(z,t) = tg(x,t) +p, z€G,
twy (z,t) = ta(x,t), x €S,
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(twm)(x,()) =0, z€elF, (tp)(x,o) =0, ze€g.
By the inequality (3.10) with [ — 1 instead of [, we have

Htw1HW21+z,1/2+z/z(QT) + HtvP”Wé*U/%l/z(QT) + Htp”wéfl/z,z/zq/z;(ﬁﬂ
Hitollyi-120g,) + jggtl\p(u Ollwi+ o)

S C(”tf|’W2171’l/271/2(QT) + Htf”Wé’O(QT) + HtFHWg’l/2+l/2(QT)

+||td1||Wé_1/2’l/2_1/4(®q~) + ||tg||Wé+1/2,l/2+1/4(®T) + Hta’”Wé+1/2’l/2+1/4(2T)>

T
wo [ 2wl + ol vsg,)
0

+C<le”wé’l/2(QT) + HpHWéH/z,z/zH( )> (4.29)

The last two terms can be estimated by the inequality (3.10) (written for the solution of (4.25)).
When we add the resulting estimate to (3.10), we obtain (3.11) for wy, p, p and consequently for
v, p, p. This completes the proof of Theorem 3.2.

1/2

5 Proof of Proposition 3.1.

In this section we estimate the nonlinear terms in (1.12). For this we need some auxiliary
propositions.

Proposition 5.1. Arbitrary functions u(z),v(x) given in a domain Q@ C R"™ satisfy the in-
equality

ey < o sup [o(@) lullwgay + lellcyo 0y ). (5.1)
where 2 < p < oo. In particular,
lwvlwyey < ellullwy IWlws@, 5> n/2 (5:2)

if 1 <n/2, and
gy < elelbagon (2 )] + elhygrny ) (5.3

if I <n/2.

Inequalities (5.1)-(5.3) hold also for functions given on smooth manifolds. The proof of Propo-
sition 5.1 can be found, for instance, in [3].

In addition, we have

lwollzo@) < llullzy@llvllizo@) < clullwyelollyre g, (5.4)
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where 1/p+1/¢=1/2,1=n/2—n/p=n/q.

Proposition 5.2 [3] Let by(x), ..., by () be functions of class W] (£2) N W;’/Z(Q) defined in the
domain Q C R3, and let f(b), b = (b1, ...bar), be a smooth function uniformly bounded together with
its derivatives with respect to by when b= b(x), © € Q. Then

£ OO lwz@) < I llza@) + cllbllwy@, (5-5)

ifr <1, and
IVaf Ol < el VOllwr—1(0), (5.6)

if r = 1. The constant in (5.6) depends on ||b|ly;r-1 ) and HbHWS/z(m.

The inequalities (5.5), (5.6) hold also in the two-dimensional case under the assumption b €
Wy () N W3 (Q).

Proposition 5.3 1. An arbitrary function u € W(0,T), u € (0,1), satisfies the inequality

T |u t/ |2
lullZ,0.1) + / / |t—t'|1+2u 2L dtdt!

) min(7,1) dh T )
< c<||u||L2(07T) +/0 m/h |u(t — h) — u(t)] dt). (5.7)
2. If u € W3 (0,T) and p € (0,1), then

||U||W;(0,T) < C||u||W21(0,T)a (5.8)

The constants in (5.7),(5.8) are independent of T.
We omit an elementary proof of this proposition. Applying (5.7) to the function tu(t), we easily

obtain v 2
tu(t) — tu(t ,
HtUHL2 0,T) / / |t EEn dtdt
min(7,1) dh T
< c<||(1 + t)u||L2 o) /0 P /h t|lu(t — h) — u(t)|2dt>
min(T,1) dh T
<c(l0+tulon+ [ g [ E-mut-n-woPd)  69)
Let Ay(—h)u(t) = u(t — h) — u(t). In what follows we often use the relation

Ay(=h)(u(t)o(t)) = (Au(=h)u(t))v(t = h) + u(t) Ar(=h)o(t). (5.10)

If u and v depend also on z € 2 C R"”, then

[A(=h) (- t)o (- 1) Lo <Sup|v(27 t =) A(=h)u(, )| s0)

/ lon(ert = ) Loyl D)l e, (5.11)

33



where 1/p+1/¢=1/2.If n/2 —n/p =, then, by (5.4),

[A(=h) (- t)o( 1) Lo <Sup|v(27 t =) A(=h)u(, )| s(e)

e [ Wt = Pihygres it Dl

(5.12)

The estimates of nonlinear terms in (1.12) are based on the analysis of the elements A;; of the

matrix A. They are second degree polynomials of Dy, (&, t) = J 8“’“(5’ Ou(&7) (1

Proposition 5.4 Assume that w(&,t), defined for t € [0,T], satzsﬁes the inequality
HVUHVNVé“’l/”l/z(QT) <d< 1.
Then for arbitrary I, € [0,1 4 1/2)
1Dk (5 )Lyt ) < lIVuligiriog,)-

Moreover,
ngp | D (€,1)] < c||Vu||I7V2z+1,o(Qt),

1Dsm (5 Ol 0y < VEIVUllgisog,,

I7 = Allyss oy < el Vullzyinsg

sup |I — A(&,t)| < CHV’UIHWéH,o
Qo

Qt)’
(@)’
||A||W51(QO) <c, ”AHWlel < 0(1 + \/_)
||I — AHW%“(QO) < C\/l_fHVUH’Wéﬂ,o(Qt),
1A D) i) < ellVuls Dllwiae)s
[Au (s Olla@r) < cllVullymenreg,y,

V40 D) lhwgian) < (19800 s + Vi [Vl 0] + 90,0 2 a,) ).

and, as a consequence,

19 Adhgogr) < €l Tullggiog,y,

where ||A|| = maxy, ||Arm||. The constants in all these inequalities are independent of T.

Proof. By the Holder inequality,

8’uk
e W S

1/2
< (/ (1472 [Va, 7)yn Qo)d> </(1+7') 2%) < ol Vg,
0 0 2
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where f =141 — [, > 1/2; moreover,

8uk
1D+ )lugircay < / 2D < eVl Valggring

Estimate (5.15) is a consequence of (5.14) and of the imbedding of W5 (), s > 3/2, in C'().
Since Ok — Akp is a linear combination of D;; and D;;Dys, (5.17)-(5.20) follow easily from

(5.14)-(5.16) and Proposition 5.1. The time derivatives A;;; are linear combinations of Dy, = D

BEm
Qug ny . g ; ot 8 Bur B duy duy, Bu;
and e Dy;, and A;jy are linear combinations of P 1 o D, and O E, " Hence

4, Ollwan < eIVl Ollgan (14500 IDE D]+ 1DCDlygr2a,)
0

c(1+0)[[Vul-, )llwi)
||Att||L2(QT) < C<||Vut||L2(QT) + sup ||V’U,(, t)||W5(Qo)||vu||WI’O(QT)>a
t<T 2
which implies (5.22).

Finally, (5.23) is a consequence of the fact that %Aijt(f, t) is a linear combination of a? %kg
s J

82uk D Ouyg 8in .

9Em0E; T BE, 0E;

IV A ) gy < €IV gy (1 500 [DED] + D0y,

e (sup (V€ 01+ 1Dl g) [ 190,
< oIV Ollgor oy + VESUD [T0(E, O] + VA VUl 1)y 12 ))
< c(IVul, Dl ay + VIITUC )y )

This implies (5.24), for
T
| A OITUC DI o

T
<c /0 (HV’U,( )”WH—I(Q ) + (1 + t)QHVU’("t)H?/VQ’(QO))dt < CHV’U,(‘, t)”gI/IV/éH(QT)'

The proposition is proved.

Now, we proceed to the estimates of 1;(u, q), l2(u), L(u).

Proposition 5.5. If (5.13) holds, then the expressions li(u,q), la(uw), L(w) satisfy the in-
equalities

”ll (uv q) ||VNV$J/2(QT)

< CHVUHVNVéH,l/Hl/z(QT) <HVUHW4+1,1/2+1/2(QT) + HVq”VNVé’I/z(QT))’ (5.25)
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12 (w)[l5p1+10 g + HL(U)”VVS’W”(QT)

< C||VU||'W;+1,1/2+1/2(QT) (||Vu||17v2[+1,1/2+1/2(QT) + ||ut||'Wé,l/2(QT) + Sclglf |u(§, t)|

+|(1+ t)’u,HWéH/z,o(QT)) < C|’VUHV~V$+1,1/2+1/2(QT)Hu”wéw,z/zﬂ(QT) (5.26)

with constants independent of T
Proof. We start with the estimate of ||(I — A)VqHWé,o(QT). It follows from (5.3), (5.17), (5.18)
that
(I = A)Vallwiqy < 0<ng 11— A [+ ] - AIIW;/z(QO)) IVallwio)
< eVl IV Doy (5.27)
[¢(1 — A)VQHW;I(QO) < C”VUHVNV;“’O(QQ||tVCI(‘at)”W;*l(QO)a

hence,
17 = AVallgrog, < 1T —A)Vallyoq,,

+[t (I = AVallyi-rogy < clVullgiro gl Vel D)llgio g, (5.28)
The expression lr(u) = (I — A)V - u satisfies

||12(u)||w2l+1(90) = (1 - A)u||w21+1(90)
< c(sup (7 = I Vullygrsay + 17 = Alhygos, sup Vul)
0 0

< | Vullgz+ogg, (kuwéﬂmo) + Visup \vu|), (5.29)
0

111 = A)Vullyiay < Vg g, Vellwiqy.,

which implies
|’l2(u)”17[/2l+1,0(QT) < C”v"”%;“ﬁ(QT)' (5.30)

Now, we consider
(AV - AV)u — V?u = AV - (A= V)u + (A - 1)V - V)u.

The inequality
[(A =~ D)V - Vel < el Vaullpiern g | Fully

is proved in the same way as (5.27). Moreover, by (5.19) and (5.29),

|4V - (A = DVaullwyay < cll(4 = DVullygoa,)
< ol Vullggrogy (I Vllug oy + Visup [Vu(E, o) ).
0
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hence
(AV - A¥)w = Vullwya) < eIVl (I8l + Vs [Val).
Replacing [ by [ — 1 we obtain
[(AV - AV)u — VZ“HWg—l(QO) < C”VUHVVQ’JFLO(@)Hvu”wg(szo)-

The last two inequalities imply

|(AV - AV)u — VZ’UJHVT/QJ,O(QT) < CHVUH%;H,O(Q”-

This estimate completes the proof of

121 (w, Q)HVT/;O(QT) < CHVUHVNV;H’O(Q” <||Vu||vwvé+1’0(QT) + ||VCI||VNV5=0(QT)>- (5.31)
Next, we estimate the Wo/?(Qr)-norm of (4 — I)Vq. By (5.18),
(L (A~ D)4l < lIVulliogy L+ DVl raar) (532

Moreover, by virtue of (5.12),

[A(=h)((I = A)V )| Ly00) < sup (1= At = D[ A(=h) Vel

/ At = Dllgro-t iy A1V, Dl
< c(nwnwo@t)|rAt<—h>Vq|rL2mo>
+h sup 1V, 7) g IVaC Dllwion ) (5.33)
TE(t—h,t)
A=) = A)V0) a0 < s1p |1 = At = WA (=) 1000

/ IVt =l A1V Dl 10

< c(nwn@m(@)||At(—h>w||mo> VRVl IVaC D g1y ) (5:34)

which implies
min(T,1) T ) 1/2
([ 3 [ 18 = a0l )

< c(IVullgzriog T)+§gg||Vu(-,t>||wémo>)||Vq||w2lm(QT),
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min(T,1) dh T ) 2 1/2
(L5 | P10 AT )

min(T,1) dh T ) . 1/2
< dl| Vel ( / L PIACVal o i)

+||N‘J||W5*1(QT>>-

By Proposition 5.3, these inequalities, together with (5.32), yield
14 = D)Vl g, < eI Tulipgiogy + sup IValDllwgon) I Vel g,y (639

Next, we estimate || L(w)||z0.1412, - It is easily seen that
2

(QT)

11+ ) L(w)l Ly@r) < cllVullgogy (1 +HullLyqn-

Let us consider Ly(u) = (I — AT)u; — ATu. The inequality
(I — AT)ut||17V2°J/2(QT) < C(”VUHW2I+1’O(QT) + ig? [Vu(, t)”Wg(Qo)) ||Ut||’Wéxl/2(QT)

is obtained in the same way as (5.35), so it remains to estimate || A w||;z0./2, . First, we have
2

(QT)

10+ AT wlaiar) < esup [Vu(E. Dllwga [0+ Oulhygoqg, . (5.36)

Now we estimate the norms containing the finite difference
Ai(=h)Afu = A7 (&t = M) A(=h)u(€, 1) + (A(=h)A(&, 1))u(€, 1).

Using (5.4) we obtain

h
I8 (=M AT g < Aot =Dl iy [ Tt = Dlhwgydr

h
+suplule, 1) / 14yt — 7)o
0 0

Since 3/2 — [ < I, we have
min(T,1) dh T 1/2
([ 2 [ I8m At o)
0 h
< C(SUP 1AL D) lwiao) 1wl lyyiog,) + sup |U(fat)|||Att||Lz(QT))
t<T Qr
< o[ Vuly i, <HutHWé,o(QT) +sup \u(f,t)\).
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We can estimate A;(—h)Al'w in a different way, namely,

1A(=h) AL ullza(00)

< C\/E(HAt('a t— h)HWQl(QO)HUtHW;”(Qt) + s(l)lp |u(§;t)‘HAtt”L2(Qt))7
0
and obtain
min(T,1) gp- T ) T 9 1/2
</ ot |Ay(—=h)A; (u)HLz(Qo)dt)
0 h
S C”vu|’/V\[;é+l’l/2+l/2(QT) <HUt”W2l,O(QT) + Htu”WéJrl/ZO(QT)) .

This completes the proof of

I (w)llgosrz g,y < c|quHWéH,UW2(QT)(sgf (€, 1)

Hlelpgrsgpy + 101+ Dullygniog,,)

and of inequality (5.26).
In order to conclude the proof of (5.25), we need to estimate the WQO’Z/Z(QT)— norm of

(AV-AV - VHu=(A- V- AV+ V- (A-D)V))u = A.
We have Ay(—h)A = A, + Ay,
Ay = (At —h) =DV - A&t — W)V =V - (A&t —h) — )V)v, v =A(—h)u,
Aoy = (A&t —h) — D)(V - (Ay(=h)A)V)u + (A (=h)A)V - AVu + V - (A (—h) AV )u.
By (5.4),

I8l < e sup 1A ) =~ 11Dl + [V Al 0, 90w

< IVl (190l + 1 D*ll1a00 ),

. This implies

2
([ [ 1M e)

< eVl g, <”V“”W2°”/2<QT> + ”D2“”W3‘”2<QT>>’

min(T,1) dh T 1/2
([ 5 [ il )
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< C”VUHVNVéH’O(QT) (||tvu||W20,(l—l)/2 + ||tD2’u,||Wg,(l—1)/2 + ||V’u,||W21,0(QT)).

(Qr)
The expression A, satisfies the inequality

(QT)

18 2age) < / 14t = ) lwgganydr (166 D) gy + 19 - AVUC D lyay))

h
te / IV At = 7)llwtion @7 1956, Dllwion (5.37)

By (5.1), (5.19),

IV - AV D)lwgan < lAVu(Dlhzrsay < e(IVuloy + Visup [Vu(E.0)]).

whence

h
[ A2l (00) < C(/ VALt = ) lwian dT IVl ) lwian)
0

4 (7 gy (190, sy + VEsup [V, 0)),
T 0

min(T,1) dh
([ [ il a)”

< C”VU”'Wé“’O(QT) <||Vu||f/lv/é+1’0(QT) + iEIT) V(- t)HWQl(QO))a

and, by virtue of (5.24),

Along with (5.37), we have

1Al 7a0n) < / 140t = ) st (19 Dllwga) + IV - AV D g, )

h
+C/0 VAt = T) lwian IVl ) llwiao)

< VRlIValg0 g I V(D) o)

min(T,1) dh T ) 1/2 )

min(T,1) dh 1/2
Ay W INEOIN

min(T,1) dh T ) ) /2
—|—(/ — t HAt(_h)A”Lz(Qo)dt) < CHVU”VNVé“'O(QT)”quﬁfé*l'l/”lM
0 h

This shows that

hl (Qr)

and completes the proof of (5.25) and of the proposition.
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Let us pass to the estimates of I3(u) and I4(u).

Proposition 5.6. Under the assumption (5.13), the expressions lz(uw) and l4(u) satisfy

||l3(’U,) ||W2l+1/2’l/2+1/4(GT) + ||l4(u) ||Wé+l/2,l/2+l/4(GT)

S CHVU’HWQHI’O(QT) ||vu||f/l7;+1’l/2+l/2(QT)'

Proof. We start with the estimate of S,(u) — S(u). By virtue of (5.29),
10(0) = (@)l gy < €l = DVl
< C||Vu||Wé+1’0(Qt) (Hvu”Wé“(Qo) + \/%ng [Vu(¢, t)|)7

1u(at) = S () 112y < el Vullgiens o | Val i

which implies

1S, (w) — () gy, < ol Vulno g, -

By (5.12), further we have

[A(=h)(Su(u) = S(u))[Lare) < C(HVUIIVV;H,O(@)IIAt(—h)VUI|L2<r0>

h
+/0 ||V’U,(, t— T) ||W25_1/2(F0)d7'||V’U,(', t)”Wé_l/Q(Fo))’

whence

min(T,1) dh T 1/2
</0 W/h ||At(—h)(su(u)—S(U)||%2<ro>dt)

min(T,1) dh T ) 1/2
< dl|Vallizzeogn ( ( / R / NI

+sup [VauC,H)lgon ) < el Vulggiso g IVallysomen g,

min(T,1) dh T 12
</0 m/h HtAt(—h)(Su(’u,)_S(U)Hiz(l‘o)dt)

min(T,1) dh T ) 1/2
< CHVUHVNVyLO(QT)(/O m/h HtAt(_h’)vu('at)HLg(FO)dt>

(14 1V ullygog, SR [T, Dl )
where Ay =1/2 4+ 1/4, A3 =1/2 — 1/4. The last two inequalities conclude the proof of

||Su('u,) — S(u)l|Wé+l/2’l/2+l/4(GT) S C||V’u,||ﬁ,é+1,0(QT)||Vu||17vé+1,l/2+1/2(QT).
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Now, we estimate [|.S,(u)n — S(u)no||gre/21/241/4 ) Suppose we have shown that
2

(Gr
||In’(X)||W$_1/2(F0) < ||’I’L(X)||Wé+1/2(r0) < C(]' + \/E), (540)
n0(&) = n(X)] < e Valprn g, (5.41)
||l — nHW52(F0) < CHVU”WQ!+1,O(Qt), ly <1, (5.42)
Hno — n”WéHm(Fo) < C(l + \/E)HVUH@H,O(Q”. (543)
Then, making use of the relation
Su(u)n — S(u)ng = (Sy(u) — S(u))n + S(u)(n — ny), (5.44)

we obtain
ISu(w)m = S()molyror g, < oI5 = @)y,

+||n||w2’+1/2(po) Slrl‘p |Su(u) - S(’U,)| + Slrl‘p |S(u)|||n - nOl|wé+1/2(F0)
+ S;lop |n - nU‘ ”S(U)Hwé+1/2(r‘0)> < CHquﬁfé'*'l’O(Qt) <HVUHW5+1(QO) + \/Esglzlop |V’U/(§, t)|)7
8wl = Sl < e(18,00) = Sl 0 ]+ Il

ISty (S50 2 = 0] + 2 = ol

< eVl g IV D g

and, as a consequence,

ISu(w)n = S(u)nallgene g, < VUl

To estimate ||S,(u)n — S(w)nol/go0/241/4, ,, we apply the operation A;(—h) to (5.44) which

(GT)
gives
Ay(=h)(Su(u)n — S(u)no) = Ay(—h)(Su(u) — S(uw))n(X (&, — h))
+A(=h)(S(u)(n(X (&, t = h)) — no(£)) + Su(w)A(—h)n(X)
and

1A (=h)(Su(w)n = S(u)no)l|Lywy) < C(IIAt(—h)(Su(U) — S(u))| o)

+HA(=h)S (W) | Loy sup [n(X(E, 1 = h)) — no(E)] + ||Su(u)At(_h)n”L2(F0))'

o

Since |n;| < ¢|Vul, the last term does not exceed

h
||Vu(, t)||W2!—1/2(F0) /0 ||Vu(, t— T)HWQl_l/Q(Fo)dT'
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Taking (5.39) into account, we show that

min(T,1) dh T ) 1/2
([ s [ Iaen s wn = S@mlf )

min(T,1) a1, T 9 1/2
+( / D / [tA(=h) (Su(w)m = S (u)mo) I3, oy t)

< Cl|vu||17V21+2’0(QT)||vu||I7V2l+1‘l/2+1/2(QT)
and conclude the proof of
HSu(u)n — S(u)n0)|‘wg,l/2+1/4(GT) S C”VUHWéH,O(QT)HVUHWéH,l/zHM(QT).
So it remains to verify (5.40)-(5.43). We have
n(X) —ny(§) = (A — I)ng + Ang(|Ano| " — 1),

1 (’I’L[) — A’no) "Ny + Ano (’I’L[) — A’no)

|Ang| |Ang|(1 + |Anyl)

Under the assumption (5.13), the function |Ang| is bounded from below. From this fact and from

(A= D] < esup A(E.1) = 1)] < el Vallggag,

we easily deduce (5.41). We also have

1(A = Dmollwe ey < el Vg,

(4 = Dnollwrsrraey < 1+ VA Vulgonag,y

By Proposition 5.2, for an arbitrary regular function f(Ang) bounded together with its derivatives
for £ € T'y, the following inequality holds:

|F(Ano)| + [[f (Ano)|lypiz ) <

||f(An0)||W2’+1/2(FO) < C(l + \/E)
It follows that

[ Areo| ™! y <cl(A=1) < ¢ Vaellgreno

- 1|‘wé2(1"0 nOHW$2(F0) Qt)’

I1470] ™ = Uy < e+ VO Valgioog,,

(To)

Hence, the difference n —ny satisfies (5.42), (5.43), and from those inequalities it is easy to deduce
(5.40). So we have justified (5.40)-(5.43) and estimated S,(u)n — S(u)ny. Other terms in I3(u)
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and /4(u) are treated in a similar way and satisfy the same inequalities as S, (u)n — S(u)ny. The
proposition is proved.
For the estimates of I5(u,r) and lg(u) we need the following auxiliary proposition.
Proposition 5.7. Assume that Ty, t € (0,T), is defined by equation (1.10) with sufficiently
small p(z,t) (i.e., Ty is located in a certain small neighborhood of G), u satisfies the inequality

HU’HW;H’IH/?(QT) < 57 (545)
and let f(z) be a smooth function given on G. Then

1FX) = F@llyzerragy) < cllullznso, (5.46)

1FE) = FOllysorgy < e+ VDulaag, (5.47)

Proof. We recall that the point Z is connected with = by
T =x— R(z)VR(z) = R(x).

The function R(x) is smooth in a certain neighborhood of G. Let us extend f in this neighborhood
by setting, for instance, f(x) = f(Z). Then f(Z) = f(PR(x)) = f(x) is also a smooth function, and

_ _ 1 a 1 t
A =10 = [ sricvads = [ vicds- [ e (5.48)
0 0 0
where X,(£,1) =&+ s fot w(&, 7)dr. Tt is clear that
Xl < €0+ ellzznogy) <

||X8||W5+1/2(F0) <c(l+ \/EHUHW;“’O(Qt))

with constants independent of T'. Therefore inequalities (5.46), (5.47) follow from (5.48) and from
Proposition 5.1. For instance,

1 t
Hf(X) — f(g)HWéHﬂ(Fo) < C/() (S;lop|vf(Xs)‘/0 HUHW21+3/2(FO)dT

t
HIVHCE ) g | sup (e, 7)ldr)ds
0

< o(Villullzgrogr + (1 + Villulgrogu)llulazogy)

< (1 + V) |ullgrzog,)

and (5.46) is established in the same way. The proposition is proved.
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Proposition 5.8. If u satisfies (5.45), then

o) lggrsssrsersisyy < e(lllizgoinapy +sup (6, ) llligzenssrsg,

< 1, then

If, in addition, HPOHW;“/?(g)

||l5(u7 7“) ||17V25+1/2,z/2+1/4(GT)

= C(”““V”Vf“”(QT) +sup ||7“(‘vt)||w2’+”2(g>) <““”V~V§“’°(QT> + ||7"||W;+”2*°(GT>>‘

Proof. We start with the proof of (5.50). By (5.1), (5.3) and (5.46),

16(X) — B 12y < ellullzngllrC Dl

[G(X) =@yt < ellrC )y (sup (1((X) —b(E)

2

() = b)) < ellullizzagy IrC ) gz

Moreover, if

igg ”T('a t)'|wé+1/2(ro) <1,

then the norm [|by (w, r) ||, 1+1/2 with b; defined in (1.11)) is bounded, and

(To) (

Hbl(u’r)TQ”W;““(Fo) < C”TQ|’W5“/2(F0) < C”THIQ/Vé-FI/Q(FO))

||b1(u7 T)TZHWé—l/Q(FO) < C<S;lp |b1(§7 T)| + ||b1(7 T)HWQI(Fo)) ||T2||Wé_1/2(I‘0)
0

< CHT|’W21+1/2(FO)HTHW2I*1/2(FO)'

Combining the above estimates, we obtain

s e ) 107205

< C<||u||’m722+l,0(Qt) + iilg ||7“(-, t)||W2l+1/2(F0)> HTHWéH/?’O(GT)'

It is shown in [3] that

17 lhgtsrrzgoyy < e(Moollpsrrngy + lelizznogg,)).

so the condition (5.51) holds if py and u are small.
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Now we pass to the estimate of ||l5(w,r)|[501/2+1/4 Since [/2 + 1/4 < 1, we can use
2

(Gr)’
Proposition 5.3:

152, Pllgnarzsrsaggy < 10+ 0007 ey + 10+ Ol ) o)) (5:53)

The first term on the right -hand side has already been estimated in (5.52), so we need to consider
the time derivative of [5. We have

9 (B(X) ~ bE)r(E.1) = Txb(X) - ule, (€ 1) + (b(X) ~ HEI(E,

where b(X) = b(X), as well as Vxb(X), is a bounded function. We use the equation r, = N(X)-u
and obtain

o _

15 (0(X) = b(€))llzaro) < cllullgzran g, [ullzaro)

el ulrllatrey < e(llulligznagy +sup (6,01 tlagro).
0

The time derivative of b (u,r) is also bounded, whence
0 9 2
12 b1t grey < el + 172 acr)

< esup (& )l (1wl ara) + 17l sty )

o
The last two inequalities imply
11+ )lse(w, )| Lar)

< o lullzrnogy + sp Ir(€01) (11 4+ Dulzan + 11+ 0)rllaen ).
T

which completes the proof of (5.50).
We turn to the inequality (5.49). By (5.1), (5.47) and (5.46),

(O] e
< o(sup IN(E) = N@lllul Oll ooy, + INCX) = N@)lygoore, sup [u(e, 1))
0

< cllulzogy (Il Dlhygssg,y + Visup u(e,0)),
o)l 2,
< ((sup IN () = NIl ) lhygroraeyy + INCE) = N©llygovs ey sup (s, 1))
< cllullgaraggy s ) yreors ),
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which implies
o) g0y < ellulizenog (5:54)

Now we estimate ||l6(u)||wo,l/2+3/4(GT). We notice that [/2+3/4 € (5/4,3/2) and p=1/2+1/4 €
(3/4,1). We consider the finite difference

Ay(=h)ls(u) = (A(=h)N(X)) - u(&, t) + (N(X(,t = h)) = N(6)) - A(=h)u(¢, 1)

_ _ h H _
Since |2 N (X)| < clu(&, t)], we have
[A(=h)ls(w) [ Lowro) < cllwllgrzeiog,) | A (=) u Lo

+ch sgp [u(é, T)‘”UHLz(Fo)’
t

min(T,1) g T . 2 12
</0 m/h t ||At(—h)l6(u)||L2(Fo)dt)

min(T,1) dh T ) ) 1/2
<clullgzuogn( [ g | PISCRw )

+esup |u(& D (1 + Dl 6r). (5.55)

Qr

We should also consider the time derivative of l5(u),

0 B . - ON (X)
alﬁ(u)—(N(X)—N(f))'ut—i— En

By Proposition 5.7, we have

U

0
I ts(@)llzaray < e(llwllzeo g lwllzare + esup (€, O] [l

o

and
ltsllzatiry < e(lsllzzenogyy ey + sup lullll o ) (5.50)

Gr

Finally, we should estimate the norm

min(T,1) dh T , 1/2
( /0 =T /h HAt(_h)thHLQ(FO)dt) (5.57)

where py =1/2—1/4 € (1/4,1/2). We have

6N()_()'u).

A(—)lge = (N(X (€, — b)) — N(€)) - Ap(—h)us + us - A (—h)N(X) + At(—h)( o
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Since N*(2R(x)) is a smooth function in a neighborhood of G, we obtain

1A (=)ol ooy < e Nwllgrzerog I A(=R)we(- Dl Laro) + hsup [u(€, D) | noro)
5 (Q)

Qt

[ et = Dllatest = Dllaar),

from which it follows that (5.57) does not exceed
elull 10y Nt lygorarscy + esp (6 D (el oy + sl
T

Thus,
i) ggiresssy < e{lllizzinaiay, + sup &0 el ggursers gy

This completes the proof of both (5.49) and the proposition.
It is clear that the estimates (3.22) are consequences of (5.25), (5.26), (5.38), (5.49), (5.50).

6 Proof of Proposition 3.2.

In this section, we estimate the norms ||wl|;,q,) and || We start with the following

. . w2y
auxiliary proposition.

Proposition 6.1. For an arbitrary fy € W;/Q(g) such that fg fo(2)dS = 0 one can construct
a divergence free vector field Wy(z), z € F, satisfying the conditions

Wo‘szo, Wo‘g:Nf[) (61)

and the inequalities
||VVO||W21 7 = C||f0|| 172Gy
IWollor) < cllfoll o) (6.2)

The relation between W and f is linear.
Proof. We define W (z) as a solution of the stationary Stokes problem

—V2W(z) + VQo(r) =0, V- -Wy(z)=0, z€F,

Wols =0, Wylg = N(z)fo().

For an arbitrary fo, € W,’? this problem has a unique generalized solution Wo € W (), Qo €
Ly(F), satisfying the normalization condition [~ Qo(x)dz = 0. By the trace theorem for the Sobolev
spaces, we can construct the vector field W, € W, (F) (not necessarily divergence free) satisfying
(6.1),(6.2). The difference W — W = U is a generalized solution of the problem

VU (2) +VQo(z) = V*W(z), V-U(x)=-V -W,(z), z¢cF,
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Uls =0, Ulg=0, / Qolx)dz = 0.
f

We multiply the first equation by U and integrate over F. Then we integrate by parts which leads
to

/|VU|2dx:—/Qg(x)V-Wl(x)dx—/le:Vde
F F F

< VWil (10l + VU o) )

Since the pressure @)y satisfies the inequality

1Qollar) < e(IIVU lar) + IV Willza),

we obtain

IVU|o7) < elVWillnaz) < ellfollyyre g,

which proves (6.2,).
To prove (6.25), we define (x) and 1 (x) as a solution of the problem

—V2p(z) +Vip(r) = Wy(z), V-p(x)=0, x¢cF,

pls=0. pls=0. [ vla)do—
f

and we recall that ¢(z), ¥ (z) satisfy the well-known coercive estimate

lellwzer + 1¥llwar < cdllWollLo)

By the Green identity, we have

/|W0 )Pdr = — /fo T(p, )N (x)dS.

Inequality (6.25) follows from this relation and the coercive estimate. The proposition is proved.
In our applications the function fy depends also on ¢ € (0,T'). Since the relation between W
and f is linear, (6.22) implies
IWotllz.r) < cll forllza (o) (6.3)

We assume that T'; is given by the equation (1.10), and we map F on €2, by the transformation
p= 2 N () = ep(e), 2 € F,

with p* subject to
19 ) gz iy < el )iy <€ 1

Vi; € [0,l+1—¢], e € (0,]l —1). Let £ be the Jacobi matrix of this transformation, L = det L,
L = LL™'. We define the vector field W (x,t), z € 4, by

L(z,p)
L(z, p)
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We have

Wo(z,t) = L(z, )W (2, 1),

which implies
3 —
~ 0w,

k,m=1

= L(Z, p)Vm : W(l', t)|$:ep(z)

Hence, W (z,t) is also divergence free and

W.L'N Wy N _ fo(z1)
W . ’I’L|Ft =
ILTN| ILTN|  |LTN|

= f(z,t), x=-¢e,(2).

Now we estimate the norms [|[W ||y (o,) and [[W[|z,q,). Since the norm [|p|[y+1-cg) is small,
we have L > ¢ > 0 and

IWliza0 < elW ) < elWollae) < el follna (6.5)

Moreover, from the relation

%W&:t szk<<3ym >W0+§%‘:;0), T = e,(2),

where /™* are elements of £~!, we obtain

VW 10 < (Z”(aym Vs Wl o

7)) < elWollwier) < ellollygregs (6.6)
because

o r
I k(a Nl < ¢ 3 190 1@y < elle” Ly 37205y < ellolhwzn <

l71<2

We pass to the estimate of W ;. First we consider

W= (i)

By (6.2), (6.3), we have
Wil <Sup\—|HWotHL2

el Wol o (1975 (s Dl + 105 lam) ) < eI forllzaie + 1ol )-
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Finally, from

3
Wiz 1) = Wi(a,t) + > W, Ni (2)p; (2, 1)
k=1

T=¢)(2)

we obtain .
IWillzoy) < NIWillo@@) + cllVaW ]| Ly

< c(Ifullra@ + I follyrog))- (6.7)

Proof of proposition 3.2. We follow the arguments in [9]. We multiply the first equation in
(1.4) by w(x,t) and integrate over €. After simple calculations we arrive at

1d

YA (e 1) 2de + © |S('w)\2dx—/ (m(z) — a?)w - ndS = 0.
2dt o 2 Ja, T,

The surface integral is equal to

G [ @) =z = 5 [ o) =ty [ mz) — at)iz).

As shown in [10] (see (2.16)-(2.18)),

/Qt(m(x) —a?)dx — /F(m(z) —a?)dz = /(m(z) — a?)p(z,1)dS

g

N /g (a;n](v—z) — (m(2) — () )22, 1) + alp)

= /g aglijgfz)ﬁ(z,t)dsjtq(p)

where H is the doubled mean curvature of G and ¢(p) is a remainder term satisfying the inequality

la(p)] < C/g Ip(z,t)|2dS.

Hence,

%(% 5 \w(z,t)|*dx + /gb(z);ﬂ(z,t)ds - q(p)) + g . |S(w)|*dz = 0, (6.8)

where b(z) = —agl](vz) > by > 0.
We obtain one more relation, multiplying the first equation in (1.4) by the vector field W (z, t)

defined in (6.4) and integrating over Q; (the function f, will be chosen later). This leads to

d
— [ w-Wdz — 'w~(Wt—i—('w~V)W)dx+2w/(e3><'w)-de
dt Q Q4 Q
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vy | Sty swde — [ n(a) - agas =0 (6:9)

Now, we multiply (6.9) by a small v > 0 and add to (6.8). This gives (3.24) with

E(t) = 1 |w(x,t)*dz + / b(2)p*(z,0)dS — q(p) +7 | w(z,t) - W (z,t)dx,

2 Jo, g o
Ei(t) :g 1S(w)2de — v | w- (W, + (w-V)W)dz
Q¢ Q
vy 2
+2w7/9 (e3 x w) - Wdzx + A S(w) : S(W)dx — ’y/r (m(z) —a®) fdS. (6.10)

It is clear that (3.25) holds if v is sufficiently small. Let us consider the surface integral in
(6.10). We introduce a projection of p on the subspace Ly(G) of functions orthogonal to constants

in Ly(G):

1

and set

fo
|LTN]|

f=
where fy € Ly(G) is a solution of the equation
Pbfy = PbPfy = (-Ag)""’Pp

and Ag is the Laplace-Beltrami operator on G. This equation is uniquely solvable because the
operator PbP is positive definite in the subspace Ls(G), and the Laplace-Beltrami operator acts
in this subspace. It is clear that

”f0HW2l/2(g) < C”(_Ag)*l/pr”W;N(g) < C”PPHW;V?(Q)' (6'11)

Since the function ¢(z, p) (1.15) satisfies (1.14), we have

‘/gp(z,t)dz‘ = )/g(p— gp)dS‘ = )/g(p;H— %31C)d5

2
P 14
< HPHW;U?(Q)”gH - EICHW;/g(g) < 5|’P|’W;1/2(g)-

This shows that
lp = Ppllyy 1725y < €lpllyy 126

and for small §
C_1||p||w2—1/2(g) < ||Pp||w2—1/2(g) < C||p||w2—1/2(g)'
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The difference m(z) — a® can be written in the form

m(z) —a® = m(e,(2)) —m(z) = —b(2)p +/0 (1-— S)%ds
= —b(2)p +m'(2,p)p” (6.12)
where
(2, p) = /0 (1=5) 37 mael + N ()N, () Vi),
Hence -

- [ tmte) = a)gs = [ @10t 0) - e )t = [ Po-ag")Pods

+ [0 = Pofods = [ iz o (6.13)

The integral [, Pp(—A;I/Z)deS is equivalent to HPpHIQ/V,l/2 , and the last two terms in (6.13)
2

do not exceed

(9)

”P - PPHW;U?(QO)”beHW;/z(QO) + HPHW;V?(QO)”me('a p)fUHW21/2(Q0)

S CéHpH?/VQ—U?(g)
This shows that for small §

- [ ma) = )15 = elolf g
By (6.5)-(6.7), other terms in (6.10) are estimated in the following way:
’2“’7/ (s x w) - Wz + 2L | S(w): S(W)da
Qt 2 Qt

< erllwllwg o0 W llwgon < elwlluganllolly; 172

| | w o D)Wz | < vl o ol ey
t

| [ w Wds| < erlwlan (I + ol ) )
t

Since the kinematic boundary conditions in (1.4), V! = w - n’/, can be written in an equivalent

form
w(ey(2),1) - LT(2,t)N (2)

N(2) - L7 (2, )N (2)
we have ||p¢| 2.y < cf|w]|zor,)- Finally, we use the Korn inequality

pe(z,1) =

)

lwllwg o < ellS(w)llzs)

and show that (3.26) holds in the case of small 6 and ~. Proposition 3.2 is proved.
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7 On the solvability of the problems (3.29) and (3.31).

Let us go back to Theorems 3.7 and 3.8 on the solvability of the problems (3.29) and (3.31). We con-

sider the second slightly more complicated problem. It is studied in the spaces /W?QZ’Z/Z(QT,TH), [ >
1, with the norm

lellrir g p,y = Nellwite gy T Tlullyi-rin-ig, s
we also set
1720 rry = Iullwio@r iy + Tllellwi-ro@r s
1l @r gy = 10w gy + Thlwginiraig 1y

The spaces /WZI’W(GT,TH) of functions defined on G'r 74, are introduced in a similar way.

For the analysis of the problem (3.31) we need some additional estimates of the expressions
li(u,q),l(u),l3(u),l4(u).

Proposition 7.1. Assume that w,q are defined in Qr, extended in the time interval (T, T +1)
according to the rule (3.30), and that

HUHWZQHJHN(QT) + ||Vq||V~Vé,z/2(QT) < 0;

moreover, let v, v’ p,p’ satisfy the conditions v(&,t) = v'(€,t) =0, p(&,t) =p'(§,t) =0 fort <T,
v,v' € W Qra), Vp, VP € W' (Qririr) and

— b

||v||Wé+2’l/2+1/2(QT,T+1) + HVPHW;’/?(QT,TH)

/ /
||’U ||W2l+2,l/2+1/2(QT,T+1) + HVP HW;’W(QT,TH) < 0

with sufficiently small 6 > 0. Then

1 (o + v, 0 + p) = Li(wo + 0", 4o + ) [0z

Qr,7+1)

< C5<H’U — vl|’/Wé+2,l/2+l(QT’T+l) + ”V(p — pl)”/Wé’l/z(QT,T+1)>’

||lg('u,0 + 'v) — 12(u0 + U/)HWéH,O( ) + ||L(u0 + v) — L(uo + vl)||/v[720,l+l/2

Qr, 741 (Qr,741)

+||l3('u,0 + ’U) — l3('u,0 + UI)||W1+1/2,1/1+1/4(
2

Gr,741)
—|—”l4(‘U,0 —+ ’U) — l4('u,0 —+ v/)HW;+1/2J/1+1/4(GT,T+1) < C&H‘v — vI”/V[\/22+l,1+l/2(QT,T+1), (71)
where wg, qy are defined in (3.30).
In addition,
||€4(’U) — 64(,0/)||Wé+l,l/2+l/4(GT,T+l) < C(SH’U — UIHW;H’H—U?(QT,TH)' (72)
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Inequality (7.2) is obvious. The proof of (7.1) is based on the estimates of the dlfferences

Ajj—Aj;, where Aj; and Aj; are co-factors corresponding to the transformations z = £+ ,T)dT
ij 0

and r=E&+ fo § T)dT, respectlvely
Proposition 7.2. If u, u' satisfy (5.13), then

JAC ) = AC )yt 0 < elIV (8 = ) [0, (7.3)

sup (6, 1) = A'(60)] < e V(= w) ggens g, (7.4)

[ ) = A1)y gy < e+ VDI (1 — ) [0, (7.5)
14, 1) = A5, ) llwicen)

eIV (s t) = ' )l + 19 = ) gz, IV liwigon ) (7.6)

14 = Al < V(= @)y rmsr g, (7.7)

IVA; = VA0, < cllV(u = w)llyoq,, (7.8)

where I} <1+1/2.
Proof. Inequalities (7.3)-(7.5) follow easily from the obvious estimates
ID(-,t) = D'(-,t < ol|V(u = u)[[e0

)”Wélmo) (Qt)

sup [ D(€,1) — D'(€.1)] < e[V (u — w) fggra0g,
0

ID(,8) = D' ) lyienag) < L+ VDIV (1 = a0,

Other estimates follow from the fact that A — A}, are linear combinations of 2=t Su—u)

Om Om qis
ou, (up—ut) 0?(up—ul) 9%ul,
et L / . _ kU k k Yt L /
T (Dgi — Dy;), Aiju — Ajjy are linear combinations of 2 T T Dy, agmat(DqZ D),
O(up—uy) Oug 9 0 (up—u}) 9% (up—uj) T _ /
e, aers v (Aije — Ajj,) are linear combinations of ==k, =02 Dy, 50— (Dyi — Dy;),

O(up—u}) 0Dy Ouj, B(in*D;i)
T TSI T T We have

14¢ = Alwicae) < cllV(w — ) i) (1 +sup|D(&,1)] + |!D|!W;/2(Qo))
0
+CHW’HW;<QO><SSP D& 8) = D& )l + 1D = Dl”ws/%no))
0

< eIV (e = ) lwyan) + 1V (w = @) llgpzog V0 lwycar) ).
14 = Apllzaen < (I = w)lao + 1V (@ = w) 110,

HIV (= ) lygogy P 1900 1) lwyan )

%)



which implies (7.7). Finally,

IV (Ar = A llwia,) < (llDZ(u w)llwio) +\/1_fsup|V( (€.1) — u/(&, 1))l

PRIV, 1) = w0y ) + el 90— )l (198 g
/ /
HVEsup [Va/ (€, 0)] + ViV (- Dllwar2ay )
which implies (7.8). The proposition is proved.

The proof of (7.1) is analogous to that of Propositions 5.5 and 5.6. We illustrate the method
of obtaining these inequalities for the simple case

P=(-A)Vg— (I —A)\Vq =P, +Ps,

where g =qo+p, ¢ =q+p', Pr=I—-A)V(g—¢), P, = (A" — A)Vq. We also set u = ugy + v,
v’ = uy + v'. The norm ||P;

||/V[75’0(QT R be estimated precisely as in Proposition 5.5:
P39 @nr) < €l Ve 510007, IV 0 = Dllgocor,.
< 06||V(p - p/)”Wé’O(QT,TH)'

Moreover, we have

1A(=)Pilz2(00) < sup |T = A&t = M1 AL(=R)V (g = )l a(0)
0

+ch 32713 | AL (-, Ollwican V(g — qI)HWg(QO)a
[A(=R)P1 12(00) < Sup 11— A&t = M)[1A(=1) V(g = @)l La(00)
0

VRl lygroig) V(e = @) iy

T+1 /2
([ ] s >7>1|1L290dt)

T+1 ) 1/2
/
< c||u ||Wl+1 (Qras / AET] / |A(=h)V (g —q )||L2(Qo)dt>

Fesup w1 = 7) lwye V(e -

and, as a consequence,

) H WEAQr i)

([ [ otnp o)
T+h

e 2 AT 1/2
< c| V' liriog,.,, / / [ A(=h)V (g — ¢ )HLg(Qo)dt)



VU 59 1190 = @) g

Qr,741) (Qr,7+1)’

which implies

— < — N |—~
||731||W20J/2(Q e[|V (p p)”Wém

+1) — (Qr,r41)

Hence,

| Py < cd||V(p—1p)

HWz Q)

The function P, is estimated in a similar way. We have

HWz Y2 i)

1Pl 0 0mpn < IV = w) g0 gn [ Valmioion.

< C(S”V('U - 'UI)HWQLO(QT,TH)

(we have used the fact that w — v’ = v — v’ = 0 for ¢t < T'); moreover, from

1A (=h) Pl a0y < sup |A(E,t = h) = A&t = P)[IA(=h) Vall o)

+chsup || Ay (- 1) — A (5 Dllwicao 1V el

t<T

1AL (=) PzlL00) < sUP[A(L,E = h) = A&t = M1 A((=h) V| )

+C\/E||At - A;HWé“(Qt)||VQ||W;*1(QO)

we obtain

!/
1Pellgoirzg, .0y < €SlIV(0 = )G

+1) (Qr,r41)

Hence
1Pl gnpeny < IV 0 = 0) g0y + 190 = D), )-

Other inequalities in Proposition 7.1 are also obtained by the arguments presented in the proof
of Propositions 5.5 and 5.6, on the basis of (7.3)-(7.8). The details are omitted.

As in [3], we establish the solvability of the problem (3.31) by the method of successive approx-
imations:

Vpmirr +2w(€s X V1) — vV 0001 + Vgt

= Li(wo + Ui,y Qo + Pm) — Li(wo, qo) + F(&, 1),
Vv = lb(ug +vn) — lo(uwg) + f(E,1), £€Q, t>T,

Iy S(Vmy1)no = U3(wg + vi) — U3(wg) + d(&, 1), (7.9)
—Pm+1 + vy - S(Vmi1)10 — L3(Ving1) = la(to + vim) — la(uo)
+la(vm) +d(€t), €T,
Vmi1(&,1) =0, £€8S,
V1§, T) =0, &€ Qy,
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m = 0,1,.... As the zero approximation, we take vy = 0, py = 0, so vy, p; are found as a solution
of a linear problem
v+ 2w(es x vy) — vV, + Vp = F(&,1),

V-v=f(&t), £€€Q t>T,
[1,S(v1)ng = d(&, 1), (7.10)
—p1 +vng - S(vy)ng — l3(vy) =d(£,t), & €Ty,
v1(&,t) =0, £€85,
v1(£,T)=0, &€y
The functions f, f =V - F, d, d are defined in (3.32). They satisfy the inequality

1F 02 oy + I 2000y 1)+ I F ligporsars

Qr,T+1 Qr,7+1 (Qr,7+41)

+||d||/v[72l+1/2,l/2+1/4(GT, D + Hd”Wé+l/2’l/2+l/4(GT,T+1) < CU(T),

T+
where

U(T) = ||u||ﬁ/22+’=1+’/2(QT) + HVQHVNV;I/?(GT)'
This inequality follows from the estimates of nonlinear terms obtained in Sec. 5. The difference
m(X[ug)) — m® (X [ug]) needs a special treatment. It can be written in the form

m(X [uo]) = m @ (X[ug]) = =3 (m(Xo(&, 1)) — m((Xo(€, 2T 1))

4 <m(X0 (€, 1)) — m((Xo(€,3T/2 — t/2))),
where X(&,1) = X[uol(&,t), t € (T,T + 1). Since

t

XO(S; t) = XO(S; 2T — t) + / 'U:[)(g, T)dTa

27—t

we have
m(Xo (&, 1)) — m((Xo(&, 2T —¢))

t t

:/01 Vm<X0(§,2T—t)+s/2Ttug(f,T)dT))ds-/ uo(§, 7)dr,

27—t

m(Xo(&, 1)) —m((Xo(&,3T/2 = 1/2))

= /01 Vm<X0(§, 37/2 — 1/2) +s/31t

T/2—/2

t

uo(ﬁ,T)ah') ds - /3 wo(&, 7)dr.

T/2—t/2

These expressions are estimated in the same way as the difference (5.48). The norm ||m(X[u]) —

m©) (X[uo])||ﬁ70,l/2+1/4(GT) is estimated with the help of (5.8). As result, we obtain

[l (X [wo)) — m(® (X[U[)])||W$+1/2,l/2+1/4(GT) < C||u||Wé+2,l/2+l(QT).
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The problem (7.10) differs from (3.8) by the presence of additional linear terms 2w(e; X vy)
and /3(vy). But they are of a lower order, so estimate (3.12) is still applicable to (7.10). The
compatibility conditions are satisfied, hence, this problem is uniquely solvable and the solution
satisfies the inequality

Xl(T) = ||vl||/m7$+2’l/2+l(QT,T+l) + ||vp1||wé,l/2( CU(T).

Qr,741)

By (3.28), U(T) < ce. It is easily seen that vy|;—7 = 0, p1|=r = 0.

If v,, and p,, are found and the functions u,q, v,,, pm, v’ = 0,p’ = 0 satisfy the assumptions
of Proposition 7.1, then we can find v,,11,pm+1 as a solution of the problem (7.9). By virtue of
(3.12). (7.1), (7.2),

Xm+1(T) = ||’Um+1||/V[72l+2,l/2+1(QT,T+1) + ||me+1||@,l/2(QT,T+l) S Cl(SXm(T) + CQU(T). (7.11)
Let € in (3.4) be so small that c(1 — ¢,6) 7 U(T) < 4. If
Xpn(T) < ep(1 — ¢16)'U(T), (7.12)

then it follows from (7.11) that X, satisfies the same inequality and w,q, Vi1, Py, ¥/ = 0,p' =
0 satisfy the assumptions of Proposition 7.1. This allows us to find v, 9, pmyie and so forth. In
this way we find all the approximations v,,, p,, and obtain a uniform estimate (7.12) for them.
Since the functions (3.32) vanish for ¢t = T, we have v;|;—7 = 0, p|;=r = 0.
To prove the convergence of the sequence v,,, p,, we estimate the differences w11 = V11 —
Vm, Sma1l = Pma1 — Pm, M = 1,2, .... They satisfy the relations

2
W1y +2w(€3 X Wig1) — VYV Winyy + Vg

=1L (wo + Y, @0 + Pm) — Li(Uo + Vi1, G0 + Pr1),
Vwn =b(ug+vy) — lb(ug +vm1), £€Q, t>T,
Iy S(wimi1)ne = l3(wo + vi) — U3(wo + V1),
—Sma1 +vng - S(Wmi1)ng — C3(Wii1) = L(wo + v) — Li(wo + V1)
Hy(vm) = ly(vm-1), & €T,
wn(§,t) =0, £€85,
w16, T)=0, &€ Q.
By inequalities (3.12), (7.12), and Proposition 7.1, we have

Zmi1(T) <62, (T),

where

Zm(T) = meHWé”’l/Hl(QT,TH) + HvsmHWé’l/2(QT,T+l).
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It follows that S-M_ 7, 1(T) < cd "M Z,.(T), and if ¢§ < 1/2, which can be guaranteed by
the choice of a small ¢, then .M 7, . \(T) < 27,(T) = 2X,(T), which means the convergence
of v, pm to a solution of the problem (3.31). It is unique, since for the difference w = v — v/,

s = p — p’ of the two solutions we have

||w||wé+2,l/2+l(QT,T+l) + ||V3||W2l,l/2(QT,T+1)

1
< 5 (HUJ|’/V[75+2,1/2+1(QT,T+1) + ”VS|’/V[75J/2(QT,T+1)),

so these solutions coincide. Theorem 3.8 is proved.
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